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Summary

Background The antidiabetic effect of sleeve gastrec-
tomy (SG) has been interpreted as a conceivable result
of surgically induced weight loss in the obese type 2 dia-
betes mellitus (T2DM) subjects. However, the blood glu-
cose control often occurs within days, before significant
weight loss has been reached. This work aims to inves-
tigate the major mechanism and persistence regard-
ing how SG improves glucose metabolism in nonobese
T2DM rats.

Methods These Goto Kakizaki rats (n=21) were ran-
domly assigned into three groups: SG, sham SG, and
pair-fed (PF) group, whose weight, food intake, oral glu-
cose tolerance test, insulin tolerance test, plasma insu-
lin, homeostasis model assessment for insulin resistance
(HOMA-IR), ghrelin, and glucagon-like peptide-1 (GLP-
1) were measured.

Results According to the experiment, from the 2nd
week until the 24th week, the fasting blood glucose of
the rats in the SG group had significantly decreased
with the improved glucose tolerance. At the 2nd week
postoperation, the area under the blood glucose con-
centration curve (AUC) received a distinct reduction
of 28.1% (P<0.0001). The ghrelin secretion of the SG
group was significantly decreased (P<0.005). The GLP-1
had increased (P<0.0001), while the HOMA-IR values
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decreased (P<0.05) throughout the experimental period.
These effects were not seen in the sham-SG and PF groups
despite similar changes of weight loss or food intake.

Conclusions The above results suggest that SG can
conduct a direct control on T2DM instead of secondarily
to weight loss or food intake around the whole experi-
mental period. The changes of the gastrointestinal hor-
mones may be the major mechanism of the antidiabetic
effect.

Keywords Sleeve gastrectomy - Glucose metabolism -
Type 2 diabetes mellitus - Insulin resistance - Gastroin-
testinal hormones

Introduction

At present, diabetes mellitus (DM) is considered as a
major risk factor for morbidity and mortality world-
wide [1], which affects more than 371 million people
worldwide [2] and collectively accounts for an estimated
12.9 million deaths globally in 2010 [3, 4]. In the most
populous countries, the morbidity and the mortality of
DM have been increasing rapidly, especially China con-
tributed to this pandemic [2, 5, 6]. More than 90 % of the
DM patients suffer from type 2 DM (T2DM) with the
global burden of T2DM clearly increasing [7]. However,
the etiology and best treatment still remain elusive.
Currently, bariatric surgery results in better glucose
control than did medical therapy for T2DM [8]. The reso-
lution of T2DM has been regarded as an outcome of sur-
gical treatment of obesity [9, 10]. Approximately 20 years
ago, biliopancreatic diversion (BPD) and Roux-en-Y gas-
tric bypass (GBP) had a better effect on T2DM than other
procedures, which can determine normal concentrations
of plasma glucose, insulin, and glycosylated hemoglobin
in 80-100% of the morbid obese patients [11, 12]. Sleeve
gastrectomy (SG) is proved to be a valid procedure with
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a lasting effect on weight loss [13]. Recently, research-
ers have found that SG is as effective as GBP in inducing
remission of T2DM and metabolic syndrome (MS) within
the severe obese subjects [14]. Overweight or obesity is the
dominant risk factor for diabetes [15, 16], and weight loss
or hypocaloric diet could reduce the plasma glucose and
improve the insulin sensitivity of the obese individuals
[17]. Therefore, the antidiabetic effect of surgery has been
still interpreted as a conceivable result of the surgically
induced weight loss and decreased caloric intake [9, 10].

Nevertheless, the glycemic control often occurs within
days before significant weight loss has been reached [18,
19], which suggests that the control of the glycemic status
may be a direct effect of the surgery rather than a second-
ary effect of the weight loss.

After either the BPD or GBP operation, the gastroin-
testinal (GI) hormones, such as ghrelin and glucagon-
like peptide-1 (GLP-1) will be changed. These hormones
might have been involved in regulating the beta cell
function in both physiological [20] and pathophysiologi-
cal status [21, 22]; thus, these changes in the enteroinsu-
lar axis maybe explained as the antidiabetic effect.

SG as described by Gagner et al. [23, 24], has recently
emerged as a stand along bariatric procedure rather than
just a gastric restrictive operation [25]. In addition, the
date from the case series has shown that SG is associ-
ated with a high rate of resolution of the T2DM and the
obesity-associated comorbidities such as hypertension,
hyperlipidemia, and sleep apnea [26, 27], and is similar to
the GBP in inducing remission of T2DM and the MS [7].

