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Understanding the molecular properties of the cell cycle of human pluripotent stem cells (hPSCs)
is critical for effectively promoting differentiation. Here, we use the Fluorescence Ubiquitin
Cell Cycle Indicator system adapted into hPSCs and perform RNA sequencing on cell cycle sorted
hPSCs primed and unprimed for differentiation. Gene expression patterns of signaling
factors and developmental regulators change in a cell cycle-specific manner in cells primed for
differentiation without altering genes associated with pluripotency. Furthermore, we identify an
important role for PI3K signaling in regulating the early transitory states of hPSCs toward differ-

entiation. STEM CELLS 2019;37:1151-1157

SIGNIFICANCE STATEMENT

Generating differentiated cell types from human pluripotent stem cells (hPSCs) holds great
therapeutic promise but has proven to be challenging in practice. The cell cycle may play an
important role in enhancing the differentiation potential of hPSCs. Here, the authors track and
isolate hPSCs from different phases of the cell cycle and perform RNA sequencing. The data
show that gene expression patterns of signaling factors and developmental regulators change in
a cell cycle-specific manner as hPSCs transition toward differentiation and highlight an impor-
tant role for PI3K signaling in regulating these early transitory states.

INTRODUCTION

Despite recent advances in generating specialized
cell types from human pluripotent stem cells
(hPSCs), many studies have noted that pluripo-
tent stem cell lines often have an inherent inabil-
ity to differentiate even when stimulated with a
proper set of signals [1-5]. The cell cycle, particu-
larly the G1 phase, may play an important role in
enhancing the differentiation potential of PSCs
[2,6-9]. However, simply lengthening the G1
phase in embryonic stem cells is not sufficient to
facilitate differentiation [10], suggesting that an
improved understanding of the molecular prop-
erties of the embryonic cell cycle is needed.

In a prior study, we demonstrated that tran-
siently treating hPSCs with dimethylsulfoxide
(DMSO) for 24 hours prior to directed differenti-
ation significantly increases the propensity for
differentiation across all germ layers [2, 11]. This
technique is now used by multiple laboratories
to improve differentiation across species (includ-
ing mouse, rabbit, primate, and human) into
more than a dozen lineages, ranging from neu-
rons and cortical spheroids to smooth muscle
cells to hepatocytes [12-15]. Although the DMSO
treatment activates the retinoblastoma protein
(Rb) and increases the percentage of hPSCs in
the G1 phase of the cell cycle [2,11], it remains
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unknown whether the DMSO treatment simply
enriches cells in G1 or whether there are intrinsic
changes to the cell cycle following the DMSO
treatment that may potentiate differentiation.

Here, we use Fluorescence Ubiquitin Cell
Cycle Indicator (FUCCI) technology to systemati-
cally track and understand cell division in hPSCs
primed and unprimed for differentiation [16].
The FUCCI system fuses red-emitting and green
emitting fluorescent proteins to the cell cycle
ubiquitination oscillators, Cdtl and Geminin,
whereby Cdtl tagged with red fluorescence is
present only when cells are in G1 and geminin
tagged with green fluorescence is only present
when cells reside in the S/G2/M phases. By per-
forming RNA-sequencing on hPSCs sorted from
the early G1, late G1, and SG2M phases of the
cell cycle, we show that gene expression pat-
terns of signaling factors and developmental
regulators change in a cell cycle-specific manner
in cells primed for differentiation following a
24 hours DMSO treatment. Changes in signaling
pathways controlling cell proliferation, differenti-
ation, and apoptosis, particularly the pho-
sphoinositide 3-kinase (PI3K) pathway, were
regulated by the DMSO treatment. Concordantly,
transiently inhibiting PI3K signaling enhances
hPSC differentiation across all germ layers.
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Figure 1. Dimethylsulfoxide (DMSO) treatment of human pluripotent stem cells (hPSCs) changes gene expression trajectories in
response to phase of the cell cycle. (A): Schematic representation of the Fluorescence Ubiquitin Cell Cycle Indicator (FUCCI) technology
labeling individual late G1 phase nuclei in red and S/G2/M phase nuclei in green, whereas early G1 phase nuclei are double negative. (B):
Schematic of H9-FUCCI hPSCs treated with or without 2% DMSO for 24 hours followed by cell cycle sorting and high throughput RNA-
sequencing. (C): Immunofluorescent images of control and DMSO-treated H9 FUCCI hPSCs in the late G1 phase (red) and SG2M phases
(green) of the cell cycle. Scale bar: 35 pm. (D): Fluorescence activated cell sorting of cells in the early G1 (double negative), late G1 (red),
and SG2M (green) phases of the cell cycle in control and DMSO-treated FUCCI hPSCs. (E): Principal component analysis of batch-corrected
RNA-seq expression data. PC1 (97.02% variance explained) versus PC3 (0.38% variance explained) are plotted on transcripts per million
(TPM) data for hgl9. (F): Dirichlet process Gaussian process (DPGP) mixture model clustering of differentially expressed genes. DPGP

(Figure legend continues on next page.)
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To the best of our knowledge, this is the first study to sys-
tematically perform RNA-seq on cell cycle sorted populations
of hPSCs to investigate changes that occur within a cell line as
cells transition toward a state for differentiation. This compre-
hensive analysis begins to shed light on important signaling
pathways, particularly PI3K, in regulating the developmental
potential of hPSCs during early transitory states.

