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The timely diagnosis of Alzheimer’s disease (AD) and its prodromal stages is critically
important for the patients, who manifest different neurodegenerative severity and
progression risks, to take intervention and early symptomatic treatments before the
brain damage is shaped. As one of the promising techniques, functional near-infrared
spectroscopy (fNIRS) has been widely employed to support early-stage AD diagnosis.
This study aims to validate the capability of fNIRS coupled with Deep Learning (DL)
models for AD multi-class classification. First, a comprehensive experimental design,
including the resting, cognitive, memory, and verbal tasks was conducted. Second,
to precisely evaluate the AD progression, we thoroughly examined the change of
hemodynamic responses measured in the prefrontal cortex among four subject groups
and among genders. Then, we adopted a set of DL architectures on an extremely
imbalanced fNIRS dataset. The results indicated that the statistical difference between
subject groups did exist during memory and verbal tasks. This presented the correlation
of the level of hemoglobin activation and the degree of AD severity. There was also
a gender effect on the hemoglobin changes due to the functional stimulation in our
study. Moreover, we demonstrated the potential of distinguished DL models, which
boosted the multi-class classification performance. The highest accuracy was achieved
by Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) using the
original dataset of three hemoglobin types (0.909 ± 0.012 on average). Compared to
conventional machine learning algorithms, DL models produced a better classification
performance. These findings demonstrated the capability of DL frameworks on the
imbalanced class distribution analysis and validated the great potential of fNIRS-based
approaches to be further contributed to the development of AD diagnosis systems.

Keywords: Alzheimer’s disease, fNIRS, multi-class classification, deep learning – artificial neural network (DL-
ANN), CNN-LSTM
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INTRODUCTION

The incidence of age-related dementia has increased dramatically
as the world population is aging. Dementia was estimated to
affect 50 million people worldwide in 2018 and is expected to
exceed 150 million people within 30 years (Alzheimer’s Disease
International, 2018). Alzheimer’s disease (AD) is one of the
most well-known causes of dementia, accounting for nearly
two-thirds of all dementia patients (Alzheimer’s Association,
2019). AD is characterized by the progressive impairment of
both cognitive and memory abilities due to a consequence of
the significant loss of neurons in the nervous system (Veitch
et al., 2019) or disruption of nerve cell communications by the
presence of extracellular Amyloid-Beta (Aβ) peptide plaques and
neurofibrillary tangles (NFT), which typically develop decades
before the symptoms manifest (Lowe et al., 2019). Since AD
first destroys brain cells related to language and memory
brain regions, patients suffer from confusion, memory loss,
speech impediment, poor problem-solving skills, and difficulty in
daily communication. Then, other brain regions for controlling
breathing and heart functionality would deteriorate, eventually
leading to death. Patients with AD are generally diagnosed
in late stages, by which point existing treatments can only
decelerate the speed of cognitive declines. As such, a prompt
diagnosis to facilitate proper treatments of preclinical and its
prodromal stages is significantly crucial. Besides fundamental
exams, such as patient interview, Mini-Mental State Examination
(MMSE), and physical and neurobiological exams, reliable and
powerful neuroimaging techniques, such as from functional
magnetic resonance imaging (fMRI) (Cheng et al., 2019),
structural magnetic resonance imaging (sMRI) (Wang et al.,
2016), positron-emission tomography (PET) (Alster et al.,
2019), electroencephalography (EEG) (Mazaheri et al., 2018), or
diffusion tensor imaging (DTI) (Hwang et al., 2019) techniques,
are desperately needed to furnish more informative diagnosis
approach. However, these techniques usually appeal to the
clinical interaction between doctors and patients, whilst a more
flexible paradigm of doctor-patient interaction is preferable.

Functional near-infrared spectroscopy (Naseer and Hong,
2015) is a scalp-located and non-invasive technique which
measures the neural activity using the concentration of
oxygenated (HbO) and deoxygenated (Hb) hemoglobin in
the brain by calculating by the blood-oxygen-level-dependent
effect (Ferrari and Quaresima, 2012). fNIRS offers a variety
of advantages over the aforementioned neuroimaging methods,
such as a relatively high temporal resolution, absence of ionizing
radiation, low cost, high portability, lightweight implementation,
and lower susceptibility to motion artifacts during experiments
(Lancia et al., 2018; Ho et al., 2019). Unlike commonly
sizeable systems (e.g., fMRI, PET, EEG), which prevent the
daily activity acquisition in the brain, fNIRS enables the
brain measurement with much less intrusive form factors
when performing tasks to not interrupt the actual behavior
of participants. In AD studies, specifically, fNIRS has verified
its own potential (Zeller et al., 2010; Perpetuini et al., 2017).
Araki et al. (2014) presented a significant difference in the
cerebral blood flows of patients with AD under the effects of

memantine. Hemodynamic responses between healthy controls
(HC) and patients with AD were also distinguished (Metzger
et al., 2016; Li et al., 2019), whilst mild cognitive impairment
(MCI) – an early stage of AD – was differentiated from those
in the HC group (Ghafoor et al., 2019). These studies have
demonstrated that patients with AD typically exhibit lower
levels of activation in specific brain regions compared to the
HC group during cognitive tasks. In addition, fNIRS is well
operable with EEG in the multimodal integration to reinforce
the diagnosis accuracy (Fazli et al., 2012). Nevertheless, these
previous studies have solely distinguished AD from HC using
cognitive tests, whereas different AD stages remain unknown
and the pathological mechanism of AD progression has not
yet been thoroughly documented. Therefore, in this study,
multiple subject groups were recruited and participated in
different evaluation tasks (cognitive, memory, and language) to
comprehensively compare and evaluate the capability of fNIRS
in AD diagnosis.

