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H I G H L I G H T S
� A new remote sensing sensitivity model (the D-δ(ε) model) for analysing heavy metals in water is proposed.
� The mathematical relationship between retrieved remote sensing concentrations and radiometric resolution is revealed.
� The curve showing the lowest detectable concentrations using remote sensing retrieval methods is obtained.
� This work proves to the academic community the feasibility of applying remote sensing techniques to heavy metals in water.
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A B S T R A C T

This work proposes a new sensitivity analysis model, referred to as the D-δ(ε) model, for the remote sensing
retrieval of heavy metals in bodies of water. By defining the reflectance ratio function (δ(ε)), we deduce the
mathematical relationships between the heavy metal concentration sequences (Di) that can be effectively used for
remote sensing retrievals and the radiometric resolution (ε) of the remote sensing instrument. Then, as a function
of wavelength, we obtain the curve of the lower limit of the heavy metal concentrations in water that can be
retrieved by remote sensing. To demonstrate the advantages of this model, we take two compounds, copper
sulphate (CuSO4) and cadmium sulphide (CdS), as examples to discuss the remote sensing sensitivity of different
wavelengths when retrievals are performed using the Chinese HJ-1A's hyperspectral imager (HSI). The results
showed that the lowest detectable concentration of CuSO4 in the wavelength range of 460.04–496 nm (corre-
sponding to bands 1–17 of the HSI image) can be below 0.15 mg/L, while the concentration of CdS can be lower
than 0.001 mg/L in the separate ranges of 460.04–493.59 nm (bands 1–16) and 526.885–594.79 nm (bands
29–51). This model clearly demonstrates the mathematical relationship obeyed by "D-ε". Additionally, this model
can not only calculate the retrieval concentration sequences at any observation wavelength but also intuitively
provide the curve of the lower concentration limit for heavy metal retrievals. This work provides a theoretical
basis for the selection of the most sensitive bands for remote sensing retrieval using hyperspectral images in the
future.
1. Introduction

Retrieving the concentrations of heavy metals in water by remote
sensing techniques has been a persistent and difficult problem in the field
of environmental remote sensing. The possibility of remotely sensing
heavy metals in water was first proposed in 2010 by Chen et al. [1]. The
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statistical relationship between the measured data and the remote
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Additionally, Liang et al. used Deng's model to conduct remote sensing
retrieval research on copper and iron in the Beijiang River [4]. However,
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the above research remains in the exploratory stage. Once they had
recognized the lack of optical parameters required by remote sensing
models, the limited research on the spectral characteristics of heavy
metal polluted water, and the lack of sensitivity analyses, Liang and Deng
began fundamental research. This included, identifying the optical pa-
rameters of heavy metal compounds [5, 6, 7], analysing the spectral
characteristics of typical heavy metal polluted water and the determining
retrieval method of these optical parameters [8, 9]. The intent of that
work was to improve the theoretical foundation of the field, to ensure the
effective use of remotely sensed satellite images for analysing heavy
metal concentrations.

However, since the beginning of this field over ten years ago, there
have been few advancements in the use of remote sensing images to
determine the concentrations of heavy metals fromwater. In addition to
the limitations mentioned above, a central reason for the challenges
involved in measuring heavy metals concentrations from satellite
platforms is that the heavy metal concentration of natural water is
usually very low, albeit potentially fatal to humans. These concentra-
tions are considered too low to be adequately observed in remote
sensing images or ground-based spectral measurement data. The
feasibility of applying remote sensing retrieval methods in this context
has since been questioned and has become a further hindrance that has
restricted the development of this field. In order to address these issues,
it is necessary to first conduct a sufficient feasibility or sensitivity
analysis.

We know that a sensitivity analysis (SA) is an important part of
improving, or selecting, suitable remote sensing model parameters.
There are many studies in this field, and the main methods and principles
used are as follows: (1) Design different sensitivity indicators (SI) used
for qualitative analysis through statistical methods; (2) Develop tech-
niques in accordance with the physical relationship between the pa-
rameters of the remote sensing model and SI.

The first method types assess the sensitivity of the remote sensing
model parameters during the retrieval by calculating the statistical
relationship between the changes in the model input parameters and the
corresponding changes in the retrieval results. The most common anal-
ysis algorithms are the Morris Screening Method (Morris), Sobol's
Method (Sobol) and the Standardized Regression Coefficient (SRC) [10,
11]. For example, Yi et al. [12] and Wang et al. [13] applied the Morris
method to analyse the sensitivity of the Environmental Fluid Dynamic
Code (EFDC) model parameters to nitrogen and the sensitivity of the
environmental characteristics in Dianchi Lake and Chaohu Lake to
phosphorus. Li et al. [14] combined the K-means clustering algorithm
and the Morris method to analyse the spatial sensitivity of the parameters
of the algal retrieval model. Liu et al. [15] applied the Sobol algorithm to
analyse the sensitivity of the water parameters, sediment parameters,
meteorological conditions and input boundaries in the Intelligent
Watershed Integration Decision (IWIND) model to nitrogen and phos-
phorus in Dianchi Lake. Vanrolleghem et al. [16] and Ikumi [17] applied
the SRC method to analyse the parameter sensitivity of an urban water
resource model and a water environment model. Furthermore, they
define different SIs to compare only the variation between the changes in
the input parameters of the remote sensing model and the corresponding
changes in the retrieval results to analyse the parameter sensitivity of the
remote sensing model [18, 19, 20, 21, 22]. For example, Privette et al.
[23] defined the parameter sensitivity (S) to perform sensitivity analyses
on different directions of the bidirectional reflectance distribution
function (BRDF) model. Li and Yao [24, 25] improved the parameter S
and proposed the uncertainty and sensitivity matrix (USM) to describe
the sensitivity of the BRDF model in each sampling direction. Hosseini
et al. [26] and Chen et al. [27] applied the one-factor-at-a-time (OAT)
method to define SI and analysed the sensitivity of the water quality
model parameters to nitrogen in the Large Prairie River and Danjiangkou
Reservoir. The above studies establish various sensitivity evaluation
methods from a statistical perspective, which are simple and easy to
implement, but the analysis results usually only have statistical
2

significance and cannot reveal the intrinsic physical relationship between
model parameters and sensitivity indicators.