Despite a major risk factor for T2DM, obesity does not
mean that all the patients with T2DM are obese. It is rea-
sonable to assume that if the control of the diabetes was
a direct effect of SG rather than a secondary result of the
treatment of obesity; the similar outcome could also be
observed in the nonobese individuals. To confirm this
hypothesis, the present study is focused on the effect of
SG on the Goto-Kakizaki (GK) rats, the most widely used
animal model for nonobese T2DM [28].

Materials and methods
Animals

A total of 21 13-week-old male GK rats (National Rodent
Laboratory Animal Resources, Shanghai, China), were
individually housed under 22°C and 60 % humidity in a
12-h light/dark cycle at Wuhan University. All rats had
free access to tap water and were fed with standard rat
chow diet. All procedures related to the animal experi-
ments were approved by the Animal Care and Utilization
Committee of Wuhan University.

Experimental protocol

After being acclimated for 2 weeks, the weight, food
intake, fast glucose, and oral glucose tolerance of the rats

were measured. Then, the 15-16-week-old rats, randomly
underwent one of the following procedures: SG (n=9),
sham-SG (sham-SG, n=6), and pair-fed ((PF), n=6). All
groups were fed with the same type of diet. For SG, sham-
SG, and PF animals, the food intake, weight changes, and
fasting glucose were measured weekly for 24 weeks; the
oral glucose tolerance test (OGTT) was measured at pre-
operative stage as well as in the 2nd, 4th, 10th, and 24th
week after the surgery; the plasma insulin, ghrelin, and
GLP-1 were measured at the preoperative stage as well
as in the 2nd, 4th, 6th, 10th, 16th, and 24th week after
the operation. The insulin tolerance test (ITT) was per-
formed on rats in the 2nd and 6th week after the surgery.

Intervention

The rats which had undergone both the SG and sham-
SG were anesthetized with 1% pentobarbital sodium
without taking any food overnight. Before the opera-
tion, atropine (Shanghai Harvest Pharmaceutical, China,
125 mg/kg) and kanamycin sulfate (Amresco, American.
0.01 mg/kg) were intramuscularly injected in the hip,
and 5 % glucose saline was subcutaneously injected dur-
ing the surgery. After the operation, to prevent dehydra-
tion and infection, 10 ml of 5% glucose in normal saline
was injected subcutaneously in 7 days, and the antibiotic
was intramuscularly injected in 3 days. Rats were kept
24 h without water and 3 days without food, the 1st day
after the operation, all the animals were given a com-
plex nutrient solution containing vitamin B complex and
antibiotic; small amounts of food was allowed taking by
the subject rats on the 3rd day after the operation. From
the 7th day after the operation, the SG and sham-SG rats
were fed with standard solid diet and tap water.

For the rats of the SG, 70-80 % volume of the stomach
was removed, which contained of the major part of the
stomach and all the gastric fundus. The details of the pro-
cedure are illustrated in the Fig. 1a, and b.

For the sham-SG, the stomach was incised for 2-3 cm
and immediately sutured. The operative time was pro-
longed to ensure an equivalent degree of anesthesiologi-
cal stress on the rats that underwent SG.

For the PF, the PF group was given the same amount of
food as the SG rats consumed.

Methods

Weight and food intake of the rats were measured every
week since the first postoperation month and on a fort-
night basis afterward.

For the fasting blood glucose and fasting plasma insu-
lin (FPI) concentration, the blood was collected from the
orbital venous sinus of the conscious rats after a fasting
period of 16-18 h. The samples were stored in ethylene-
diaminetetraacetic acid (EDTA) containing (1.5 ug/ml)
tubes, and centrifuged at 3000 rpm at 4°C for 15 min;
then, these plasma samples were immediately sepa-
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Fig. 1 Sleeve gastrectomy:

a Outlining of the area to be
resected with microvascular
clamp. b Removing approxi-
mately 70-80 % of stomach,
including the whole gastric
fundus and then following
gastrorraphy with invaginating
suture

rated and stored at —80°C until being analyzed. Fasting
plasma glucose (FPG) was analyzed by the glucose oxi-
dase method (BioSino Bio-technology and Science Inc,
Beijing, China), and the FPI concentration was measured
by enzyme-linked immunosorbent assay kits (Mercodia
AB, Uppsala, Sweden).

