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ABSTRACT
Background: Fluoride pollution is a global problem because of its high phytotoxicity.
Fluoride is released in air, water and soil through industrial processes, where it
damages various plant species. Ricinus communis is widely distributed in Brazil,
India and China and has been extensively used as a phytoremediation species in
heavy metal-contaminated soils. However, few studies regarding the effect of air
pollutants on R. communis have been published, and no information about the
exposure of this species to fluoride is available. Therefore, the aim of the
present study was to investigate the effects of fluoride on R. communis
morphoanatomical and physiological responses using simulated rainfall containing
potassium fluoride (KF).
Methods: Young plants at approximately 10 days after emergence were treated daily
with KF using simulated rainfall at 0, 1.5, 3.0 and 4.5 mg L−1, for 37 consecutive days.
Chlorophyll a fluorescence, gas exchange, anatomical characteristics and fluoride
accumulation in the roots and leaves were evaluated after this period.
Results: No visual or anatomical symptoms were observed for the first three
treatments. Necrosis and chlorosis were visually evident after the 37th day of KF
application at 4.5 mg L−1, followed by changes in parenchyma tissues, cell collapse
and phenolic compound accumulation at the end of the experiment. No damage
was observed in terms of photosynthetic photochemical and biochemical stages.
Maintenance of physiological characteristics in the presence of fluoride accumulation
in roots and leaves were shown to be important fluoride biomarkers. These
characteristics suggest that R. communis is tolerant to 1.5 and 3.0 mg L−1 KF, and is
anatomically sensitive at 4.5 mg L−1 KF.
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INTRODUCTION
The incidence of environmental air pollution has increased simultaneously to industrial
progress (Li, Li & Zhang, 2018). Fluoride (F) is one of the most phytotoxic contaminants
(Panda, 2015). High F concentrations are released into the environment as a result of
several anthropogenic activities, including aluminum smelting (Choubisa & Choubisa,
2016), coal burning (Ding et al., 2013) brick manufacturing (Jha et al., 2008), direct
application of phosphate fertilizers (Ramteke et al., 2018) and fluoridated water irrigation,
which is also a source of diffuse soil fluoride (Fawell et al., 2006). In the atmosphere, F may
be released in both gaseous and liquid forms at concentrations ranging from 0.01 to
10 mg L−1 (Smith & Hodge, 1979). F concentrations in agricultural soils range from
100 to 5,300 mg kg−1 (Mikkonen et al., 2018; Singh et al., 2018). The World Health
Organization (WHO) has set a limit for fluoride in drinking water of 1.5 mg L−1.
Nevertheless, F levels in aquifers and water bodies often exceed this value (Silva, 1983;
Martins et al., 2018). In various parts of the world, fluoride concentrations in water from
aquifers used for plant irrigation range from 1.5 to 5.0 mg L−1 (Vikas et al., 2013; Abiye,
Bybee & Leshomo, 2018).

Because of its high toxicity, F affects biodiversity. In the case of plants, F is absorbed by
root tissues and is retained both in the cell wall and in the intracellular space, restricting
translocation to aerial parts, mainly in tolerant species (Zouari et al., 2017). When F is
present in its gaseous form in the atmosphere, it is absorbed through the stomata and
cuticles (Sant’Anna-Santos et al., 2014); in aqueous solutions, it can be incorporated by the
entire entrance path to the leaf surface (Anjos et al., 2018). Upon penetrating leaves,
F moves through apoplastic pathways, reaching leaf margins and apices, and may also
accumulate in the mesophyll, leading to lesions such as parenchyma cell collapse, resulting
in chlorosis and necrosis (Sharma & Kaur, 2018) as well as changes in primary plant
metabolism, including the photosynthetic process (Rodrigues et al., 2018a).

In order to determine the effects of F on plant development, it is necessary to recognize
the relationship between F and particular species, and estimate anatomical and
physiological visual damage to leaves and roots to determine sensitivity or tolerance.
Sensitive plants are used to directly determine biological effects caused by pollutants as
well as early pollutant damage through laboratory assays, which are relatively low-cost
compared to technical measurement methods (Oguntimehin, Kondo & Sakugawa, 2010).