The second type of method is much more difficult to model and
solve than the first type of method. Ustinov [28, 29, 30] applied this
method and proposed an adjoint sensitivity matrix approach for
application in atmospheric models, which provided the temperature
and gas mixing ratio weighting functions for atmospheric remote
sensing based on thermal infrared scattering. This method does not
overly rely on statistical indicators but starts from the mechanisms that
influence the relationship between the atmospheric model and its
sensitivity, thus, providing a more quantitative sensitivity evaluation
method.

In summary, the conventional thinking of scholars regarding the
sensitivity of remote sensing models was to qualitatively evaluate the
influence of parameters on the model based on statistical indicators. In-
dividual scholars used the modelling principles of the remote sensing
models, which could further quantify this sensitivity indicator. The main
purpose of their research was to more effectively improve the accuracy of
existing remote sensingmodels through sensitivity analysis rather than to
examine the feasibility of retrieval parameters. However, as the most
direct and reliable physical quantity that reflects the sensitivity of remote
sensing instruments, the mathematical relationship between the radio-
metric resolution and the concentration of heavy metals in water has not
been studied. The concentration of heavy metals in water presented in
this paper reflects the uncertainty in the relationship between the lower
limits of the remote sensing retrieval of that concentration and the
radiometric resolution of the instrument. This uncertainty leads to the
incorrect assertion that the technique application itself is not feasible;
thus, research has progressed slowly.

Therefore, this study focuses on building a quantitative evaluation
model that can be used for remote sensing sensitivity analyses and can
reveal the inherent relationship between radiometric resolution and
heavy metal concentration.
2. Theory and data

2.1. Model construction

2.1.1. Model assumptions and definitions
Tomore rigorously express and deduce the mathematical relationship

between the aqueous concentration of a certain heavy metal and the
radiometric resolution of the sensor, we need to make conditional a priori
assumptions and establish certain definitions.

Model assumption: The change in the brightness value of the remote
sensing image pixel, or digital number (DN), is only caused by the change
in the concentration of one component within the water, such as one
species of heavy metal.

Definition (1): For the observation wavelength (λ), the relationship
between the concentration of a certain heavy metal in water (Dn) and the
surface reflectance of the Earth (rn) can be expressed as the following
function:

rn ¼ f1ðDnÞ (1)

The relationship between planetary reflectance (Rn) and surface
reflectance of the Earth (rn) can be expressed as follows:

Rn ¼ f2ðrnÞ (2)

Substituting Eq. (1) into Eq. (2), we obtain:

Rn ¼ f2½f1ðDnÞ� (3)

where f1 is the specific expression of the water quality remote sensing
retrieval model and f2 is the specific expression of the atmospheric
correction model. For simplicity, a function of wavelength (λ) will be
expressed without λ. For example, RðλÞ will be written as R.
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For ground spectrometers, atmospheric effects can be ignored, and
Eq. (3) can be simplified as:

Rn ¼ f1ðDnÞ (4)

Definition (2): For the observation wavelength (λ), the function δ of
the reflectance Ra and Rb of any two concentrations Da and Db of a certain
heavy metal in water, can be define as follows:

δb�a ¼Ra=Rb (5)

It is stipulated here that Db is always greater than Da; that is, we
consider that Da is the concentration before the change, Db is the con-
centration after the change, and the subscript also satisfies that b > a.
From Eq. (3), the function δ is also a function of concentration (D), and δ
is always positive.

Definition (3): For the observation wavelength (λ), the DN value (DNi)
of the remote sensing image should be a sequence of integers from 0 to
ð2m � 1Þ, where i ¼ 0; 1;2;⋯; m is the number of bits in the remote
sensing data. For example, the Chinese HJ-1A hyperspectral imager (HSI)
image is in 16-bit format, thus, the range of the DN values includes all
integers from 0 to ð216 � 1Þ.

It is stipulated here that i ¼ 0 refers to the background value DN0.
When D0 ¼ 0, DN0 2 ð0;2m �1Þ and DN0 2 N. Usually, the value of DN0

is found elsewhere within the range and does not take the boundary
value (see Figure 1).

Definition (4): If the DN value of the remote sensing image changes
from DNa to DNb, then we suspect that the concentration of heavy metals
in the water is caused by the change from Da to Db. Obviously, the
amount of change, ΔDNb�a, must be ðb�aÞ proportional with the
radiometric resolution ε, namely:

DNa �DNb ¼ΔDNb�a ¼ðb� aÞ � ε (6)

In particular, when a ¼ n and b ¼ nþ 1 in Eq. (6), the concentration
of heavy metals in water is changed from the original Dn to Dnþ1, and the
change in the DN value of the remote sensing image is:

DNn �DNnþ1 ¼ΔDN1 ¼ðnþ1� nÞ � ε¼ ε (7)

where n is a natural number, and we used the subscripts n and nþ 1 to
denote any two adjacent elements.