Machine learning (ML) techniques have been a fundamental
element involved in any computer-aided diagnosis systems for
the automated prediction of neurological disorders. A Bayes
classifier was applied to determine the utility of the eye-tracker,
heat flux and median absolute deviation, electrocardiogram
armband, EEG headset, and heart rate monitor (Haapalainen
et al., 2010). A Gaussian mixture model was used to measure
the mental workload of a mental arithmetic task through eye-
tracking data (Chen and Epps, 2013). The capability of multiple
learning algorithms, including logistic regression, decision trees,
naïve Bayes, 1-nearest neighbor, and multilayer perceptron, was
evaluated on heart rate data. Subsequently, ML has gained much
attention in fNIRS studies. Support vector machines (SVMs) and
adaptive boosting as traditional ML algorithms were utilized to
distinguish stress levels from the resting states of subjects during
Stroop task experiments (Solovey et al., 2014). Logistic regression
and SVMs in mental workload classification were also verified
(Benerradi et al., 2019).

Despite being successfully applied on signal domains,
extracting and selecting features in appropriate ways are still
considered as main drawbacks of conventional ML. The cost
of these supervised learning methods increases with respect to
parameters. As such, these algorithms require a huge amount
of labeled training data. Meanwhile, theoretical and biological
arguments have strongly recommended a model which is
composed of multilayers of nonlinear processing with few labeled
inputs in correspondence with human brain activity. Therefore,
deep architectures such as Convolutional Neural Network (CNN)
and Recurrent Neural Network (RNN) as two common forms
of Artificial Neural Network (ANN) have unsurprisingly come
to our top priorities in terms of solving optimization problems,
automated feature extractions, and multi-class classification
tasks. Deep learning (DL) models have been adopted a diversity
of applications in practice. CNNs have drawn extensive attention
in image classification using various frameworks, such as VGG-
16 (Simonyan and Zisserman, 2014) and Residua-Net (He et al.,
2016), while RNNs depict connections between computing units
that formulate a directed graph along a sequence, thus is
popular in time-series data analyses, such as machine translation,
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time-series prediction, or speech recognition (Lokesh et al., 2019;
Wright et al., 2019).

Although the DL-based approach has earned great success in
various computer vision tasks, its potential in AD classification
using fNIRS are not substantially achievable. First, various
preprocessing steps are required since the amplitude and
the length of signals are different from patient to patient.
Second, a sufficiently large number of datasets is mandatory to
efficiently train a DL model. Thus, either an adequate number of
original data or artificial data from augmentation or resampling
techniques is required. Third, it is arduous to obtain an efficient
conversion approach to express medical signals in the form
of carrying pertinent information in CNN. Moreover, feeding
inputs to a RNN network and training it with gradient descent
algorithms (Ruder, 2016), such as long-term independence,
remain challenges. To address these challenges, researchers have
recently paid exceptional efforts to develop the 1 Dimensional-
Convolutional Neural Network (1D-CNN) which can capture
spatial-temporal information of signals and long short-term
memory (LSTM), as one type of RNNs, which can train and
avoid the so-called vanishing gradient issue. Therefore, it is of
great interest and importance to address the aforementioned
challenges in our study.

The main contributions of this study are summarized as
follows: (1) we presented the comprehensive experimental
protocol, including cognitive, memory, and verbal tests to
investigate the diverse patterns of AD progression, thereby
facilitating the investigation of hemodynamic response
differences between the HC group and three stages of patients
with AD; (2) we inspected the significant differences of oxygen
hemodynamic concentrations between subject groups and
between gender; and (3) we demonstrated the potential of fNIRS
in AD multi-class classification using four DL architectures.

The remainder of this paper is organized as follows: Section
“Related Works” briefly presents the related works concerning
AD studies using fNIRS and DL techniques. In section “Materials
and Methods,” we describe materials, including the experimental
protocols, fNIRS datasets, pre-processing steps, and DL models
for multi-class classification tasks in detail. Section “Experimental
Results” summarizes the experimental classification results. In
section “Conclusions and Future Works,” we conclude the
paper with our main contributions and some suggestions
for future works.

RELATED WORKS

Functional near-infrared spectroscopy is a non-invasive way of
measuring cerebral hemodynamic change using near-infrared
rays (Yücel et al., 2017). Irani et al. (2007) proved the
relatively superior spatial-resolution of fNIRS compared to
EEG/Magnetoencephalography (MEG). fNIRS was used to
successfully distinguish signals from nearby measured brain
regions, thus avoiding fake correlations as induced by EEG/MEG
(Sonkaya, 2018). Moreover, from a practical point of view, fNIRS
is portable, safe, quiet, relatively inexpensive, easy to handle, has
fewer restrictions on subjects, compatible with iron metals, and

feasible for long-term continuous and repeated measurements at
short intervals. These advantages outweigh the merits of other
neuroimaging techniques in the study of neurological disorders
and psychiatric disorders such as dementia and brain-related
disorders. Many studies have examined the validity of using
fNIRS to compare the hemodynamic response in HC and patients
with AD, and demonstrated that patients with AD showed lower
activation in specific brain regions during various cognitive tasks
than normal people’s (Beishon et al., 2017; Vermeij et al., 2017;
Liao et al., 2019). Hock et al. (1997) reported that there was a
decrease in HbO and Total Hemoglobin (HbT) given a verbal
fluency task (VFT) in the parietal cortex of patients with AD. Arai
et al. (2006) revealed that HbO concentrations were significantly
reduced in the frontal and bilateral parietal areas of the AD group,
whereas the hemoglobin activation was only lower in the right
parietal area of the MCI group. These findings suggest that fNIRS
holds the promising potential to detect AD, even at early stages.