Most crops require agricultural irrigation with groundwater or are exposed to direct
contact with air pollutants. Ricinus communis, popularly known as castor bean, is a cultivar
belonging to the Euphorbiaceae family (Salihu, Gana & Apuyor, 2014). It displays high
tolerance to diverse environmental conditions, is easily cultivated in tropical climates,
and presents low resource requirements, that is, fertile soil. As a result, it is widely
distributed, being found in countries such as Brazil, India, Italy and China (Atabani et al.,
2013). R. communis displays high economic potential because of its oil content and
biodiesel production potential (Saez-Bastante et al., 2015). It also serves as a source of raw
material for paints, cosmetics, varnishes, lubricants and drugs (Barbosa et al., 2010).
Furthermore, R. communis is widely used for the phytoremediation of heavy metals,
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including Cd, Zn and Cu (Wang et al., 2016), and has been reported as tolerant to
atmospheric pollutants, including SO2 (Singh et al., 1991), although it is sensitive to O3

(Rathore & Chaudhary, 2019). To the best of our knowledge, no studies on the effects
of F on R. communismorphology, anatomy and physiology traits have been reported until
now. Therefore, this study assessed the effects of F on morphological and physiological
responses in R. communis using simulated rainfall containing potassium fluoride (KF).
The potential of this species as a bioindicator for KF was also evaluated.

MATERIALS AND METHODS
Plant material, growing conditions and KF treatments
R. communis seeds were obtained from 50 adult plants in full production through manual
harvesting with pruning shears and manual depulping. The EVF 712 plant genotype from
Israel was used. Initially, seeds were treated with Vitavax�-Thiram fungicide (30%) and
were later seeded in five L containers with Bioplant� substrate containing the following
nutrient concentrations: F—25 mg kg−1; N—8.6 g kg−1; P—0.2 g kg−1; K—0.3 g kg−1;
Ca—1.3 g kg−1; Mg— 2.9 g kg−1; and S—0.9 g kg−1. Four seeds per pot were sown.
The experiment was performed under controlled conditions in a greenhouse located at the
Goiano IF, Brazil (latitude 17� 48′ 16″ S, longitude 50� 54′ 19″ W and altitude of 753 m).
Environmental parameters were monitored using a model-32 SKDL data logger with a
temperature and relative humidity sensor. The average relative humidity was 65% (± 5)
and average temperatures were 29� C (± 5 day) and 25 �C (± 5 night).

Approximately 10 days after emergence, plants with a standardized height (~15 cm)
with at least four leaves were chosen, leaving two plants per pot. Subsequently, the plants
were exposed to a liquid KF solution (pH 6.0) at 0 (control), 1.5; 3.0 and 4.5 mg L−1

to simulate constant fluoride release in the vicinity of polluted areas (Smith & Hodge,
1979). The pH values of the solutions were adjusted using HCl (2.0 M) and NaOH (2.0 M).
F application was also performed simulating rainfall with manual sprays, applying
250 mL day−1 per pot, sufficient to wet the entire plant surface. KF was applied from top to
bottom, dripping on leaves and then flowing to the substrate, simulating exposure to the
pollutant in natural conditions. After 37 days of KF exposure, visual, physiological and
anatomical assessments were performed.

A completely randomized design was carried out consisting of four treatments (KF
concentrations) and four replicates, each replicate composed of two plants.

Foliar symptoms
Visual symptoms were recorded by photographing the leaf surface of fully expanded
R. communis leaves at the end of the experimental period, using a digital camera
(Cyber-Shot SONY HX100V, Japan). The leaf with the greatest homogeneity compared
to the remaining leaves of each treatment was selected for photographing.