In particular, when a ¼ 0 and b ¼ n in Eq. (6), namely:

DNn ¼DN0 � n � ε (8)

It is stipulated here that when ε is positive, the DN decreases by ε;
when ε is negative, the DN value also increases by ε (see Figure 1).
Figure 1. Correspondence betw
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Eq. (7) is regarded as the recursion formula of the DN sequences, and
Eq. (8) is regarded as the formula of the general term of the DN
sequences.

In Eq. (8), jεj is the value of radiometric resolution, that is, the min-
imum difference between two spectral frequencies that the remote
sensing sensor can distinguish. For ground spectrometers, the radio-
metric resolution (equivalent noise radiation) of the instrument given by
the manufacturer is usually reflected in the radiance (L) and not the DN
value. Atmospheric effects are not considered. However, since the deri-
vation of the formula is similar, the following example considers only the
satellite sensor.

2.1.2. Mathematical relationship between the δ function and the radiometric
resolution (δ-ε Model)

According to the common methods of preprocessing remote sensing
images, the conversion from the remotely sensed DNi to the planetary
reflectance (Ri) can be expressed as follows:

Ri ¼ πLid2
� ðEs cos θzÞ¼ πðGain �DNi þOffsetÞd2 � ðEs cos θzÞ (9)

where Es is solar irradiance on the top of the atmosphere, with units
W �m�2 � μm�1; θz is solar zenith angle; d is Sun-Earth mean distance
factor; Li is radiance, in W �m�2 � sr�1 � μm�1; Gain is the sensor calibra-
tion slope in W �m�2 � sr�1 � μm�1; Offset is the sensor absolute scaling
factor offset in W �m�2 � sr�1 � μm�1, for certain types of remote sensing
data, the value is 0. Eq. (9) is the radiometric calibration and correction
model for the remote sensing images. For additional information see htt
ps://www.usgs.gov/media/files/landsat-7-data-users-handbook Page
79, Sections "5.6.5, Conversion to Radiance" and "5.6.6 Radiance to
Reflectance".

According to Eq. (9), the planetary reflectance under any two con-
centrations of Da and Db can be expressed as:

Ra ¼ πðGain �DNa þOffsetÞd2 � ðEs cos θzÞ (10)

Rb ¼ πðGain �DNb þOffsetÞd2 � ðEs cos θzÞ (11)

By substituting Eq. (8) Eqs. (10) and (11), we obtain:

Ra ¼ π½Gain � ðDN0 � a � εÞþOffset�d2 � ðEs cos θzÞ (12)

Rb ¼ π½Gain � ðDN0 � b � εÞþOffset�d2 � ðEs cos θzÞ (13)

According to definition (2), substituting Eqs. (12) and (13) into Eq.
(5), yields:
een sequences DNi and Di.

https://www.usgs.gov/media/files/landsat-7-data-users-handbook
https://www.usgs.gov/media/files/landsat-7-data-users-handbook
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δa�b¼Rb

R
¼Gain �ðDN0�b �εÞþOffset
Gain �ðDN �a �εÞþOffset

¼
�
1� Gain � ða�bÞ �ε

Gain �ðDN �b �εÞþOffset

��1
a 0 0

(14)

For the ground spectrometer, DN conversion is not needed, thus,
Gain¼1 W/m2/sr/μm and Offset¼0 W/m2/sr/μm, that is, DN0 ¼ L0.

For subsequent disambiguation, we denote Eq. (14) as δa�bðε; a; bÞ to
show that it is a function of the radiometric resolution and the variable
sequence subscript.

In particular, considering the condition of two adjacent concentra-
tions, and letting the subscripts be a ¼ nþ 1 and b ¼ n, Eq. (14)
becomes:

δðnþ1Þ�nðε;nþ1;nÞ¼δ1ðε;nþ1;nÞ¼ Rn

Rnþ1
¼ Gain �ðDN0�n �εÞþOffset
Gain �½DN0�ðnþ1Þ �ε�þOffset

¼
�
1� Gain �ε

Gain �ðDN0�n �εÞþOffset

��1

(15)

Considering when Eq. (14) when the subscripts a¼ n and b ¼ 0, we
obtain:

δn�0ðε; n;0Þ¼ δnðε; n; 0Þ¼R0

Rn
¼Gain �ðDN0 � 0 � εÞ þ Offset

Gain �½DN0 � n � ε� þ Offset

¼
�
1� Gain � n � ε

Gain �DN0 þ Offset

��1 (16)

Eq. (16) represents the general term of the function δðε; n;0Þ
sequences.

2.1.3. Mathematical relationship between concentration and radiometric
resolution (the D-δ(ε) model)

According to definition (1), when the reflectance values for Ra and Rb,
that correspond to any two concentrations Da and Db, are substituted into
Eq. (5), we obtain:

δb�aðε; b; aÞ¼Ra =Rb ¼ f2½f1ðDaÞ� = f2½f1ðDbÞ� (17)

Once the water quality remote sensing model f1 and atmospheric
correction model f2 in Eq. (17) are determined, the relationship between
any two concentrations Da and Db can be presented as:

Db ¼ g½Da; δb�aðε; b; aÞ� (18)

From Eq. (18), after the specific forms of f1 and f2 are given, g can be
determined, and we will give the specific f1 in Section 2.2.1.

In particular, according to Eq. (18), and letting the subscripts be a ¼ n
and b ¼ nþ 1, we obtain:

Dnþ1 ¼ g
�
Dn; δðnþ1Þ�nðε; nþ 1; nÞ�¼ g½Dn; δ1ðε; nþ 1; nÞ� (19)

where function δ from Eq. (19) is expressed by Eq. (15).
From Eq. (18), and letting the subscripts be a ¼ 0 and b ¼ n, we

obtain:

Dn ¼ g½D0; δn�0ðε; n; 0Þ�¼ g½D0; δnðε; n; 0Þ� (20)

where D0 ¼ 0; δ function in Eq. (20) is expressed by Eq. (16).
Eq. (20) defines the general term of the concentration sequences (Di),

which denotes the functional relationships between concentration and
radiometric resolution, and thus, is the D-δ(ε) model proposed in this
work.