Homeostasis model assessment of insulin resistance
(HOMA-IR) is a less invasive, minor labor-intensive, and
inexpensive method to measure compared with the eug-
lycemic hyperinsulinemic clamp method [29]. Only the
fasting glucose and fasting insulin concentration are
needed in the method to evaluate the level of IR, which
is used to calculate an index from the product of FPI
(microunits per milliliter) and FPG (millimolar concen-
trations) divided by 22.5.

For the OGTT, after 16-18 h of fasting, blood glucose
was measured in conscious rats before (baseline) and 30,
60, 120, 180 min after the administration of 3 g/kg glu-
cose by oral gavage. The blood was obtained from the tail
vein and analyzed with a glucometer (One Touch® Ultra,
Lifescan, Inc.U.S.A. in the U.K.).

ITT was performed postoperative by measuring glu-
cose levels before and 15, 30, 60, 120, and 180 min after
injection of 0.5 UI/kg human insulin intraperitoneally in
conscious fed rats.

For the plasma hormones measurements, the ghrelin
level was measured after 16-18 h fasting, while the GLP-1
level was measured 30 min after the administration of
3 g/kg glucose by oral gavages. The blood samples from
the orbital venous sinus of the conscious rats were col-
lected in EDTA (1.5 pg/ml) tubes with the GI preservative
(Aprotinin, 40 pug/ml). After centrifugation at 3000 rpm
at 4°C for 15 min, these plasma samples were immedi-
ately separated and stored at — 80 °C until being analyzed.
Enzyme-linked immunosorbent assay kits were used
for the measurement of the active ghrelin (ELISA; Linco
Research, St. Charles, Missouri, United States) and active
GLP-1 (Millipore, Billerica, MA).

Statistical analysis
The Kolmogorov-Smirnov test was used to check the

assumption of normal distribution in each group. There
was no evidence for non-normality in any group. The

data were expressed as mean + standard deviation (SD).
The areas under the curves of OGTT and ITT were calcu-

lated by the trapezoidal integration. Comparisons among
the groups were made by using a one-way analysis of
variance (ANOVA). A Student’s t-test was used wherever
appropriate. Statistical significance levels were set at
P<0.05.

Results

Before the treatments, body weight, fasting glucose,
OGTT, the plasma insulin, ghrelin, and GLP-1 had no sig-
nificant differences among the groups of GK rats.

After performing the SG on nine GK rats, sham-SG on
six GK rats, all of the GK rats survived.

Weight and food intake: As shown in the Fig. 2a, the
SG, sham-SG, and PF groups had similar weight loss at
the 2nd week after the surgery. After four postoperative
weeks, both the SG and PF groups had significantly more
weight loss compared with sham-SG group (P<0.001),
which started regaining weight approximately from the
14th postoperative day. The mean weight loss of the SG
and PF groups did not differ from one another at any
period (P>0.05). Due to surgical stress, the rats in the SG
group ate less food than the rats in the sham-SG group
(P<0.001) (Fig. 2b). The SG and PF groups had the same
average food intake throughout the study.

Fasting glucose: SG group remarkably reduced the FPG
levels. At the 10th week after the operation, the mean
plasma glucose levels in the SG group were lower than
before (110.6+10.9 vs 148.8+18.6 mg/dl, P=0.002).
However, the sham-SG and the PF groups did not signifi-
cantly change blood glucose levels, and their glycemia
remained consistently lower in the SG group with respect
to the other two groups through the entire follow-up
period (P<0.001) (Fig. 3).

Insulin: The insulin concentrations of the three groups
of the GK rats had no significant difference throughout
the experiment (P>0.05).
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Fig. 2 Weight changes and food intake: a Both the sleeve
gastrectomy (SG) and pair-fed groups show more weight loss
comparing with that of the sham-SG rats (P<0.001). b SG
group ate less food than sham-SG group (P<0.001)

Homeostasis model assessment of insulin resistance: The
study showed that the HOMA-IR of SG group was signifi-
cantly lower than the sham-SG and the PF groups at 2nd,
4th, 6th, 10th, and 24th postoperative weeks (P<0.05)

(Fig. 4).