To monitor the declined cognitive function of AD, it is
essential to further define a classification scheme. Recent studies
have adopted ML on the classification of AD stages. With the
development of computational resources, the application of ML
algorithms has enabled the work of AD stage labeling based on
a classification model, which is beyond the traditional analysis.
Cicalese et al. (2020) presented a linear discriminant analysis
(LDA) algorithm applied on a hybrid EEG-fNIRS dataset to
classify four subject groups (8 HC, 8 MCI, 6 MAD, and 7
MSAD) given a random digit encoding-retrieval task. Their
results indicated that the right prefrontal and left parietal regions
were relevant to AD progression. The integrated EEG-fNIRS
feature set achieved a higher accuracy (79.31%) compared to
using EEG (65.52%) or fNIRS (58.62%) alone. Yang et al.
(2018) aimed to investigate MCI assessment using statistical
analysis and an LDA algorithm to differentiate MCI from HC.
They yielded an effective ML tool for early prediction of AD
using digital biomarkers and fNIRS (Yang and Hong, 2019).
Despite its popularity, conventional ML algorithms have been
criticized for their poor performance on raw data, not being
limited to on bio-signal domains, and for the prerequisite step
of manually extracting informative features (Plis et al., 2014;
LeCun et al., 2015).

The ability to achieve features with higher orders of
abstraction and complexity compared to conventional ML, such
as SVM, makes DL better suited for detecting scattered, complex,
and subtle patterns of the data. In addition, an integral facet of
DL to differentiate it from other ML methods is that features
are not manually engineered. Instead, DL learns the data in an
end-to-end manner, resulting in a more objective and less bias-
prone process (Plis et al., 2014). Proven for its superior image
classification and recognition capabilities, CNN has motivated
the development of a CNN-based taxonomy for early-stage AD
detection (Vieira et al., 2017). This review paper identified a
total of 25 articles relevant to DL studies of psychiatric and
neurological disorders, including AD-related concerns. First, the
diagnostic studies aimed to classify patients from HC. Second,
studies on conversion to illness used the baseline scan from
individuals who were predicted as being at high risk of developing
a psychiatric or neurologic abnormality. Finally, studies on
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predicting the treatment response employed the baseline scan
from subjects with a neurological or psychiatric diagnosis to
predict the subsequent treatment response. The accuracies of
DL architectures from those articles were also reported to testify
DL feasibility in discriminating between more than two classes
(HC, MCI, and AD).

Oh et al. (2019) presented volumetric CNN-based approaches
[convolutional autoencoder (CAE)-based unsupervised learning
and supervised transfer learning] for four binary classification
tasks (AD vs. HC, progressive MCI vs. HC, stable MCI vs.
HC, and progressive MCI vs. stable MCI) and a gradient-based
visualization task of the spatial attention. They discovered the
important AD-related biomarker using an MRI dataset from
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
without human intervention (Oh et al., 2019). The experimental
results showed that their proposed models achieved favorable
performance and comparable efficiency to current state-of-the-
art models. Meanwhile, the multimodal DL approach has exerted
to incorporate different types of inputs and DL models to boost
the AD classification accuracy. Lee et al. (2019) extracted multiple
features from MRI, cohort data, and cerebrospinal fluid (CSF)
data and adopted an RNN to predict AD. Suk and Shen (2013)
employed MMSE, MRI, PET, and CSF to discriminate AD from
MCI. Feng et al. (2019) fed MRI and PET data to the incorporated
framework of 3D-CNN and LSTM.

Previous AD studies have validated not only the potential of
fNIRS in assisting clinicians/practitioners to distinguish different
AD groups from a HC group, but also the potential of DL on
AD analysis. However, to the best of our knowledge, there are
several issues that remain unsolved and needed to be addressed.
The comprehensive experiment design with different tasks to
investigate AD patterns and the DL classification frameworks
for AD studies using imbalanced fNIRS datasets have not
been thoroughly documented. We, therefore, conducted entire
experiments (cognitive, memory, and verbal tests) and verified a
collection of four DL models to differentiate the HC group from
three levels of AD progression using the fNIRS dataset.

MATERIALS AND METHODS

Subjects
Early-phase AD is hardly characterized since it precedes for
years as an asymptomatic AD that is not comparable to
the normal aging process. However, using neuropathological
biomarkers from the cerebrospinal fluid and several brain
imaging techniques, the sequence of AD development is
distinguishable from that of aging in a cognitively unimpaired
healthy state that does not have AD biomarkers. Hence,
the National Research Center for Dementia and Chonnam
National University Hospital (Gwangju, South Korea) recruited
senior citizens living in Gwangju and adjacent cities to
approach this objective. By conducting a series of medical
examinations (MMSE, PET, MRI, and patient interview),
subjects were diagnosed with disease stages according to the
guidelines from the National Institute of Neurological and
Communicative Disorders and Stroke (NINCDS)-Alzheimer’s
Disease and Related Disorders Association (ADRDA) Work

Group (McKhann et al., 1984), the National Institute on Aging
and Alzheimer’s Association (NIA-AA) (Jack et al., 2011), and
International Working Group (IWG) (Cummings et al., 2013).
Subjects with a mental and/or behavioral disorder were excluded
from this cohort.

The final subject groups included HCs (cognitively normal
individuals), asymptomatic AD (abbreviated as aAD: cognitively
normal individuals, the amyloid positive in PET was found),
prodromal AD (abbreviated as pAD: mild brain dysfunction
symptoms such as short-term memory deficits, impaired insight,
irritability, dysphoric mood, and anxiety), and AD dementia
(abbreviated as ADD: deterioration of memory, language, social
abilities that severely effect on daily life) groups. A total of
140 subjects were involved in this study: HC class (n = 53,
age = 72.7± 5.3 years), aAD class (n = 28, age = 74.5± 4.3 years),
pAD class (n = 50, age = 75.8± 3.9 years), and ADD class (n = 9,
age = 75.4± 6.8 years).

All subjects had no previous experience with our experimental
protocol. The purpose of the research and the written consent
form were furnished and agreed upon by each subject prior
to conducting the experiment. The experimental procedure
was approved by the International Review Board at the
Gwangju Institute of Science and Technology. The demographic
information of participants is summarized in Table 1.