Obviously, if the water does not contain heavy metals at the begin-
ning, then D0 ¼ 0 and regardless of Eq. (19) or (20), the following can be
obtained:
4

D1 ¼ g½D0; δ1�0ðε; 1; 0Þ�¼ g½0; δ1ðε;1; 0Þ� (21)
Furthermore, regardless of Eq. (15) or (16), the δ function in Eq. (21)
becomes:

δ1�0ðε;1;0Þ¼ δ1ðε;1;0Þ¼
�
1� Gain � ð1� 0Þ � ε

Gain �ðDN0 � 0 � εÞ þ Offset

��1

¼
�
1� Gain � ε

Gain �DN0 þ Offset

��1 (22)

2.2. Application data

Next, we use the D-δ(ε) model constructed in Section 2.1, which is
applied to a case of simulated clear and deep water that ignores the in-
fluence of the atmosphere. Obviously, these calculation results will be
lower than those obtained from actual imagery, but this determines the
minimum concentration that can theoretically be extracted by remote
sensing for a certain heavy metal. Similar principles and methods hold
true for future practical application.

2.2.1. Determination of function f1
In Eq. (4), f1 represents a remote sensing model based on radiative

transfer theory [31], and does not considering the reflected light from the
bottom of the waterbody, secondary scattering or atmospheric effects.
Eq. (4) can be expanded as:

Rn ¼ f1ðDnÞ¼ PðΘÞðBþDnβHMÞ = ½4μðKþDnkHMÞ� (23)

where PðΘÞ is the scattering phase function,Θ is the scattering angle, and
PðΘÞ ¼ 3½1 þ cos2ðΘÞ� =4; μ is the observation geometry factor; βHM is the
scattering coefficient of the heavy metal; kHM is the extinction coefficient
of the heavy metal; and B and K represent the total scattering coefficient
and total extinction coefficient of the other components in the back-
ground water except the heavy metal.

Substituting Eq. (23) into Eq. (19) yields:

Dnþ1¼g½Dn;δ1ðε;nþ1;nÞ�¼ δ1ðε;nþ1;nÞ�B�ðKþDn �kHMÞ�K�ðBþDn�βHMÞ
kHM �ðBþDn �βHMÞ�δ1ðε;nþ1;nÞ�βHM �ðKþDn�kHMÞ

(24)

Where the δ function of Eq. (24) is expressed by Eq. (15).
When n ¼ 0, D0 ¼ 0. Similarly, Eq. (21) can be expanded as:

D1¼g½0;δ1ðε;1;0Þ�¼ δ1ðε;1;0Þ�B�K�K �B
kHM �B�δ1ðε;1;0Þ�βHM �K

¼ δ1ðε;1;0Þ�1
kHM=K�δ1ðε;1;0Þ�βHM=B

(25)

where the δ function in Eq. (25) is expressed by Eq. (22).
Eq. (20) can be expanded as:

Dn ¼ g½D0; δnðε; n; 0Þ�¼ δnðε; n;0Þ � 1
kHM=K � δnðε; n; 0Þ � βHM=B

(26)

where δ in this instance is expressed by Eq. (16).
According to Eq. (9), the background DN value (DN0) of the remote

sensing image in Eqs. (15), (16), and (22) can be calculated by the
following formula:

DN0 ¼
�
R0Es cos θz

� 	
πd2


�Offset
� �

Gain (27)

2.2.2. Set the parameters of the D-δ(ε) Model
After Eqs. (27) and (16) are substituted into Eq. (26), the

concentration sequences (Di) can be calculated. Eq. (26) mainly



Table 1. Satellite sensor parameter settings for the D-δ(ε) model.

Parameter Name Parameter Symbol Value

Satellite platform \ HJ-1A of China

Sensor \ Hyperspectral imager (HSI)

Observation wavelength range λi, (i ¼ 1,2,…,115) 460–950nm (115 bands), more detail in Table 2.

Date of image \ December 26th, 2013

Observation zenith angle θv 0� (vertical observation), obtained from satellite data header file.

Solar elevation angle θs 31.554�, obtained from satellite data header file.

Solar zenith angle θz Calculate with the following formula: θz ¼ 90� � θs

Scattering angle Θ Calculate with the following formula: Θ ¼ 180� � θz

Observation geometry factor μ Calculate with the following formula: μ ¼ sec θz þ sec θv

Sun-Earth mean distance factor d 0.9835, obtained from permanent calendar.

Sensor calibration slope Gain 0.01 W �m�2 � sr�1 � μm�1, obtained from satellite data header file.

Sensor absolute scaling factor offset Offset 0 �m�2 � sr�1 � μm�1 , obtained from satellite data header file.

Radiometric resolution ε 1

Solar irradiance on the top of the atmosphere EsðλiÞ Provided by the website of China Centre For Resources Satellite Data and Application.

Table 2. The band setting of the HSI sensor, where λ is the observed centre wavelength. All bands in Table 2 are effectively available.