MATERIALS AND METHODS

Detailed methods are shown in Supporting Information online.

RESULTS

Gene Expression Dynamics Associated with Cell Cycle
Progression in hPSCs

To begin, we use the FUCCI system adapted into the hPSC H9
cell line [7] to systematically track and isolate hPSCs from differ-
ent phases of the cell cycle (Fig. 1A). H9 FUCCI hPSCs were cul-
tured under maintenance conditions in mTESR (control) or with
2% DMSO for 24 hours to prime hPSCs for differentiation
(Fig. 1B). Following treatment with DMSO, there is a shift in cells
from SG2M to G1 (Fig. 1C, 1D). We next used fluorescence-
activated cell sorting to isolate cells from early G1, late G1, and
SG2M phases from control and 24 hours DMSO-treated H9
FUCCI hPSCs (Fig. 1B, 1D) and performed RNA-sequencing. Using
principal component analysis, we found that the strongest
source of variation was in treatment versus control (PC1),
followed by phase of the cell cycle (PC2; Fig. 1E). We next used
the nonparametric Dirichlet process Gaussian process mixture
model [17] to cluster fold changes in aligned reads (normalized
to transcripts per million [TPM]) to assess changes in gene
expression patterns associated with cell cycle progression. A
total of 2,972 differentially expressed genes (false discovery rate
(FDR) < 0.05) underwent clustering and 10 clusters emerged
(Fig. 1F) with genes upregulated or downregulated in response
to phase of the cell cycle following the DMSO treatment. The
largest clusters consisted of genes with decreased expression in
late G1 but high in early G1 and SG2M (cluster 7 with 454 genes)
or increased expression in late G1 and reduced in early G1 and
SG2M (cluster 5 with 420 genes) following the DMSO treatment.
Genes with trajectories characteristic of the 10 clusters include
those playing important roles in early development and regulat-
ing growth signaling pathways (e.g., phosphoglycerate mutase 1,
left-right determination factor 2, ras homolog family member B,
wingless-type family member 3, phosphoinositide-3-kinase regula-
tory subunit 3), ubiquitination and DNA repair (cullin 4A), DNA
replication licensing (e.g., minichromosome maintenance complex
component 3), maintaining cell shape and cytoskeletal interactions
(e.g., vimentin, RHOB), and regulating transcription, splicing, and
translation of genes through critical RNA helicases and

polymerases (e.g., DDX46, POLR2H; Fig. 1G). Annotation of the
gene sets representative of each cluster using the Molecular Signa-
tures Database (MSigDB) shows the most significant pathways
enriched in the 10 clusters (Fig. 1H). Across all clusters, the DMSO
treatment targeted pathways known to be tightly coordinated
with the cell cycle, playing critical roles in cytoskeletal organization
and membrane structure, transcriptional regulation, cell growth
control, and development (e.g., Rho GTPases signaling, mitochon-
drial biogenesis, rRNA processing, neddylation, protein folding,
extracellular matrix organization, cilium assembly, pre-mRNA
processing, spliceosome; Fig. 1H). Genes associated with 5 of the
10 clusters (R5, R6, R8, R9, and R10) were enriched in the
processing of capped intron-containing pre-mRNA (Fig. 1H, indicat-
ing an important role for the DMSO treatment in regulating the
efficiency and fidelity of gene expression [18]. Many pathways
associated with mitochondrial function were also enriched (clus-
ters R5 and R8), consistent with recent work demonstrating that
mitochondrial dynamics play critical roles in the developmental
potential of hPSCs [19]. Overall, this data illustrates that the DMSO
treatment changes the expression of these genes in a phase-
specific manner in hPSCs, and thereby restricts their activity in a
temporal manner that is otherwise not present in the cell cycle of
untreated control hPSCs.