Functional Near-Infrared Spectroscopy
Device and Data Preprocessing
Figure 1A represents the fNIRS device setup. fNIRS signals
from six channels located in the prefrontal cortex region were
recorded. The device was built in the laboratory, and the probe
consisted of a pair of source and detector, light-emitting diode
(LED; OE-MV7385-P, Opto ENG, South Korea) and photodiodes
(Opt101, Texas Instruments). The LED had dual wavelengths
(730 and 850 nm). Channels 1, 2, and 3 measured signals in
the right prefrontal region while channels 4, 5, and 6 measured
signals in the left prefrontal region. While channels 2, 3, 5, and
6 were far-channels (30 mm) and the signals obtained from
these channels presented the cerebral hemodynamic response,
channels 1 and 4 were known as near-channels since the distance
between the source and the detector was very close (8 mm)
in order to measure the superficial layer from the head. The
photodiode located in between channel 3 and channel 5 was
15 mm distant from the Fpz point in the 10–20 EEG system.

The signal sampling rate was set to 8 Hz. Each channel was
visually inspected during the experiment, and channels exhibiting
large spikes were marked as noise and excluded from the study.
The changes in the concentration of hemoglobin [HbO, Hb, and

TABLE 1 | Subject demographics.

HC aAD pAD ADD

Number 53 28 50 9

Age ± SD (years) 72.7 ± 5.3 74.5 ± 4.3 75.8 ± 3.9 75.4 ± 6.8

Gender (M/F) 21/32 15/13 31/17 4/5

MMSE ± SD 27.0 ± 4.2 26.9 ± 2.5 26.0 ± 3.2 20.2 ± 4.8

Education ± SD 9.8 ± 4.7 10.2 ± 5.2 10.6 ± 5.2 8.5 ± 5.3
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FIGURE 1 | fNIRS device setup (A) and experimental protocol (B) (s, second; P, phonemic; S, semantic).

total hemoglobin (THb)] were computed by the modified Beer–
Lambert law (Swinehart, 1962). To remove artifacts, a low-pass
filter with a cutoff frequency of 0.5 Hz was applied. Although
we utilized four channels in our previous studies (Nguyen et al.,
2019) where the near-channels were excluded by employing the
extraction algorithm since their function was to get rid of the
skin and skull noise from the far-channels, it is crucial to consider
inputs from all channels to be fed to proposed DL frameworks in
this present study.

Experimental Protocol
Subjects were requested to sit in a comfortable chair situated
in a confined room to reduce environmental disturbances and
minimize their body movements during experiments. In our
experiment, subjects underwent a resting stage and three brain
functional tasks, including Oddball (cognitive ability test), 1-back
(memory ability test), and Verbal fluency (language ability test).
First, subjects calmly watched a white cross appeared on the

monitor screen for 60 s during the resting period. Subjects also
had 30 s for resting in a similar way before and after each
experimental task.

Second, the blue and yellow circles appeared alternately, and
subjects were asked to report the color of each ball in the Oddball
task. The yellow circle rarely appeared compared to the blue one.
Subjects were asked to pay attention to the occurrence of the
circle and press “0” if the yellow circle presented. Each colored
circle appeared for 0.5 s, and a blank screen appeared for 1–1.5 s
between the circles. The task took 5 min and was recorded twice.

Third, a consecutive series of numbers, from 1 to 3, randomly
appeared on the screen in the 1-back task. The appearance of
each number lasted for only a second. Subjects were requested to
remember a number which was selected and previously presented
in one trial. Subjects then pressed the “0” button likewise. The
task took 5 min and was also recorded twice.

Lastly, a total of six Korean phonemic and semantic words
alternately appeared on the screen in the Verbal fluency task.
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Initially, a letter appeared alone (i.e., “a”), and subjects would
continuously recite complete words that start with the letter
(i.e., “anniversary”). If a white cross appeared on the screen,
they would stop speaking and carefully glare at the screen
until the next semantic word appeared. When the semantic
word (i.e., “animal”) appeared, the subjects would continuously
recite certain animals (i.e., “Lion”). Each trial block took for
30 s, and there was a 30-s resting state between trials. This
process was repeatedly conducted, and the Verbal task took
approximately 7 min.

In total, every subject performed six sub-tasks in the order of
Resting, Oddball (trial 1), Oddball (trial 2), 1-back (trial 1), 1-
back (trial 2), and Verbal fluency. All procedures took around
30 min, including the break time between tasks (see Figure 1B).
Any subject who was not able to fulfill any of these sub-tasks was
excluded from our analysis.

Proposed Deep Learning Models
As a subcategory of ML, DL is inspired by the structure and
function of the brain, the so-called biological neural networks
(NNs). A DL model is made of the basic building block of NNs
which are trained on the large-scale labeled dataset(s) to learn
functions from the original data without manually extracting
features, as most of the conventional ML algorithms do. CNN,
denoted as one of the most well-known forms of DL, has been
demonstrating its robust performances in the computer vision
community where the inputs usually include high dimensional
features (i.e., each pixel of an image is a dimension). Hence, it
is pertinent to perform on a long sequence of data and is easy
to implement. Meanwhile, employing RNN, which can handle
the temporal data through modeling the underlying dynamic
behaviors of time series sequences, is natural. However, since
the sequence data is generated from electrodes that are closely
located, there is a strong correlation in time within the sequence.
Directly learning sequences with noises from RNNs is very
challenging. LSTM or the recently invented Generated Recurrent
Units (GRUs) can settle the vanishing or explosion of gradient
loss. Due to the early-stopping strategy used during the training
process, it is certainly expected that no severe overfitting can
be observed. Lastly, to take synergetic advantage of CNN and
LSTM, a mixed model including CNN followed by LSTM, where
CNN acts as an effective decoder for LSTM layers, is seemingly
interesting to build.