No. λ (nm) No. λ (nm) No. λ (nm) No. λ (nm) No. λ (nm)

Band1 460.040 Band25 516.170 Band49 587.900 Band73 682.785 Band97 814.195

Band2 462.135 Band26 518.810 Band50 591.325 Band74 687.410 Band98 820.775

Band3 464.250 Band27 521.475 Band51 594.790 Band75 692.095 Band99 827.465

Band4 466.380 Band28 524.165 Band52 598.295 Band76 696.845 Band100 834.265

Band5 468.530 Band29 526.885 Band53 601.845 Band77 701.660 Band101 841.175

Band6 470.705 Band30 529.635 Band54 605.435 Band78 706.540 Band102 848.200

Band7 472.900 Band31 532.415 Band55 609.065 Band79 711.495 Band103 855.345

Band8 475.110 Band32 535.220 Band56 612.740 Band80 716.515 Band104 862.615

Band9 477.345 Band33 538.055 Band57 616.460 Band81 721.605 Band105 870.005

Band10 479.600 Band34 540.920 Band58 620.225 Band82 726.770 Band106 877.525

Band11 481.875 Band35 543.815 Band59 624.035 Band83 732.010 Band107 885.175

Band12 484.175 Band36 546.745 Band60 627.895 Band84 737.330 Band108 892.960

Band13 486.495 Band37 549.710 Band61 631.805 Band85 742.725 Band109 900.885

Band14 488.835 Band38 552.700 Band62 635.760 Band86 748.195 Band110 908.950

Band15 491.200 Band39 555.725 Band63 639.765 Band87 753.750 Band111 917.160

Band16 493.590 Band40 558.785 Band64 643.820 Band88 759.390 Band112 925.520

Band17 496.000 Band41 561.875 Band65 647.930 Band89 765.110 Band113 934.035

Band18 498.435 Band42 565.000 Band66 652.090 Band90 770.920 Band114 942.705

Band19 500.895 Band43 568.160 Band67 656.305 Band91 776.820 Band115 951.540

Band20 503.375 Band44 571.360 Band68 660.575 Band92 782.805

Band21 505.885 Band45 574.595 Band69 664.900 Band93 788.885

Band22 508.420 Band46 577.865 Band70 669.285 Band94 795.065

Band23 510.975 Band47 581.175 Band71 673.725 Band95 801.340

Band24 513.560 Band48 584.520 Band72 678.225 Band96 807.715
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involves two types of parameters, namely, satellite sensor parameters
and water component optical parameters. See Table 1 and Table 3 for
details.

(1) Satellite sensor parameters

The following is an example of the HSI sensor of the Chinese HJ-1A
satellite. Details of these parameter settings are in Table 1. The
observed centre wavelengths of the HSI sensor are listed in Table 2.

(2) Water component optical parameters

Examples of heavy metal compounds include CuSO4 and CdS. The
background water condition is set as the ideal clear and deep water.
Details of these parameter settings are shown in Table 3.
5

3. Results and discussion

3.1. Results

By setting the model parameters, as shown in Table 1 and Table 3,
Eqs. (22) and (25) were used to simultaneously calculate the lower limit
concentration D1 of these two heavy metal compounds (CuSO4 and
CdS) as a function of wavelength (see Figures 2 and 3) from the remote
sensing images. Figure 2 shows the calculation results of the CuSO4
solutions. As a function of wavelength, for normal coordinates in the
display range 0–800 mg/L, see Figure 2(a); for normal coordinates in
the display range of 0–4 mg/L, see Figure 2(b); and for logarithmic
coordinates, see Figure 2(c). Due to the large variation in the values,
both the normal coordinates and the logarithmic coordinates are used
for display. What interests us is the case of the low value region;



Table 3. Water component optical parameter settings for the D-δ(ε) model. The
parameters in Table 3 are all functions of the wavelength. For simplicity, λwill be
omitted from the function notation. For example, RwðλÞ will be written as Rw.

Parameter Name Parameter
Symbol

Value

Absorption coefficient of water
molecule

aw Obtained from Refs. [32, 33]

Scattering coefficient of water
molecules

βw Obtained from Ref. [34]

Extinction coefficient of water
molecule

kw Calculate with the following
formula: kw ¼ aw þ βw

Extinction coefficient of heavy
metal

kHM Obtained from Ref. [5] for CuSO4

solutions, while Ref. [7] for CdS
solutions

Scattering coefficient of heavy
metal

βHM Calculate with the following
formula: βHM ¼ RHM � kHM , where
RHM is the reflectance of the heavy
metal, obtained from Ref. [7] for
CdS solution. We take βHM � 0 for
CuSO4 solutions in this paper

Total extinction coefficient of the
other components in the
background water except the
heavy metal

K Calculate with the following
formula: K ¼ kw, taking the
theoretical clear and deep water
as an example

Total scattering coefficient of the
other components in the
background water except the
heavy metal

B Calculate with the following
formula: B ¼ βw , taking the
theoretical clear and deep water
as an example

Reflectance of theoretical clear
and deep water

Rw Calculate with the following

formula: Rw ¼ βwPðΘÞ
4μkw

, by Eq.

(23)

Remote sensing image background
DN value

DN0 By Eq. (27)
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therefore, the display range of Figure 2(a) is also enlarged to that shown
in Figure 2(b).

Figure 3 shows the calculation results of the CdS solutions. Normal
coordinates in the range from 0 to 0.25 mg/L, see Figure 3(a); for normal
Figure 2. The curves for the lower limit concentrations that can be retrieved from re
HSI image band range.
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coordinates in the display range from 0 to 0.002 mg/L, see Figure 3(b);
and for logarithmic coordinates, see Figure 3(c).