Morphoanatomical root and leaf characterizations
For the morphoanatomical analyses, median root regions (1 cm) and leaf cross sections
(0.5 cm2) from the median region of the third or fourth fully-expanded leaf from all the
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replicates were collected. The plant material was prepared for historesin infiltration as
detailed by Rodrigues et al. (2018b). The samples were sectioned at 5-mm thickness on a
rotary microtome and each section was stained with toluidine according to O’Brien,
Feder & Mccully (1964). Photographs were taken using a DP-72 camera coupled to an
Olympus microscope (BX61, Tokyo, Japan). Micromorphometric measurements of the
adaxial and abaxial face epidermises of the mesophyll, spongy and palisade parenchyma
were performed using ImageJ software (Image Processing and Analysis in Java, v. 1.47,
USA) on ten observations per repetition.

Starch location was also identified by histochemical staining using Lugol solution at
10 g L−1 (Jensen, 1962). The calculations of the percentage areas marked by Lugol were
performed by assessing contrast difference using the ImageJ software.

Gas exchanges
The net photosynthetic rate (A, mmol CO2 m

−2 s−1), transpiration rate (E, mmol
H2O m−2 s−1) and internal CO2 concentration (Ci, mmol mol−1) were measured using an
infrared gas analyzer (IRGA, model LI-6400XTR, LI-COR, Lincoln, NE, USA) in fully
expanded leaves under active photosynthetically radiation (PAR) (1,500 mmol photons
m−2 s−1) and CO2 concentration (400 mmol mol−1) constants, and environment
temperature (~27 �C) and relative humidity (~52%). The photosynthetic rate/internal
concentration of carbon dioxide ratio (A/Ci) and the electron transport rate/carbon
dioxide assimilation (ETR/A) were calculated according to Ribeiro et al. (2009).
Respiratory rates (RD, mmol CO2 m

−2 s−1) were measured in dark conditions to calculate
the maximum quantum yield of CO2 assimilation (ΦCO2) according to Fryer et al. (1998).

Chlorophyll a fluorescence
Chlorophyll a fluorescence was evaluated using a 6400-40 LCF fluorometer coupled to
the IRGA, to obtain the minimum (F0) and maximum (Fm) fluorescence, the potential
(Fv/Fm) and effective (ΦPSII) quantum yield of the PSII, the apparent electron transport
rate (ETR), photochemical quenching (qP), and the non-photochemical quenching (qN),
as detailed by Rodrigues et al. (2019).

Fluoride content
Fluoride content was measured in leaf and root samples after 24 h of the last simulated
KF rainfall. The samples were dried, ground and the fluoride extracted according to
Frant & Ross (1968), with modifications (Anjos et al., 2018). Fluoride content was
measured using a potentiometer (model 8519; Hanna Instruments�) and expressed
as µg g−1.

Statistical analyses
The confirmed data for normality of errors (Shapiro–Wilk) and homogeneity of variances
(Levene) were subjected to analysis of variance (ANOVA), followed by comparison of
means by Dunnett’s test, considering the significance levels of 1% (��) and 5% (�).
All statistical analyses were performed using ASSISTAT v. 7.7 software.
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RESULTS
Morphological traits
After 37 days of potassium fluoride application, no differences in symptoms were observed
between the control treatments and 1.5 or 3.0 mg L−1 KF (Figs. 1A–1C). However, plants
treated with 4.5 mg L−1 KF displayed chlorotic pigment formation, in brown tones, on
small parts of the leaf surface (Fig. 1D). No plant deaths were observed in any of the KF
treatments.

Anatomical changes
Ricinus communis presents an organized, undamaged adaxial and abaxial epidermis
(Fig. 2B). The chlorophyl parenchyma is heterogeneous of the dorsiventral type. The cells
of the palisade parenchyma are organized by an integrated layer of elongated cylindrical
cells. The spongy parenchyma consists of five to eight layers of polyhedral cells
(Fig. 2B). The root anatomy of R. communis presents a secondary xylem with intact vessel
elements and fibers and both solitary and multiple radial vessels, with an organized
vascular cambium and intact secondary phloem containing some cells with phenolic
content (Fig. 2A). KF application by simulated rainfall did not alter root and leaf structures
in the control group or the 1.5 mg L−1 KF treatment (Figs. 2A–2D). In addition, the highest
KF doses (3.0 and 4.5 mg L−1) did not affect secondary xylem root cells, and vessel
elements and fibers were not altered. On the other hand, the vascular cambium, cortex and
mainly, parenchymal cells, became disorganized (Figs. 2E–2G). In leaves, KF treatment