OGTT: Two weeks after surgical intervention, the SG
group showed an improvement in glucose tolerance,
and a significant reduction of the area under blood glu-
cose concentration curve (AUC; by 28.1%, P<0.0001)
was demonstrated in the Fig. 5a as well as a lower mean
30-min peak levels (298.4+82.2 vs. 376.8+51.6 mg/
dl; P=0.013) and a lower mean 120-min peak lev-
els (255.7+44.7 vs. 352.8+76.8 mg/dl; P=0.027) than
the sham-SG groups. This significant effect could not
be reproduced in PF and sham-SG groups, as the SG
group had improved the glucose tolerance comparing
with that in other groups (23.4 % smaller AUC of sham-
SG, P<0.0001; 21.0% smaller AUC of PF, P<0.001)
(Fig. 5b).

ITT: The SG animals had lower levels of blood glucose
(P<0.03) (Fig. 6a)and smaller AUC (P<0.005) than sham-
SG and PF groups (Fig. 6b), which indicates better insulin
sensitivity at the 2nd and 6th postoperative weeks.
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Fig. 3 Fasting glucose: a Mean fasting glucose remained
constantly lower in the sleeve gastrectomy (SG) group com-
paring with that of the sham-SG and pair-fed (PF) groups,
the PF and sham-SG groups had no differences. b The AUC
shows the area under the curve for fasting glucose over the
24-week period of postoperative observation among the SG,
sham-SG, and PF groups (*P<0.001)
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Fig. 4 Mean + standard deviation of insulin resistance
(HOMA-IR homeostasis model assessment-insulin resistance)
in the sleeve gastrectomy (SG), sham-SG, and pair-fed (PF)
groups: SG group improved the insulin resistance during the
24-week period. *P<0.034; tP<0.026; #P <0.008; xP<0.008;
&P<0.028
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Fig. 5 Glucose tolerance: a The oral glucose tolerance test
performed in the sleeve gastrectomy (SG) rats in the two post-
operative weeks indicated an improvement of glucose toler-
ance, 28.1 % reduction of AUC (P<0.0001). b The SG group
resulted in markedly better glucose tolerance comparing with
that of the sham-SG and pair-fed (PF) groups. SG and sham-
SG groups: 23.4 % smaller AUC in SG group (#P<0.0001); SG
and PF groups: 21.0 % smaller AUC in SG group (*P<0.001)

Hormones measurements ghrelin: In the process of
the experiment, the ghrelin level was not significantly
changed in the sham-SG group, but elevated in the PF
group before the 10th week (P<0.05). However, the ghre-
lin level subsequently decreased in the SG group during
the examination period (P<0.005, Fig. 7a).

GLP-1: It was shown that GLP-1 level for the sham-SG
and the PF groups had no change throughout the entire
period. The GLP-1 level of SG group had risen comparing
with that of the sham-SG and the PF groups from the 2nd
to 24th postoperative weeks (P<0.0001) (Fig. 7b).

Discussion

The SG was originally conceived as the first stage of
achieving weight loss and reducing comorbidities in
the patients who were superobese before undergoing a
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Fig. 6 Both a and b show that the sleeve gastrectomy (SG)
group improved insulin tolerance comparing with that of the
sham-SG and pair-fed (PF) groups postoperative (P<0.03), ¢
shows the SG group significantly decreased the area under
blood glucose concentration curve (AUC) comparing with that
of the sham-SG and PF groups (P<0.005)

Roux-en-Y GBP or a BPD with duodenal switch (DS) [30].
However, SG was recognized as a stand-alone bariatric
procedure particularly in the treatment of obese-related
type 2 diabetes patients since approximately 8 years ago,
as was demonstrated in a number of clinical and inter-
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Fig. 7 a Fasting plasma ghrelin: Mean fasting ghrelin level
for the sleeve gastrectomy (SG) group was significantly lower
than the sham-SG group (*P<0.005). Before the 10th week,
the fasting ghrelin level of the pair-fed (PF) group was in-
creased compared with that of the sham-SG rats (&P <0.05)
throughout the whole period (24 weeks). b Plasma level of
GLP-1 after oral glucose administration: The SG group was
increased compared with that of the sham-SG and PF groups
(*P<0.0001)