Using Eq. (24), the concentration sequences {D1, D2,…, Dn} of CuSO4
and CdS can be obtained (see Figures 4 and 5). Figure 4 shows the
calculation results of the CuSO4 solutions. As a function of wavelength,
concentration sequences {D1, D2, D3, D4, D5, D6, D7, D8, D9, D10} with a
sampling interval of 1 are shown in Figure 4(a); concentration sequences
{D1, D3, D5, D7, D9, D11, D13, D15, D17, D19} with a sampling interval of 2
are shown in Figure 4(b); concentration sequences {D1, D8, D15, D22, D29,
D36, D43, D50, D57, D64}, which has a sampling interval of 7 are shown in
Figure 4(c); and concentration sequences {D1, D11, D21, D31, D41, D51,
D61, D71, D81, D91}, which have a sampling interval of 10 are shown in
Figure 4(d). We actually calculated more than one hundred such curves,
but the curves would be too dense to be displayed within a single graph;
therefore, 10 curves are displayed with four different sampling intervals
Figures 4(a) to 4(d) in order to show the results more clearly.

Figure 5 shows the calculation results of the CdS solutions. As a
function of wavelength, concentration sequences {D1, D2, D3, D4, D5, D6,
D7, D8, D9, D10}, which has a sampling interval of 1 are shown in
Figure 5(a); concentration sequences {D1, D6, D11, D16, D21, D26, D31, D36,
D41, D46}, which has a sampling interval of 5 are shown in Figure 5(b);
concentration sequences {D1, D21, D41, D61, D81, D101, D121, D141, D161,
D181}, which has a sampling interval of 20 are shown in Figure 5(c); and
concentration sequences {D1, D101, D201, D301, D401, D501, D601, D701,
D801, D901}, which has a sampling interval of 100 are shown in
Figure 5(d).

3.2. The relationships revealed by the models

3.2.1. δ-ε Model
Eq. (5) defines the δ function, whose physical meaning is the ratio of

the reflectance of the remote sensing images for two different concen-
trations. The principle of the sensitivity analysis is that the pixel values of
the remote sensing images can distinguish two different situations, thus,
it is necessary to consider the changes in the respective pixel values and
reflectance in those two situations. Therefore, by first defining the ratio
function, a relationship between the concentration and the radiometric
mote sensing images of CuSO4 solutions in the ideal clear and deep water in the



Figure 3. The curves for the lower limit concentrations that can be retrieved from remote sensing images of CdS solutions in the ideal clear and deep water in the HSI
image band range.

Figure 4. The curves for the concentration sequences (Di) that can be retrieved from remote sensing images of CuSO4 solutions in the ideal clear and deep water in the
HSI image band range.

Y. Guo et al. Heliyon 8 (2022) e12033
resolution is established. Furthermore, by defining the δ function, many
of the derivations then become the operations within the sequence
subscript. Compared with the direct derivations of the concentration and
radiometric resolution, the model processes and expression forms are
more concise and easier to understand.
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Eq. (15) is the recursion formula of the δ function sequences. It
can be found that the δ function is different for any two concentra-
tions. The difference between the reflectance values is relatively
large at the beginning, but will eventually become stabilize so that it
satisfies:



Figure 5. The curves for the concentration sequences (Di) that can be retrieved from remote sensing images of CdS solutions in the theoretical clear and deep water in
the HSI image band range.
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lim
n→þ∞

δ1ðε; nþ1; nÞ¼1:
Eq. (16) is the formula of the general term of the δ function sequences.
It reflects the ratio between the initial reflectance and the reflectance at a
certain concentration. Eq. (16) reveals the following relationships:

(1) If ε > 0, DN0 � n � ε > 0 should also be satisfied, thus, 0 < n <

DN0=ε. When n takes the largest positive integer in this range, the
reflectance will reach a minimum value (the lower limit of the
pixel value). Therefore increasing n beyond this point is mean-
ingless. Additionally, the δ function will tend to infinity, indi-
cating that the reflectance is decreasing:

lim
n→þDN0=ε

δnðε; n;0Þ¼ þ∞:

(2) If ε < 0, DN0 � n � ε � 2m � 1 should also be satisfied, thus 0 < n �
ðDN0 � 2m þ1Þ =ε. When n takes the largest positive integer in this
range, the reflectance will reach a maximum value (the upper
limit of the pixel value). Therefore, increasing n beyond this value
is meaningless. Additionally, if the upper limit of the pixel value is
not considered, the δ function will tend to 0, indicating that the
reflectance is increasing:

lim
n→þ∞

δnðε; n; 0Þ¼ 0:

The form of δ function indicates that at it is essentially a first order
fractional function. One end of such a function tends toward infinity near
the asymptote, and the other end tends toward 0, which correctly reflects
the trend of reflectance changes in the above two situations.

3.2.2. D-δ(ε) Model
Eq. (24) shows that the concentration of heavy metals observed by

satellite sensors at a certain wavelength is a discrete sequence {D1, D2,…,
8

Dn}, and the concentration interval (somewhat similar to concentration
resolution) between the increase from a certain concentration to the next
concentration that can be observed is constantly changing.

Eq. (26) is regarded as the formula of the general term of the con-
centration sequences. It can be seen that at the beginning, the concen-
trations are nearly equal, which is indicative of an arithmetic progression.
However, as n continues to increase, this concentration difference in-
creases sharply and tends to infinity, thus it cannot be observed.

Eq. (25) is a special case of Eqs. (24) and (26) and has great value.
This formula represents the minimum aqueous concentration value of
heavy metals that can theoretically be observed by sensors, that is, the
lower limit of the remote sensing retrieval. Eq. (25) indicates the
following relationships:

(1) The lower concentration limit is related to the background optical
parameters of the water, the optical parameters of the heavy
metals and the radiometric resolution of the detection instrument.
Since the optical parameters are inherent to the environment, they
cannot be changed, i.e., inherent optical parameters (IOP).