Regulatory Role for PI3K-AKT Signaling in hPSC
Differentiation

In aggregate, UpSet analysis shows that the most number of
differentially expressed genes occur in the late G1 phase and
are specific to distinct phases of the cell cycle—of the 1,078
genes downregulated in late G1, 783 were not significantly
altered at the other cell cycle phases; of the 895 upregulated
genes, 554 were unique to late G1 (Fig. 2A). MSigDB pathway
analysis (FDR < 0.01) shows that DMSO affects a number of
pathways associated with cell signaling (Fig. 2B). Across all of
the signaling pathways targeted by DMSO, PI3K was the most
commonly represented gene followed by PIK3CA, a catalytic
subunit of PI3K (Fig. 2B). Kyoto Encyclopaedia of Genes and
Genomes analysis shows that 48 genes associated with the
PI3K-AKT pathway are significantly regulated by the DMSO
treatment at one or more phases of the cell cycle (Fig. 2C,
Supporting Information Fig. S1). Many genes upstream in the
pathway (e.g., PI3K receptors, PI3K, Ras) are generally down-
regulated in the early and late G1 phases of the cell cycle.
Other signaling pathways regulated by DMSO also converge
upon PI3K and PI3KR signaling (examples illustrated in Supporting
Information Figs. S2-54), a pathway well known to regulate cell
cycle, proliferation, differentiation, apoptosis, and growth and
metabolism [20-24].

Concordantly, pathways and genes associated with mitosis
and the cell cycle (e.g., cell cycle checkpoints, p value = 3.98e—8)
were also significantly regulated by the DMSO treatment
through MSigDB pathway and gene ontology (GO) enrichment

(Figure legend continued from previous page.)

clustering was applied to the fold change of (TPM DMSO/TPM control) for differential genes and yielded 10 clusters, labeled R1-R10. The
z-scores for genes in each cluster are plotted in heatmap form as well as line plots of trajectories across early G1, late G1, and SG2M.
Red lines indicate fold change trajectories for individual peaks assigned to the cluster. The light blue cloud indicates values within 2 SD of
the cluster mean. (G): Representative differentially expressed genes for each DPGP cluster R1-R10. TPM values with SD are indicated for
control (red) and DMSO (blue) at the early G1, late G1, and SG2M phases. (H): Most significant Molecular Signatures Database pathways
enriched in the DGPGP clusters R1-R10. Height of the bar indicates —log10(FDR) values for the corresponding clusters.
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Figure 2. Dimethylsulfoxide (DMSO)-induced changes converge upon PI3K signaling. (A): Number of differentially expressed genes

(FDR < 0.05, LFC 2 1) in control versus DMSO-treated Fluorescence Ubiquitin Cell Cycle Indicator human pluripotent stem cells in the early
G1, late G1, and SG2M phases. UpSetR diagram of differentially expressed genes shows that number of differential genes that increase
(up) or decrease (down) in expression in response to DMSO at the early G1, late G1, and/or SG2M phases. (B): Enriched REACTOME path-
ways for differential genes at the early G1, late G1, and SG2M phases of the cell cycle. The heatmap shading corresponds to the
—10log10(FDR) for each pathway across the different phases of the cell cycle. Genes with differential expression in response to DMSO
treatment that are present in five or more differential signaling pathways are indicated with black boxes in the grid to the left of the
heatmap. (C): Differentially expressed genes within the PI3K-AKT signaling pathway. Heatmap values are row z-scores of asinh(transcripts
per million [TPM]) DMSOQ/asinh(TPM) controls.
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Figure 3. PI3K inhibition increases human pluripotent stem cell (hPSC) differentiation across all germ layers. (A): Schematic of H9 hPSCs

treated with 2% dimethylsulfoxide (DMSO) or inhibitors of PI3K (LY294002 or Wortmannin) for 24 hours and subsequently directly differ-
entiated into the ectodermal, mesodermal, and endodermal germ layers. Immunostaining for germ layer specific markers following treat-
ment with (B) LY294002 or (C) Wortmannin compared with untreated control and 2% DMSO-treated hPSCs. (D): Quantitative RT-PCR for
lineage-specific genes following directed differentiation of LY294002 (20 pM) or Wortmannin (10 pM) treated hPSCs compared with
untreated control and 2% DMSO-treated hPSCs. Error bars: SEM of 2—4 biological replicates. Scale bar: 50 pm. *, p <.05; **, p < .01 under
one-way analysis of variance followed by a Tukey’s post hoc test for multiple comparisons.

analyses (Supporting Information Fig. S5). Expression patterns
for genes commonly implicated in cell division or regulating
early differentiation of hPSCs [6,7] are shown for DMSO-
treated hPSCs compared with untreated control hPSCs as cells
progress through the cell cycle (Supporting Information Fig. S5).
Human embryonic and pluripotent stem cells are known to have

www.StemCells.com

minimal regulatory control across phases of the cell cycle and
be refractory toward growth inhibitory signals. As a result,
oscillation of gene expression across phases of the cell cycle is
modest in hPSCs [25-27]. However, activation of checkpoint
controls has been shown to be associated with improved cell
cycle regulation and differentiation potential. Consistent with