1D-Convolutional Neural Network
Since the input size of fNIRS data is different from acquainted
image datasets with more than one dimension, a 1D-CNN is
necessarily done in the time domain. In this work, with the idea
of using 2 dimensional stacks for time-specific activity, the CNN
model was employed to decompose and feed-forward a 1D fNIRS
signal that was known as a precomputed spectrogram or time-
frequency. CNN consisted of one 1D convolutional layer, one
1D max-pooling layer, and two linear layers. Batch normalization
was used before the activation function, and dropout was used for
regularization. A grid search of convolutional filter number, filter
size, pooling size, batch size, number of units per layer, stride, and

learning rate was done to optimize hyper-parameters, as shown in
Supplementary Table 1.

Long Short-Term Memory
To discriminate the subtle spatial-temporal change in the fNIRS
feature space associated with different progressive stages of AD,
a solution capable of remembering and ultimately aggregating
transitions across the dataset is required. LSTM, with the
attention mechanism, has been known as a wide-ranging method
utilized for distinctly learning and classifying bio-signal time-
series datasets (Tsiouris et al., 2018; Zhang et al., 2018, 2019) on
fNIRS (Yoo et al., 2018; Sirpal et al., 2019). Thus, it triggered us
to apply LSTM to improve the classification performance using
fNIRS by focusing on the crucial task-relevant features from
different time-steps. Compared to classic approaches in such
aforementioned classifiers, RNN or LSTM particularly requires
no or almost no feature engineering that an fNIRS dataset is able
to feed directly into the network. We utilized the “many to one”
architecture, which means using time series of feature vectors
(one vector per time step) to convert them to a probability matrix
at the output layer.

An LSTM network consists of cells whose outputs evolve
through the network based on the content of past memory. The
cell has a common cell state, keeping long-term dependences
along the entire LSTM chain. The flow information is then
monitored by the input gate it and the forget gate ft , hence
allowing the network to decide whether to forget the previous
state Ct−1 or to update the current state Ct with new information.
The output of each cell, namely, hidden state, is controlled by an
output gate ot that allows the cell to compute its output given the
updated cell state (see Figure 2A). These states of an LSTM model
are formulated by the following formula:

it = σ(Wi ·
[
ht−1, xt

]
+ bi), (1)

ft = σ(Wf ·
[
ht−1, xt

]
+ bf ), (2)

Ct = ft∗Ct−1 + it∗tanh(Wc ·
[
ht−1, xt

]
+ bc), (3)

ot = σ(Wo ·
[
ht−1, xt

]
+ bo), (4)

ht = ot∗tanh(Ct), (5)

where σ (x) = 1
1 + e−x , xt is the input features fed into the cell,

ht is the hidden state at time step t, Ct−1 is the cell state at time
step t, Wi, Wf , Wc, Wo are the weights, and bi, bf , bc, bo are the
biases obtained during the backpropagation process. We thereby
proposed an LSTM architecture with three stacked layers and a
fully connected layer with rectified linear units (ReLU) function
to predict the probability of each class (see Figure 2B).

Several hyper-parameters for the LSTM network were
thoroughly explored and tuned to earn the best classification
results. Concretely, these hyper-parameters encompassed the
recurrent depth, LSTM hidden layer size, batch size, and training
epochs. Three stacked LSTM layers (D0, D1, D2) and the weight
matrix L2 regularization coefficient was applied for each LSTM
layer. In addition, other variables such as learning rate (lr)
and the amount of lambda loss were used for stochastic Adam
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FIGURE 2 | (A) A long short-term memory (LSTM) cell internal mechanism;
(B) the stacked LSTM architecture.

optimizer. Supplementary Table 2 presents the optimal values
for these parameters.

Gated Recurrent Units
As similar to the precedent LSTM, gated recurrent units (GRU) is
newly created for the solution of short-term memory. An internal
mechanism called gates is also needed to regulate the flow of
information. However, GRU gets rid of the cell state and uses
the hidden state to transfer information. It includes only two
gates: a reset gate which is another gate used to decide how much
past information can be forgotten, and an update gate which acts
similar to the forget and input gate of LSTM which decides what
information can be discarded and what new information can be
complemented (see Figure 3A). These states of a GRU model are
formulated by following formulas:

zt = σ(Wz ·
[
ht−1, xt

]
) (6)

rt = σ(Wr ·
[
ht−1, xt

]
) (7)

h̃t = tanh(W · [rt∗h6t − 1, xt]), (8)

ht = (1− zt) ∗ht−1 + zt∗h̃t) (9)

FIGURE 3 | (A) A gated recurrent unit (GRU) cell internal mechanism; (B) the
stacked GRU architecture.

Due to its fewer tensor operations, GRU trains data faster
than LSTM. It also has a faster convergence, but it is unlikely
to guarantee which one outperforms others. In practice, we built
a GRU model with the same architecture of LSTM, excluding
the module used in the current layers. Three GRU layers were
stacked, followed by a fully connected layer and an output layer
(see Figure 3B). Batch-normalization and the ReLU activation
function were applied in the fully connected layer. The output
layer was computed by the cross-entropy loss with a soft-
max layer. More details of chosen parameters are depicted in
Supplementary Table 3.

A Mixed Model: Long Short-Term Memory Model
Coupled With Convolutional Neural Network Decoder
Inspired by the phenomenal performance of the hybrid CNN-
RNN in both the spatial domain (Dutta et al., 2018) and the
spatial-temporal domain (Yang et al., 2018; Shi et al., 2019),
we employed a CNN layer as a decoder for original input
data, followed by multiple LSTM layers to cope with the
decoded temporal data, and a fully connected layer where the
cross-entropy loss with a soft-max function was computed for
classification (see Supplementary Table 4). We let a CNN layer
extract multiple high-level features from the raw data by using a
substantially large filter size and stride. The sequence was thus
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FIGURE 4 | Box charts of oxyhemoglobin (HbO) concentrations acquired by four subject groups under four conditions.

decoded into multiple shorter sequences symbolizing different
high-level temporal features.