To improve the detection capability in the future, it is necessary to
start from the performance of the instrument and continuously
improve its radiometric resolution. This is because when jεj is smaller,
D1 is smaller, i.e., the sensitivity is higher. Generally, for satellite
images, jεj is reflected in the DN value, which is an integer, and the
theoretical minimum change is 1 (jεj ¼ 1). For ground based spectral
measurement instruments, such as Analytical Spectral Devices
FieldSpec 4 (ASD FS4), jεj is reflected in radiance (equivalent noise
radiation, jεj ¼ 0:01W �m�2 � sr�1 � μm�1).
(2) The background optical properties of the water affect the D1 value.

In the case of ideal clear and deep water that ignores the atmo-
spheric effects, D1 can be regarded as the theoretical minimum
and lower concentration limit that can be retrieved from remote
sensing images. However, as the optical parameters of the water
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continue to increase, D1 also increases, indicating that the sensi-
tivity is decreasing.

(3) The optical parameters of the heavy metal itself also affect the D1

value. When the extinction coefficient of the heavy metal is larger,
the D1 value will decrease instead, and the sensitivity will
increase.

Therefore, the spectral characteristics of the optical parameters of the
water components are the theoretical basis to guide us to select sensitive
bands in the future.

3.2.3. Positive and negative discriminant conditions for ε
According to definition (4), the minimum change in the DN value of

the remote sensing image can be either positive or negative. When ε > 0,
it means that the DN value is decreasing and tending to 0; When ε < 0, it
means that the DN value is increasing and tending to the maximum value
of the pixel. For example, HSI images are 16 bit, so the theoretical
maximum DN value is 65535. The following will deduce the conditions
that should be satisfied for ε to appear positive or negative.

When ε < 0, according to Eq. (23), and Rn=Rnþ1 < 1, which means
that the DN value continually increases, we obtain:

Bþ DnβHM
K þ DnkHM

�K þ Dnþ1kHM
Bþ Dnþ1βHM

< 1 (28)

ðBþDnβHMÞðKþDnþ1kHMÞ < ðKþDnkHMÞðBþDnþ1βHMÞ (29)

BkHMðDnþ1 �DnÞ < KβHMðDnþ1 �DnÞ (30)

Since Dnþ1 � Dn > 0, we obtain:

βHM=kHM > B=K (31)

Similarly, when ε > 0, and Rn=Rnþ1 > 1, which means that the DN
value continually decreases, we obtain:

βHM=kHM < B=K (32)

Eqs. (31) and (32) imply that the proportion of the scattering rela-
tionship between a certain heavy metal and the background water de-
termines the increasing or decreasing trend of DN values. If the scattering
proportion of heavy metals is greater than that of the background water,
the DN value will increase as the concentration increases, and vice versa.
The scattering of some dissolved heavy metal compounds (such as copper
ions) usually occurs at the molecular level, and its effects are much lower
than the absorption, that is, βHM � 0. The situation of Eq. (31) does not
exist, and only Eq. (32) can be applied, which indicates that the DN value
can only be gradually reduced.

The significance of Eqs. (31) and (32) is that the above two situations
may occur in the concentration sequences at different observation
wavelengths, and they are the discriminant formulas that should be
considered first before calculating the lower limit concentration.

3.3. Results and discussion

CuSO4 exists in a dissolved state in water, while CdS exists in a par-
ticulate state, so this paper takes these two different physicochemical
properties as a representative example of sensitivity analysis.

3.3.1. Remote sensing sensitivity analysis of CuSO4 in water
Figures 2(a) and 2(b) show that the lowest concentration of CuSO4

that can be retrieved from remote sensing images varies with wave-
length. Figure 2(c) shows that the concentration can span four orders of
magnitude, and the sensitivity varies greatly with different observation
wavelengths. From the results, we found that the lowest concentration
appears at a wavelength of 470.705 nm (corresponding to Band 6 of the
HSI image), which corresponds to 0.1013 mg/L and is theoretically the
most sensitive wavelength for detecting this compound in water via
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remote sensing. That is, in theory, as long as the concentration in water
reaches 0.1013 mg/L or more, it can be observed by remote sensing
imaging. In addition, within the range of the central wavelengths
(460.04–496 nm, or Bands 1–17), the lowest detectable concentration
is lower than 0.15 mg/L. These are relatively sensitive bands that can be
considered in the future. In contrast, for wavelengths in the range of
721.605–951.54 nm (Band 81–115), there is no lower concentration
limit since the reflectance of the water is close to zero, That is, no matter
how much the concentration increases, the DN value cannot be
changed, and these bands are ineffective for remote sensing retrieval.
For compounds such as CuSO4 solutions with high absorptivity, the
surface reflectance of the Earth can only gradually decrease as the
concentration increases, thus, it is almost impossible to effectively use
remote sensing methods in waters with extremely low background
reflectance.

Figure 6 shows the concentration sequences Di at several wavelengths
(somewhat similar to the concentration resolution, i ¼ 100). It can be
found that the concentration spacing is almost equal at the beginning,
which is approximately an arithmetic sequence, but as it increases, the
concentration will increase sharply. This shows that it is difficult to
change the DN value at higher concentrations, and the sensitivity grad-
ually decreases. From Figure 6, for example, we take 0.2 mg/L as the
threshold. If we choose the wavelength of 479.6 nm (Band 10,
Figure 6(■)), 100 different concentrations can be distinguished, but if we
choose the wavelength of 568.16 nm (Band 43, Figure 6(●)), only 8
different concentrations can be distinguished, and the concentration
resolution drops sharply. Therefore, it is very important to select a suit-
able band for remote sensing retrieval.