©2019 The Authors. STEM CELLS published by
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this, we observed a correlation between DMSO treatment and
increased cell cycle phase oscillation across all genes. Mean SD
across all genes between early G1 and late G1 was 2.05 TPM
in control hPSCs and 3.72 TPM for DMSO-treated hPSCs.
Although the transition between late G1 and SG2M was rela-
tively consistent across the two groups, mean SD across all
genes between SG2M and early G1 was 1.34 TPM in control
hPSCs and 2.68 TPM for DMSO-treated hPSCs. Interestingly,
pluripotency genes (GO Term G0:0019827 Pluripotency Genes;
FDR = 8.50e—1 by Fischer’s exact test) were not altered,
suggesting that the DMSO effect on improved differentiation is
not mediated by altering the expression of the pluripotency
network (Supporting Information Fig. S6A-S6C). A transient
24 hours DMSO treatment also does not affect cell toxicity as
cell viability is comparable in untreated control and DMSO-
treated hPSCs prior to differentiation (Supporting Information
Fig. S6D, S6E), consistent with prior reports [2, 15].

Given the convergence toward PI3K, we next investigated
whether inhibiting PI3K would mimic the DMSO treatment
and increase the multilineage differentiation potential of
hPSCs. To suppress PI3K signaling, we treated H9 hPSCs
with small molecule PI3 kinase inhibitors (LY294002 and
Wortmannin) for 24 hours and subsequently induced differ-
entiation into the ectodermal, mesodermal, and endodermal
germ layers using previously published protocols (Fig. 3A).
Following directed differentiation, protein expression of
germ layer specific genes [28], Sox1 (ectoderm), Brachyury
(mesoderm), and Sox17 (endoderm) were assessed by immuno-
staining. Treatment with the PI3K inhibitors increased subse-
quent differentiation capacity across all germ layers in a dose-
dependent manner (Fig. 3B, 3C) and enhanced expression of sev-
eral lineage-specific genes (Fig. 3D). Similar improvements in dif-
ferentiation were observed in another hPSC line, HUES6, known
to have a very poor propensity for differentiation [4] (Supporting
Information Fig. S7). Together, these results show that under-
standing gene trajectories in the cell cycle of hPSCs can highlight
important signaling mechanisms regulating hPSC differentiation.

DiscussION

Strikingly, although DMSO is an agent with pleiotropic effects
[29, 30], here, we show that a short 24 hours treatment of
hPSCs targets 2,972 genes in an orchestrated manner, partic-
ularly those controlling cell division and early developmental
pathways. Genes are periodically expressed because there is
special need for the gene products at particular points in the
cell cycle [31]. Genes associated with cytoskeletal, cilium assem-
bly, and cell adhesion factors were especially subject to regula-
tion by the DMSO treatment in the SG2M phases, characteristic
of a time when cells may need to duplicate centrioles in the S
phase, change shape during mitosis, or exit the mitotic cycle to
differentiate. Many of the targeted pathways play critical roles
during embryogenesis including Wnt, bone morphogenic factor,
nodal growth differentiation factor, fibroblast growth factor,
Hippo, epidermal growth factor, vascular endothelial growth fac-
tor, and platelet derived growth factor as well as the down-
stream signaling pathways such as MAPK, Trk receptor, and PI3K
[32]. Integration of these signaling pathways coordinates a num-
ber of developmental processes, including proliferation, fate

©2019 The Authors. STEM CELLS published by
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determination, differentiation, apoptosis, migration, adhesion,
and cell shape, to ultimately affect organogenesis. Most of the
pathways that were regulated by DMSO converged on PI3
kinase signaling. Concordantly, suppression of PI3K signaling
increased differentiation propensity across all germ layers in
hPSCs, highlighting the utility of the genome-wide profiling
approach used here to dissect out important signaling mecha-
nisms regulating the developmental potential of pluripotent
stem cells. This work is consistent with prior studies showing
that PI3K-dependent signals promote embryonic stem cell prolif-
eration and supports the notion that each phase of the cell
cycle is important in performing distinct roles to orchestrate
stem cell fate [26,33]. Many of the signaling pathways and
effects on metabolic function and cell adhesion identified here
were also reported to play important regulatory roles during
early transitions in pig embryonic development in recent work
[34], suggesting shared mechanisms across species.

It would be interesting to investigate if improvements in
terminal differentiation or enhancements in clustered regularly
interspaced short palindromic repeats-mediated genome
editing of hPSCs following a 24 hours DMSO treatment [35]
may be due to changes in the molecular properties elicited on
the pluripotent cell cycle.

CONCLUSION

Our data yield novel insights on the transcriptional and signal-
ing dynamics during early transitory states in hPSCs that could
be a useful point of focus in studying embryonic development.
Targeting these early modes of regulation may put hPSCs on a
better trajectory for differentiation and ultimately improve
their utility for regenerative medicine.
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