EXPERIMENTAL RESULTS

Statistical Analysis: The Change of
Oxygen Hemoglobin Concentrations
To clearly evaluate the change of hemoglobin concentrations
among four subject groups who underwent four experimental
stages, we utilized the utmost distinguishable observation from
HbO over other hemoglobin types of reduced hemoglobin
(HbR) and THb in this part. Figure 4 presents the box
chart distributions of HbO obtained from each experimental
protocol to compare HC with each level of AD severity. Note
that the typical hemodynamic response of brain activation
is accompanied by an increase of HbO concentrations

(Mangrum et al., 2018). On each box, the central mark is
median, the red filled circle is the mean, the edges of each box are
the 25th and 75th percentiles, the whiskers denote the standard
error of the mean, and the empty blue circle show outliners.
All statistical analyses were performed with a significant level at
0.05 as the cutoff of significance, and each box chart was given a
p-value.

Regarding the difference among subject groups, all groups
did not show significant differences (p > 0.05) during the
resting period, whereas there existed significant differences
during the other three experimental tasks (p < 0.05). The HC
group (values were greater than zero) consistently presented
much higher hemodynamic activations than other groups. This
indicates that normal people had the highest response and had
no difficulty when they performed all the brain ability tasks.
Meanwhile, on the second place of AD severity level, pAD
patients showed lower values than HC and aAD during resting,

Frontiers in Aging Neuroscience | www.frontiersin.org 8 April 2022 | Volume 14 | Article 810125

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-810125 April 19, 2022 Time: 14:45 # 9

Ho et al. AD Multilevel Classification Using fNIRS

FIGURE 5 | Box charts of HbO concentrations acquired by Men (M) and Women (W) of four subject groups under four conditions.

oddball, and 1-back tasks. This verifies that pAD patients noted
lower activations of hemodynamic responses compared with HC
and patients with aAD in the resting period, cognitive ability,
and memory ability tests. More interestingly, the significantly
statistical difference between subject groups did exist during the
1-back task (p < 0.001). Each group behaved and responded
differently in this memory task, and their response was perfectly
correlated with the degree of AD severity. ADD patients, in
particular, denoted the lowest hemodynamic activation, followed
by pAD, aAD, and HC.

In addition, we testified the change of HbO concentrations
via box chart distributions for all conditions when subjects were
sub-grouped by gender (see Figure 5). In general, there was no

significant difference between men and women who underwent
all three conditions (p > 0.05 for resting, oddball, and 1-back
stages) whilst there existed relatively important disparity among
gender in the verbal stage. Further, men from all four subject
groups presented much higher levels of hemodynamic activations
than women in most conditions except the resting period in
which men from HC, aAD, and pAD groups showed lower
hemodynamic activations. This finding suggested that the frontal
changes in HbO concentrations during cognitive, memory, and
verbal tasks were stronger in men compared to women. Hence,
there was a gender effect on relative hemoglobin changes due
to the functional stimulation in our study that achieved similar
observations from previous studies on evaluating hemodynamic
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TABLE 2 | Comparison of classification metric results as shown by four proposed deep learning (DL) models using original data.

Class Accuracy Precision Recall F1-Score

HbO HbR THb HbO HbR THb HbO HbR THb HbO HbR THb

1D-Convolutional Neural Network (1D-CNN)

HC 0.863 0.853 0.866 0.884 0.862 0.870 0.863 0.853 0.866 0.848 0.852 0.862

aAD 0.826 0.817 0.779 0.847 0.879 0.819 0.826 0.817 0.779 0.806 0.810 0.774

pAD 0.854 0.861 0.876 0.878 0.842 0.912 0.854 0.861 0.876 0.849 0.860 0.875

ADD 0.774 0.731 0.786 0.778 0.864 0.772 0.754 0.711 0.736 0.749 0.710 0.735

Mean 0.829 0.815 0.827 0.847 0.862 0.843 0.824 0.810 0.814 0.813 0.808 0.811

Long Short-term memory (LSTM)

HC 0.897 0.855 0.875 0.913 0.835 0.903 0.897 0.855 0.875 0.893 0.850 0.874

aAD 0.830 0.836 0.848 0.904 0.907 0.927 0.830 0.836 0.848 0.837 0.835 0.836

pAD 0.867 0.863 0.879 0.887 0.900 0.925 0.867 0.863 0.879 0.858 0.874 0.872

ADD 0.781 0.761 0.795 0.764 0.762 0.747 0.751 0.731 0.735 0.751 0.721 0.732

Mean 0.844 0.829 0.849 0.867 0.851 0.875 0.836 0.821 0.834 0.835 0.820 0.828

Gated Recurrent Units (GRUs)

HC 0.816 0.765 0.771 0.839 0.850 0.810 0.816 0.765 0.771 0.812 0.760 0.774

aAD 0.792 0.727 0.741 0.811 0.808 0.785 0.792 0.727 0.741 0.770 0.719 0.739

pAD 0.811 0.779 0.805 0.837 0.868 0.849 0.811 0.779 0.805 0.808 0.778 0.805

ADD 0.705 0.695 0.705 0.721 0.764 0.736 0.705 0.695 0.705 0.706 0.697 0.708

Mean 0.781 0.742 0.756 0.802 0.823 0.795 0.781 0.742 0.756 0.774 0.738 0.756

CNN-LSTM

HC 0.918 0.907 0.917 0.938 0.905 0.918 0.918 0.907 0.917 0.898 0.902 0.913

aAD 0.879 0.855 0.889 0.865 0.872 0.917 0.839 0.855 0.859 0.835 0.853 0.864

pAD 0.880 0.893 0.907 0.902 0.890 0.910 0.880 0.893 0.907 0.876 0.894 0.907

ADD 0.797 0.799 0.793 0.781 0.839 0.771 0.767 0.799 0.753 0.767 0.806 0.746

Mean 0.868 0.864 0.877 0.871 0.877 0.879 0.851 0.864 0.859 0.844 0.864 0.858

activations based on gender inclusion criteria (Shoemaker et al.,
2001; Auger et al., 2016).