Figure 1 Symptoms of fluoride toxicity in Ricinus communis leaves highlighted by white arrows after
37 days of exposure. (A) Control, (B) 1.5 mg L−1 KF, (C) 3.0 mg L−1 KF (D) 4.5 mg L−1 KF. Scale bar:
5 cm. Full-size DOI: 10.7717/peerj.9445/fig-1
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altered the palisade and spongy parenchyma, resulting in cell wall deformities and
increased intercellular spaces in palisade parenchyma cells (Fig. 2F). In addition, the
4.5 mg L−1 KF treatment promoted bulging in the spongy parenchyma and in the
epidermis abaxial face of the epidermis, where cells presented a sinuous wall and
compacted tissue (Fig. 2H).

Figure 2 Sections from Ricinus communis roots and leaves after 37 days of exposure to fluoride.
(A and B) Control, (C and D) 1.5 mg L−1 KF, (E and F) 3.0 mg L−1 KF and (G and H) 4.5 mg L−1

KF. (VE) vessel element. (Xy) xylem. (VC) vascular cambium. (Ph) phloem. (Co) cortex. (AdEp) adaxial
epidermis. (AbEp) abaxial epidermis. (PP) palisade parenchyma. (SP) spongy parenchyma. Black arrows
indicate cell collapse. Red arrows indicate phenolics accumulation. (A, C, E and G) root. (B, D, F and H)
leaf. Scale bar: 200 mm. Full-size DOI: 10.7717/peerj.9445/fig-2
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Ricinus communis plants displayed reduced thickness in the spongy and mesophyll
parenchyma tissues when exposed to 3.0 and 4.5 mg L−1. At the highest dose, a 32%
reduction in palisade parenchyma thickness was observed when compared to the control
group (Table 1).

Starch accumulation
Control root and leaf cells displayed large Lugol-marked areas (Figs. 3A and 3B).
In KF-treated plants, the highest starch accumulation was noted in roots, identified by
black staining in both epidermal and parenchymatic cells, with increasing KF doses
(Figs. 3C, 3E and 3G), resulting in 49, 73 and 128% increments in the marked area when
compared to the control (Fig. 4). However, a decrease in starch accumulation with
increasing KF doses in leaves was noted (Figs. 3D, 3F and 3H), resulting in 52, 76 and 87%
reductions in the marked area (Fig. 4).

Gas exchanges and chlorophyl a fluorescence
Net photosynthetic rate (A), transpiration rate (E), maximum quantum yield of CO2

assimilation (ΦCO2) and the ratio between the photosynthetic rate and internal CO2

concentrations (A/Ci) and apparent electron transport rate and CO2 assimilation (ETR/A)
were not affected by KF exposure (Table 2).

Concerning chlorophyl a fluorescence parameters, only non-photochemical quenching
(qN) was significantly altered in R. communis, with an increase in 15.39% in the 3.0 mg L−1

KF treatment when compared to the control (Table 3). Fv/Fm, ΦPSII, ETR and qP did not
exhibit any differences in KF treatments compared to the control.

Root and leaf fluoride content
Fluoride contents in roots were 24, 32 and 48% higher in the 1.5, 3.0 and 4.5 mg L−1 KF
treatments when compared to the control (Fig. 5). For leaves, only 4.5 mg L−1 KF led to
differences in relation to the control.

Table 1 Morphoanatomical measurements in Ricinus communis after 37 days of exposure to
simulated rainfall containing KF (0, 1.5, 3.0 and 4.5 mg L−1). Adaxial epidermis (EpAd), abaxial
epidermis (EpAb), palisade parenchyma (PP), spongy parenchyma (SP) and mesophyll (Me).