3.3.2. Remote sensing sensitivity analysis of CdS in water
Figure 3(b) shows that the theoretically lowest retrievable limit of the

CdS concentration is 0.00042 mg/L at a wavelength of 571.36 nm (Band
44). In the separate ranges of 460.04–493.59 nm (Band 1–16) and
526.885–594.79 nm (Band 29–51), the lower limit concentrations were
lower than 0.001 mg/L. The lower concentration limits can vary by
several orders of magnitude from 10�4 to 10�1, indicating that the
sensitivity of the different wavelengths is also very different.

Since CdS is a granular compound, its scattering effect cannot be
ignored. Therefore, before calculating D1, we must first assess Eqs. (28)
and (29) to determine the positive or negative value of ε. Figure 7 shows
that the scattering proportion of the background water at
460.04–505.885 nm (Bands 1–21) is larger than that of heavy metals,
which is consistent with Eq. (32). The image DN value at these wave-
lengths decreases with increasing concentration and tends to 0, while the
scattering proportion of the background water at 508.42–951.54 nm
(bands 22–115) is lower than that of heavy metals, which is consistent
with Eq. (31). The image DN value at these wavelengths increases with
increasing concentration and tends to the maximum pixel value of
65535. Due to its strong backscattering, the sensor can receive this part of
the energy; therefore, it can still be used for retrieval even in the near-
infrared band, which is strongly absorbed by water. However, for
wavelengths greater than 925.52 nm (Band 112), the lower concentra-
tion limit increases rapidly, and the sensitivity decreases.

3.4. The limitations and influencing factors of this method

Applications of the D-δ(ε) model we constructed needs to consider to
the following aspects:

(1) The radiometric resolution is a physical characteristic of the
sensor. For example, the radiometric resolution of the satellite
data is reflected in the DN value, but ground spectrometers indi-
cate radiance. The mathematical form of the model will thus be
slightly different.

(2) When applied to real satellite data, atmospheric effects should be
considered and appropriate atmospheric correction models should



Figure 6. Concentration sequences Di (i ¼ 100) at 460.04 nm (Band 1), 479.6 nm (Band 10), 498.435 nm (Band 18), 518.81 nm (Band 26), 540.92 nm (Band 34),
568.16 nm (Band 43) wavelengths.

Figure 7. Scattering proportion of background water and CdS as a function of wavelength.
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be used, such as the Fast Line of sight Atmospheric Analysis of
Spectral Hypercubes (FLAASH) and Dark-Object Subtraction
(DOS). Furthermore, planetary reflectance must be converted to
surface reflectance of the Earth before application.

(3) For sensitivity analyses that need to consider multiple components
at the same time, this method can still be used because the pa-
rameters that characterize the water were set as variables when
the model is constructed. In the case of multiple components, this
is equivalent to carrying out sensitivity analyses in the water that
already contains one or several components.

(4) It is the objective of this method to solve the mathematical
analytical expression of the g function in equations (18) ~ (21).
Therefore, the water quality remote sensing model (f1) and the
atmospheric correction model (f2) should be expressed algebrai-
cally. In the case of transcendental equations, the g function in the
model can only be expressed implicitly. It is necessary to use a
numerical approximation method to estimate the transcendental
equation for conversion into an algebraic equation before
continuing to use this method.
10
4. Conclusions

The remote sensing sensitivity analysis model for heavy metals in
water (the D-δ(ε) model) developed in this study clearly reveals the
mathematical relationship between the concentration of heavy metals
retrieved from remote sensing and the radiometric resolution of the
satellite sensors. Two heavy metal compounds, CuSO4 and CdS, are taken
as examples to demonstrate the advantages of this model in the selection
of sensitive bands for remotely sensing heavy metals in water. The
research results can mitigate the doubts of the academic community
about the feasibility of this remote sensing application.

Theoretically, the model reveals a clear functional relationship be-
tween the concentration of heavy metals that can be retrieved by remote
sensing and the optical parameters of the water and the radiometric
resolution of the satellite sensors. Specifically, the lower limit of the
detectable concentration is positively correlated with the radiometric
resolution and the background value of the water optical parameters, but
is negatively correlated with the optical parameters of heavy metals. The
model is developed from these relationships and has strong universality.
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Furthermore, the model is independent of the retrieval parameter to be
subjected to the sensitivity analysis, which can be any nonheavy metal
parameter such as ammonia nitrogen, total phosphorus, and total nitro-
gen (as long as their optical parameters are measured). Additionally, the
model is also independent of the sensor type and can be used not only for
HJ-1A HSI data, such as in this study but also for Landsat images, Sentinel
2 images, ASD spectrometer measurement data, etc.

In application, the resolvable concentration of each detection band is
quantitatively given, and the lower detection limits at the different wave-
lengths are usually very different. Therefore, the model results provide a
theoretical basis for selecting sensitive bands. Sometimes, the theoretical
minimum value calculated by the model is still a relatively large value for
the heavy metal concentrations of natural water. However, we can use the
model to inversely calculate the radiometric resolution of the spectral
detection sensors based on the background heavy metal concentrations of
natural water. This provides a useful reference threshold for radiometric
resolution when designing new instruments in the future.

Therefore, the model we constructed quantitatively determines the
curve of the lowest detectable limits of heavy metal concentrations
retrieved by remote sensing methods as a function of wavelength. This
provides a strong theoretical basis for selecting sensitive bands in future
remote sensing retrieval studies. This model has important scientific
significance and application value and promotes the further development
of the field of remote sensing for the monitoring of heavy metals in water.
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