Classification Performance of Deep
Learning Models
To precisely validate the potential of deep learning approaches,
the original dataset (three hemoglobin types) was used.
Four models were built, including 1D-CNN, stacked LSTM,
stacked GRU, and a mixed CNN-LSTM. To enhance the
classification performance, we segmented the training signals into
nonoverlapping fragments with a specified window length. Each
split window was assigned a label associated with its ground truth.
Then, we ran eight classifier algorithms to differentiate the HC
group from the three levels of AD severity. DL models were
then adopted to differentiate the HC group from the three levels
of AD severity. Five-fold cross-validation was used to evaluate
the model’s performance using accuracy-based measurements
(Accuracy, Precision, Recall, and F1-score).

In regard to the efficacy of the DL models, all models achieved
average accuracies above 80% using all three types of hemoglobin
(i.e., accuracies of 82.9, 84.4, 78.1, and 86.8% with HbO type

are associated with the performance of 1D-CNN, LSTM, GRU,
and CNN-LSTM, respectively). Based on our observations,
although LSTM and GRU models had similar concepts of
preventing the vanishing gradient problem, their performance
in AD multi-classification using fNIRS were exposed differently.
GRU was simpler with only two gates, was trained faster,
and more computationally efficient, but GRU obtained much
lower accuracies than LSTM on all three hemoglobin classes.
This indicates that LSTM could outperform GRU since LSTM
resembled the theory of remembering longer sequences with a
memory unit. This made LSTM more sophisticated and able to
produce the network stability in dealing with the fNIRS task,
which requires modeling the long-distance relation. In addition,
LSTM achieved a higher classification accuracy than 1D-CNN.
That is, LSTM, which included less feature compatibility, handled
arbitrary input/output lengths, and used its internal memory
and time-series information to process the arbitrary sequences
of the input, was well-suited for the fNIRS temporal data
compared to 1D-CNN.

More importantly, CNN-LSTM outperformed others (86.8,
86.4, and 87.7% corresponding to HbO, HbR, and THb,
respectively). CNN and LSTM were not mutually exclusive since
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either of them could perform image and time-series classification
tasks. The model integration could yield an opportunity to bond
the two network types to facilitate effectiveness. A CNN alone
would be unable to process fNIRS as the input to be classified
as it is visually complicated with the temporal characteristic.
Meanwhile, the high-level features that were extracted from long
sequences of fNIRS signals by CNN were considerably easy for
LSTM to deal with due to its shorter lengths. In detail, the
highest accuracy averaged among three hemoglobin types was
87.7% and could occasionally peak to values up to 88.9% at some
moments of luck during the training process. This relied on how
LSTM weights got initialized at the beginning of training. This
means that LSTM was able to correctly identify the movement
type using decoded CNN features. Thus, CNN-LSTM was more
robust in classifying HC with three different AD stages compared
to 1D-CNN and LSTM alone. Table 2 generally denotes the
robust performance of the DL model of CNN-LSTM on all
three hemoglobin types with higher means in terms of different
classification metrics than those obtained by other DL models.
Regarding the effects of subject group types, since we had an
extremely imbalanced dataset (for all three types of hemoglobin
concentrations), it is predictable that DL models could easily
classify the majority classes (i.e., HC and pAD). As a result, we
obtained accuracies with higher means and lower SD on HC and
pAD, while groups of patients with aAD and patients with ADD
achieved lower classification accuracies.

The training’s session progress of CNN-LSTM, including
Training and Validation accuracies (Figure 6A and losses
Figure 6B), is presented. Initially, the validation loss was slightly
similar or lower than the training loss. As long as the validation
loss was higher, we would stop the training. In addition, both
training and validation accuracies should approach to 1. This
demonstrates that the training of CNN-LSTM was exposed to
have a stable and accurate performance. As shown in Figure 6C,
the overall confusion matrix which was obtained visualized the
prediction accuracy of CNN-LSTM by comparing the actual and
predicted classes. The overall confusion matrix was produced
by the full set of actual and predicted classes to visualize the
performance and effectiveness of the algorithms. In particular,
for each of five splits, we fitted the training data to the model,
and the fitted model was used to predict the classes in the current
fold. All actual classes and predicted classes were then appended
after fivefolds. The model nearly predicted HC correctly (six
misclassified samples), aAD (five misclassified samples), pAD
class (five misclassified samples), and ADD (three misclassified
samples) in the total of 140 patients.

Comparison of the Performance of Deep
Learning-Based Approaches With
Traditional Machine Learning Classifiers
To empirically verify the potential of DL techniques in
AD classification using fNIRS, we compared them with the
performances of seven conventional ML algorithms, including:

• Linear Discriminant Analysis (LDA) (Li et al., 2006):
A set of n samples {x1, x2, . . . , xn}was assigned to
four AD classes. We calculated the intra-class Mintra

FIGURE 6 | Summarized history of Cognitive Neural Network-Long
Short-Term Memory (CNN-LSTM) model’s accuracies (A) and losses (B) and
conclusive confusion matrix (C) of the fivefold cross validation. In the accuracy
and loss curves, the solid lines indicate the mean and the shadow areas
represent the ranges over the fivefolds.

and inter-class Minter matrices samples (discriminant
features) and performed the classification task on the
transformed space using the Euclidean distance with the
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FIGURE 7 | Classification comparisons of accuracy between eight machine learning (ML) classifiers and four DL models using original HB datasets.