KF
(mg L−1)

EpAd
(µm)

EpAb
(µm)

PP
(µm)

SP
(µm)

Me
(µm)

0 16.77 ± 0.46 13.56 ± 1.20 90.08 ± 1.84 106.26 ± 7.15 204.94 ± 11.52

1.5 16.17 ± 0.46 13.42 ± 1.30 78.30 ± 8.04 95.59 ± 2.68 182.31 ± 5.25

3.0 17.58 ± 0.44 12.32 ± 0.44 86.79 ± 2.42 81.25**± 3.63 168.13**± 1.71

4.5 18.04 ± 0.57 14.27 ± 0.19 60.84** ± 1.75 68.73**± 3.60 127.18**± 6.50

One-way ANOVA

F (t-test) 2.97NS 0.77NS 8.89** 12.76** 20.82**

p 0.0746 0.5331 0.0022 0.0004 <0.0001

Notes:
** Asterisks indicate significant differences at 1% of probability, relative to the control by Dunnett’s test.
NS Indicates non-significance.
Mean ± SEM (n = 4).
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DISCUSSION
Ricinus communis morphoanatomical characteristics were not affected by the 1.5 mg L−1

F treatment. Similarly, Devi et al. (2016), who studied different plant species from regions
near fertilizer factories presenting soil contaminated with up to 404 mg kg-1 of fluoride,
concluded that F exposure did not alter the morphological characteristics of Prosopis
juliflora, Brachiaria distachya, and Scopharin dulci. The authors also observed that these
species displayed a high capacity to accumulate F in roots and leaves at concentrations

Figure 3 Starch accumulation marked in black in Ricinus communis roots and leaves after 37 days of
exposure to fluoride. (A and B) Control, (C and D) 1.5 mg L−1 KF, (E and F) 3.0 mg L−1 KF and
(G and H) 4.5 mg L−1 KF. (Co) cortex. (AdEp) adaxial epidermis. (PP) palisade parenchyma. (SP) spongy
parenchyma. Yellow arrows indicate starch accumulation. (A, C, E and G) root. (B, D, F and H) leaf. Scale
bar: 200 mm. Full-size DOI: 10.7717/peerj.9445/fig-3
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ranging between 300 and 780 mg kg-1. Gao & Zhao (2014) reported that subcellular F
distributions in tea plants play important detoxification roles. Most F can be sequestered
in vacuole fractions, possibly reducing organelle toxicity and thereby preventing
phytotoxicity to cellular structures. However, 3.0 and 4.5 mg L−1 fluoride led to visible
injury symptoms with anatomical changes in R. communis. Direct F contact with leaves
can cause visual symptoms such as chlorosis (yellowing) and leaf necrosis (Gupta et al.,
2009). It is important to note that varying degrees of fluoride compound tolerance can be

Figure 4 Starch accumulation in Ricinus communis roots and leaves after 37 days of exposure to
fluoride. Asterisks indicate significant differences at 1% (��) probability, relative to the control by
Dunnett’s test. One-way ANOVA Root (F-value 48.97��; p < 0.0001) and Leaf (F-value 24.62��;
p < 0.0001). Bars represent the mean ± SEM (n = 4). Full-size DOI: 10.7717/peerj.9445/fig-4

Table 2 Gas exchange measurements in Ricinus communis after 37 days of exposure to simulated
rainfall containing KF (0, 1.5, 3.0 and 4.5 mg L−1). Photosynthetic rate (A), transpiration rate (E),
relation of the photosynthetic rate between the internal CO2 concentrations (A/Ci), relation between the
apparent electron transport rate and CO2 assimilation (ETR/A) and maximum quantum yield of CO2

assimilation (ΦCO2).

KF
(mg L−1)