vention studies [31]. The First International Consensus
Summit for SG (2007) had proposed that SG is more than
a gastric restrictive operation in improving or resolv-
ing T2DM and the MS [25] but with a similar effect as
the GBP on inducing remission of T2DM patients [7].
However, former studies had a relatively short exami-
nation period and could not sufficiently explain the
mechanisms behind the beneficial changes in glucose
homeostasis. Our study, reveals that the SG group has a
higher resolution rate of T2DM at 24 weeks after surgery
in nonobese type 2 diabetic GK rats. It’s interesting to
find that for the first 4 weeks after the surgery, although
the SG and sham-SG groups had the similar weight loss,
the blood glucose of the SG group decreased. The result
above indicates that the glucose tolerance improved in
the SG group compared with that in the sham-SG group.
The weight loss in both the PF and SG groups had no

difference throughout the experimental period, while
the SG group had lower blood glucose levels compared
with the PF group. Therefore, we verified the foregoing
hypothesis as follows: In the early postoperative, SG
can conduct direct effects on decreasing blood glucose,
which is independent from weight loss and food intake
[32, 33]. From the results above, we further proved that
SG could play a direct hypoglycemic effect around the
whole experimental period. The glucose tolerance in the
SG group significantly improved compared with that in
the PF groups, and this effect lasted until the 24th week
in spite of the similar weight loss in the PF group. Among
the SG, sham-SG, and PF groups, the fasting insulin con-
centration had no significant changes, which may be
correlated with the change of GLP-1 concentration [34],
whereas the HOMA-IR in the SG group had a remark-
able reduction compared with that in the sham-SG and
the PF groups during the whole experiment period. In
our study, it can be suggested from the aforementioned
data that an additive “gastric’, not weight and food intake
loss-related mechanism contributes to the improvement
of T2DM following SG operation. The rapid and remark-
able improvement of insulin sensitivity observed in the
SG group may be involved in the mechanism; however,
the exact molecular mechanism of hypoglycemic is still
unclear.

Many studies have examined the changes in the GI hor-
mones, which may be the key factors of improving blood
glucose [32, 33, 35]. Pories et al. [18], were the first to theo-
rize the possibility of endocrine changes as a mechanism
by which the GBP can effectively treat diabetes. A major
gut hormone that has been identified as a member of
incretin is the glucagon-like peptide-1 (GLP-1) that is pro-
duced by the small intestinal L-cells in response to fat and
carbohydrates intake [36, 37]. The GLP-1 is capable of nor-
malizing blood glucose, regulating insulin synthesis, and
proinsulin gene expression as well as regulating the secre-
tion of glucagon and somatostatin [38]. In our study, the
GLP-1 level of SG group increased. Meanwhile, both the
insulin sensitivity and fasting glucose level had improved.
The above effects were not found in the PF group, which
had no significant difference in the weight loss and food
intake during the experimental period.

In addition to GLP-1, the change of ghrelin could
also play an active role in beneficial glucose homeosta-
sis after bariatric surgery. Ghrelin is an orexigenic hor-
mone secreted primarily by the gastric fundus [39] that
was shown to be a counter-regulatory hormone. Ghre-
lin can block the secretion of insulin [40] and block the
release of the insulin-sensitizing peptide adiponectin
[41]. Tong et al. [42], illustrated a robust proof-of-concept
study that exogenous ghrelin administration reduced
glucose-stimulated insulin secretion in healthy humans.
Hence, Néslund et al. [43], indicated that ghrelin might
have anti-incretin effects by counteracting GLP-1. More
interestingly, Date et al. [44] found that ghrelin was also
produced from islet o-cells and might affect B-cells
through a paracrine action. In our study, compared with
the sham-SG group, the ghrelin level of the SG group was
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significantly decreased, which may be mainly attributed
to the cause of the resection of the gastric fundus [39].
The ghrelin level of PF group increased, which was possi-
bly due to the effect triggered by the fasting state [45]. The
SG and the PF groups had a similar weight loss or food
intake throughout the experiment period; however, the
SG group had better hypoglycemic effects. These results
also suggest that SG might have direct improvement on
the blood glucose level by decreasing the ghrelin level.

In summary, our study provided direct evidence that
SG was not only a restrictive procedure, but also could
have effects on blood glucose in the nonobese T2DM
model rats independent from the effect of weight loss
or food intake throughout the experimental period. The
changes of the GLP-1 and ghrelin secretion may play an
important role in controlling the T2DM. To extend our
present findings and better understand the exact etiol-
ogy of SG on the treatment of T2DM, further studies with
larger sample, longer time follow-up are proposed, and
the relationship between GI hormones are needed to be
elaborated.
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