200 epochs training. LDA offered an elegant way to reduce
dimension and to possibly classify four classes using those
discriminant features.
• K-Nearest Neighbors (KNN) (Zhang and Zhou, 2007):

K = 4 (number of clusters) was assigned as the most
optimal value. The KNN algorithm computed the distance
between each data point and its cluster centroid and
minimized the error. The point located at a minimum
distance from the testing point was supposed to belong to
the same class. After 200 epochs, KNN could capture the
distant proximity for four class-classification. However, its
performance gradually slowed down as the number of data
points increased.
• Gaussian Naive Bayes (GNB) (Griffis et al., 2016): We

computed the prior P(c) and posterior probability P(x|c).
Then, the conditional probability for each class (given a test
sample) was calculated P(ci|x) based on the Naive Bayes
(NB) theory. The class presenting the highest probability
among the four classes was predicted as the target class.
GNB was the simplest and easiest algorithm among all
conventional ML methods.
• Support Vector Machine (SVM) (Lee and Lee, 2007): To

non-linearly separate four classes, SVM was applied to
construct the decision hyperplanes whereby the margin of
the classifier was maximized. The sigmoid kernel trick was
employed to do the data transformation and seek optimal
boundaries between classes, although this mimicked the
idea of the two-layer perception and generated less
errors when dealing with non-linear fNIRS data. The
number of epochs was not assigned since SVM would
stop training when the margin error was very trivial.
In addition, no further optimization was required. The

time-consuming and computationally intensive resources
were more demanding compared to previous classifiers.
• Adaptive Boosting (AdaBoost) (Hastie et al., 2009): A

weak classifier was initially built to generate class labels
using unweighted training samples. If any misclassified
data point was found during training, the weight of
that training point was boosted and updated to the next
classifier. The procedure was repeated while each classifier
had its own score. The final classifier was defined by
the linear combination of 1,000 weak classifiers to boost
accuracy. The number of estimators was 200 to control
the boosting process, and the higher amount of training
time was inevitable.
• Random Forest (RF) (Gray et al., 2013): Starting with

the selection of arbitrary samples from the given dataset,
a decision tree was built for each sample and produced
predicted classes. RF consisted of multiple decision trees
that would vote for each class. The class was then selected
based on the most votes to be the final prediction. The max
depth of the tree was set as 8 and the number of estimators
was 200. RF was trained several times, and the random state
was fixed to guarantee the same sequence of samples and to
achieve a deterministic behavior.
• Ensemble Learning (Kang et al., 2015): Six base classifiers

(aforementioned algorithms) were integrated to yield a
strong and diverse set of base learners to find the optimal
combination. By selecting features from these weak learners
via a meta-classifier, it was not easily vulnerable to
overfitting. We predicted the final class label using the hard
(majority) voting method. The result was explicitly equal
or better than the best of base classifiers although, it costed
longer training time and features. demanding memory.
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• Neural Network (NN) (Amato et al., 2013): Compared to
previous ML algorithms, NN could learn non-linear and
complex relationships of inputs and outputs to constitute
better generalization and classification accuracies. After
training NN with different settings of hyper-parameters, we
came up with the final set of neurons: an input layer, the
set of hidden neurons (100-80-50) organized in the form
of three hidden layers, and an output layer (four neurons).
We manually selected a ReLU activation function, Adam
optimizer, 1e-5 learning rate, and 500-iteration duration.
NN was relatively hard to train and required a large
number of parameters.

As presented in Figure 7, among traditional ML algorithms,
the highest accuracy was obtained by Ensemble (82.9% in
average), followed by NN, KNN, RF, LDA, SVM, AdaBoost, and
GNB (81.8, 77.9, 77.2, 70.3, 63.9, 62.7, and 53.0%, respectively).
This indicates that NN was substantially flexible to adopt our
adequate data size without considering any feature-engineering
steps or structured data and was able to learn high-level features
in an end-to-end manner. Meanwhile, most of the features to be
identified (to reduce the complexity), split into different parts (to
make patterns more tangible), and recombined in the final stage
were all preliminary steps for other ML classifiers. However, the
obtained result was somewhat poor. In contrast, DL or CNN-
LSTM, in particular, validated its robust performance to scale
the accuracy up to 87.7%. The results revealed that CNN-LSTM
obtained the highest accuracies, tallying with three hemoglobin
types, followed by LSTM, NN, 1D-CNN, and Ensemble. In
general, the DL algorithms outperform the ML algorithms.
Among them, CNN-LSTM elevates accuracy to 3% compared to
NN (as the best performance of the ML algorithms).

CONCLUSION AND FUTURE WORKS

Developing an approach to identify individuals before or during
the earliest stages of AD, with the hope that the urgent
intervention could significantly prevent the onset of clinical
symptoms, is desperately needed. Due to somewhat similar
symptomologies shared by moderate AD with other neurological
disorders, the difficulty of monitoring AD progression that results
in diagnostic uncertainties and the subsequent suspension of
prompt treatments still remains. Therefore, this present study,
on one hand, aimed to present the potential capability of
fNIRS in AD analysis. A cohort of 140 participants ranging
from HC to three severity levels of patients with AD was
included. We verified that there were significant oscillations
of hemoglobin concentrations recorded from the prefrontal
cortex regions among four subject groups and among gender
using an intensive experimental design (cognitive, memory,
and verbal fluency tests). On the other hand, a collection
of DL architectures demonstrated its potential application to
fundamentally advance the search for AD multi-classification
using fNIRS signals. Three groups of pathological patients with
AD were remarkably distinguished from HC with the top highest
accuracy of 90.91 and 90.04% achieved by CNN-LSTM and

LSTM, respectively. More importantly, DL could better learn
complex and abstract representations of an imbalanced fNIRS
dataset and presented its outperformance compared to seven
traditional ML classifiers in AD analysis. These findings, thereby,
furnish preliminary evidence supporting the potential roles of
fNIRS coupled with DL to accurately diagnose and assess the AD
severity in future development.

Although this study has yielded the feasibility of utilizing
different DL models on the fNIRS dataset to discriminate patients
at diverse AD stages, several improvements would be required
for the future works. First, it is critically crucial to represent the
property of hemodynamic responses of three hemoglobin types of
fNIRS signals, such as variance, kurtosis, skewness, or initial dips,
to precisely quantify the difference among four groups. Second,
since the DL performance counted on the relatively small sample
size, which could easily lead to the misclassification problem,
either a larger cohort or advanced augmentation techniques
used for bio-signal domains should be carried out to extend
our present findings. Lastly, although CNN-LSTM was very
powerful to result in competitive classification performance,
other advanced DL architectures should be developed.
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