A E A/C i ETR/ A ΦCO2

0 21.99 ± 0.96 0.005 ± 0.001 0.096 ± 0.005 6.92 ± 0.53 0.018 ± 0.001

1.5 17.41 ± 1.91 0.005 ± 0.001 0.071 ± 0.008 6.88 ± 0.67 0.015 ± 0.002

3.0 19.46 ± 1.23 0.007 ± 0.001 0.070 ± 0.008 5.82 ± 0.55 0.016 ± 0.001

4.5 19.03 ± 1.64 0.006 ± 0.002 0.072 ± 0.009 6.20 ± 0.28 0.016 ± 0.001

One-way ANOVA

F (t-test) 1.63NS 0.70NS 2.62NS 1.03NS 1.63NS

p 0.2344 0.5679 0.0988 0.412 0.2342

Notes:
NS Non-significant.
Means ± SEM (n = 4).
Dunnett’s test.
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observed in plants, depending on the concentration and exposure time (Rey-Asensio &
Carballeia, 2007). The application of 3 and 4.5 mg L−1 of KF caused evident formation of
collapsed cells, mesophilic retraction with palisade parenchyma, spongy and mesophilic
thickness reduction in R. communis. These results are likely due to changes in the turgor of
mesophilic cells, giving them a flat and collapsed appearance (Sant’Anna-Santos et al.,
2012; Sharma & Kaur, 2018). These data suggest that the association between tolerance
potential and anatomical and physiological evaluations may be used as KF bioindicators.

Table 3 Chlorophyll a fluorescence measurements Ricinus communis after 37 days of exposure to
simulated rainfall containing KF at different concentrations (0, 1.5, 3.0 and 4.5 mg L−1). Potential
quantum yield of the PSII (Fv/Fm), effective quantum yield of the PSII (ΦPSII), electron transport rate
(ETR), photochemical quenching (qP) and non-photochemical quenching (qN).

KF
(mg L−1)

Fv/Fm ΦPSII ETR qP qN

0 0.87 ± 0.01 0.24 ± 0.01 150.79 ± 6.11 0.44 ± 0.02 2.21 ± 0.03

1.5 0.87 ± 0.01 0.19 ± 0.01 118.46 ± 12.59 0.36 ± 0.04 2.10 ± 0.05

3.0 0.84 ± 0.02 0.18 ± 0.02 114.45 ± 15.80 0.31 ± 0.05 2.55*± 0.14

4.5 0.87 ± 0.01 0.19 ± 0.02 118.25 ± 12.27 0.33 ± 0.03 2.35 ± 0.07

One-way ANOVA

F (t-test) 1.4257NS 1.9320NS 1.9319NS 2.7161NS 5.6638*

p 0.2837 0.1783 0.1783 0.0913 0.0118

Notes:
NS Non-significant.
* Asterisks indicate significant differences at 5% of probability, relative to the control by Dunnett’s test.
Means ± SEM (n = 4).

Figure 5 Fluoride content in Ricinus communis roots and leaves after 37 days of exposure to
simulated rainfall containing KF. (0) Control, 1.5; 3.0 and 4.5 mg L−1 KF. Bars represent the mean ±
SEM (n = 4). Asterisks indicate differences at 5% (�) and 1% (��) probability, relative to the control by
Dunnett’s test. (NS), non-significant. One-way ANOVA Root (F-value 35.4011��; p < 0.0001) and Leaf
(F-value 6.6645�; p = 0.0144). Full-size DOI: 10.7717/peerj.9445/fig-5
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Gas exchange remained constant in R. communis. In the natural environment, CO2

concentrations remain relatively unchanged. Stomata are sensitive to changes in CO2,
responding to the mole fraction of CO2 in intercellular mesophyll spaces (Oguntimehin,
Kondo & Sakugawa, 2010). In this case, stomata opening and closing is highly sensitive
to atmospheric pollutant exposure and represents a protective mechanism to limit
pollutant entry into leaves, despite the fact that this may result in lower photosynthetic
rates (Rao et al., 1983; Cai et al., 2016). F triggers stomata closing in several species;
nevertheless, A, E, A/C. and ΦCO2 remained constant in R. communis, suggesting that
potassium fluoride did not trigger damage to Rubisco, the main enzyme involved in carbon
fixation (Manter & Kerrigan, 2004; Walker, South & Ort, 2016). The maintenance (or
increase) of photosynthetic efficiency under stressful conditions can be interpreted in
terms of compensation and acclimatization, occurring while plants recover from damages
caused by atmospheric pollutants (Bussotti, Strasser & Schaub, 2007; Duan et al., 2019).
Nevertheless, prolonged stress and exposure to high KF may inhibit these defense
mechanisms, compromising plant development.

Chlorophyll a fluorescence traits provide insights into photochemical PSII efficiency
and the ability to tolerate environmental stresses (Baker et al., 2001). Fluoride
causes physiological levels that affect chlorophyl a fluorescence in sensitive plants
(Ghassemi-Golezani & Farhangi-Abriz, 2019). Nevertheless, little is known about the
physiological responses of tolerant plants. It is expected that accumulated atmospheric
pollutants would trigger abiotic stress responses in sensitive plants (Gorbe & Calatayud,
2012), which was not observed in R. communis. The absence of changes inΦPSII, Fv/Fm, qP
and ETR suggest maintenance of the physiological metabolism (Baker, Harbinson &
Kramer, 2007). In particular, the increased qN indicates thermal dissipation of excess
energy as a defense mechanism (Tomar & Jajoo, 2015) and to avoid photooxidative
damage. Increases in non-photochemical quenching have also been detected in Secale
cereale exposed to aluminum for short periods (Silva et al., 2012). KF exposure in tolerant
species may result in qN recovery values close to those of control, and stabilized F0 suggests
a tendency to maintain the balance between light level energy absorption and light
energy use.

In addition, KF in R. communis led to the accumulation of starch grains in root cells and
decreases in leaves. In toxic doses, F gives rise to higher amounts of starch in leaves, an
effect related to the inhibitory effect of F on carbohydrate translocation from leaves to
roots, leading to starch accumulation in chloroplasts (Sant’Anna-Santos et al., 2006).
It is possible that KF treatments did not affect R. communis carbohydrate translocation,
suggesting a greater tolerance of this species to KF. R. communis roots proved to be an
important reserve organ in this species, directly related to the plant source/sink ratio
when storing the starch produced in leaves. As observed in plants exposed to KF, starch
accumulation in roots has been previously reported in heavy metals-treated plants
(Eleftheriou et al., 2015). The reduced carbon reserve, by starch, in plants exposed to
stress allows it to be used in the release of energy, sugars and metabolites which, in turn,
may be used to protect the plants against oxidative stress (Thalmann & Santelia, 2017).
Because of fluoride toxicity, changes at the physiological level affect chlorophyl a
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fluorescence in sensitive plants (Boukhris et al., 2015). Fluoride was absorbed by the root
system at a rate proportional to increasing KF doses. F adsorbed by roots may become
attached to cell wall components such as calcium or ionizable compounds. Previous
studies have demonstrated that several species from semiarid regions accumulate F in both
cytosolic and cell wall fractions (Baunthiyal & Sharma, 2012). This mechanism is crucial to
improve fluoride tolerance in R. communis plants exposed to 1.5 and 3.0 mg L−1 KF.
However, F can deconstruct root cells, promoting vein retraction and cellular collapse, as
observed in R. communis after exposure to 4.5 mg L−1 KF. These changes indicate cell
toxicity from the highest F accumulation in leaves and roots in the 4.5 mg L−1 treatment.
The fluoride content in leaves and roots in the control treatment is derived from the
substrate (25 mg kg−1). Furthermore, normal F levels in plant leaves usually range from
2 to 20 µg/g fluoride (Sant’Anna-Santos et al., 2014). It is important to emphasize
that this subject deserves further investigation, due to the considerable amounts of
fluoride-contaminated food ingested by humans (Zohoori &Maguire, 2016). These include
grains, vegetables and byproducts of these raw materials grown in industrial areas
presenting high F levels or irrigated with waters containing high F concentrations
(Jha, Nayak & Sharma, 2011).

CONCLUSIONS
Ricinus communis is potentially tolerant to potassium fluoride at 1.5 and 3.0 mg L−1,
accumulating F in roots and leaves. The preservation of noninvasive variables, including
visual effects, ΦPSII, ΦCO2, Fv/Fm ETR, A and A/Ci are important tools that can be used
as biomarkers of fluoride action for this species. Nevertheless, it should be emphasized
that visual and anatomical alterations were observed at 4.5 mg L−1 exposure, suggesting
that F may serve as a pollutant detector. R. communis displays potential as a tolerance
bioindicator in F-contaminated environments, and can be used in environmental quality
monitoring programs.
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