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Abstract

Trafficking of AMPA receptors is important for many forms of synaptic plasticity. However, the 

link between activity and resulting synaptic alterations is not fully understood. Here, we identified 

a direct interaction between NSF, an ATPase involved in membrane fusion events and 

stabilization of surface AMPARs, and Plk2, an activity-inducible kinase that homeostatically 

decreases excitatory synapse number and strength. Plk2 disrupted interaction of NSF with the 

GluA2 subunit of AMPARs, promoting extensive loss of surface GluA2 in rat hippocampal 

neurons, greater association of GluA2 with adapter proteins PICK1 and GRIP1, and decreased 

synaptic AMPAR current. Plk2 engagement of NSF, but not Plk2 kinase activity, was required for 

this mechanism and occurred through a novel motif within Plk2 independent from canonical polo 

box interaction sites. These data reveal that heightened synaptic activity, acting through Plk2, 

leads to homeostatic decreases in surface AMPAR expression via the direct dissociation of NSF 

from GluA2.
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Experience-dependent synaptic plasticity is often expressed by changes in synaptic content 

of AMPA receptors (AMPARs), heteromeric fast excitatory channels composed of 

combinations of GluA1–4 subunits. Accordingly, a wide variety of interacting proteins have 

been identified that affect AMPAR trafficking1. For instance, N-ethylmaleimide-sensitive 

fusion protein (NSF), a hexameric ATPase universally involved in membrane fusion 

events2, interacts specifically with GluA23-6, influencing its membrane cycling6-8. 

Interference with NSF-GluA2 binding results in rapid rundown of AMPAR-mediated 
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currents3,4,6 that occludes long-term depression (LTD)6,9,10, a major mechanism of 

synaptic weakening. Thus, NSF is important for stabilization of surface AMPARs11. 

However, the precise functions of NSF and the physiological pathways that regulate its 

binding to GluA2 are unclear.

Polo-like kinase 2 (Plk2, also called serum-inducible kinase), a member of the polo family 

of serine/threonine kinases12, is rapidly induced in brain following intense synaptic 

activity13. Newly synthesized Plk2 preferentially distributes to proximal dendrites and 

triggers degradation of the dendritic spine-promoting factor SPAR14 through a 

phosphorylation-dependent ubiquitin-proteasome pathway15,16, causing spine shrinkage 

and loss of excitatory synapses15. Furthermore, elimination of SPAR by Plk2 is critical for 

certain forms of homeostatic synaptic downscaling in response to hyperexcitation17,18. 

Thus, elevated synaptic activity induces Plk2 and leads to homeostatic negative feedback 

regulation of both synapse morphology and strength.

Here, we show that Plk2 directly interacts with NSF and causes its dissociation from GluA2, 

resulting in intracellular sequestration of GluA2 in complex with adapter proteins, reduced 

AMPAR transmission, and increased ratio of surface GluA1 to GluA2 subunits. This mode 

of regulation uniquely utilizes a kinase-independent mechanism and is mediated by a novel 

motif in Plk2 distinct from classical polo kinase substrate targeting domains. These results 

suggest the NSF-Plk2 connection comprises a homeostatic sensor to directly link synaptic 

overactivity and subsequent downregulation in synaptic strength.

Results

Plk2 target identification

We conducted an affinity chromatography screen using glutathione-S-transferase (GST) 

fused to the C-terminal half of Plk2 (Plk2c), a region containing the conserved polo box 

domain (PBD) (Fig. 1a) considered essential for polo-like kinase substrate interactions19. 

Rat brain lysates were applied to a column of GST-Plk2c or control GST. After extensive 

washing and elution, proteins recovered in GST-Plk2c eluates were subjected to mass 

spectrometry. Strikingly, this analysis identified several proteins involved in endocytosis 

(Supplementary Table 1), suggesting Plk2 may regulate postsynaptic membrane dynamics.

For target validation, we performed additional GST-Plk2c pulldowns followed by 

immunoblotting for candidate interactors. Alpha, beta, and gamma adaptins, components of 

AP1 and AP2 clathrin adapter complexes, as well as NSF, were recovered by GST-Plk2c but 

not GST (Fig. 1b). As positive controls, known Plk2-interacting proteins tubulin20 and 

SPAR15 were specifically retained by GST-Plk2c (Fig. 1b and Supplementary Fig. 1). 

Dynamin, however, bound equally well to GST and to GST-Plk2c and was not examined 

further. NSF and tubulin were largely retained even under stringent pulldown conditions 

incorporating brief treatment with the strong detergent SDS, whereas other candidate 

interactors were lost (Fig. 1b). Thus, the NSF-Plk2 interaction was specific and robust.
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NSF and Plk2 bind directly in an ATP-dependent manner

To test for direct interaction, we conducted in vitro binding assays with purified 

hexahistidine-tagged NSF (His6-NSF) and GST, GST-Plk2c, or GST fused to the GluA2 C-

terminus (GST-GluA2c). Because NSF interactions are often ATP regulated5, binding 

assays were performed in the presence of ADP, ATP or the non-hydrolyzable analog 

ATPγS. By GST-pulldown, we observed GST-Plk2c and His6-NSF bind in this completely 

defined system (Fig. 1c), indicating direct contact. Furthermore, Plk2c and NSF bound most 

strongly in the presence of ATPγS, similar to the interaction between NSF and GST-

GluA2c5 (Fig. 1c). However, neither Plk2c nor GluA2c affected NSF intrinsic ATPase 

activity (Supplementary Fig. 2).

When coexpressed in COS-7 cells, the full-length NSF and Plk2 proteins could be 

bidirectionally coimmunoprecipitated (Fig. 1d). Kinase-negative, constitutively active, and 

wild-type Plk2 bound to NSF equivalently (Fig. 1e), suggesting Plk2 kinase activity does not 

regulate this interaction. Fluorescence lifetime microscopy, a technique for reporting 

molecular proximity (<10 nm) between fluorescently tagged proteins (see Methods), also 

demonstrated significant association of Plk2 and kinase-dead Plk2 with NSF (Fig. 1f and 

Supplementary Table 2).

To analyze the interaction of endogenous NSF and Plk2, we used cultured cortical neurons 

(18–21 days in vitro (DIV)). Because basal Plk2 expression is low, we stimulated neuronal 

activity with the GABAA receptor antagonist picrotoxin (PTX, 100 μM, 24 h), shown 

previously to robustly induce Plk2 expression15,17. Following stimulation, NSF antibodies, 

but not control IgG, recovered abundant Plk2 from neuronal lysates (Fig. 1g). These results 

indicated that Plk2 and NSF strongly interacted in neurons following chronic stimulation of 

synaptic activity. Lastly, NSF and Plk2 could also be coimmunoprecipitated from rat brain 

lysate (Fig. 1h), demonstrating that native Plk2 and NSF bound in vivo.

Plk2 exchanges GluA2-bound NSF for PICK1/GRIP1

An important question was whether Plk2 regulated NSF interaction with GluA2. We first 

verified that NSF and GluA2 could be coimmunoprecipitated in both directions when 

expressed by themselves in COS-7 cells (Fig. 2a). However, coexpression of Plk2 

completely prevented NSF and GluA2 binding, with concomitant association of Plk2 with 

NSF (Fig. 2a). No binding of Plk2 was observed with GluA2 (Fig. 2a; also see 2d,e). 

Therefore, Plk2 and GluA2 bound NSF in a mutually exclusive fashion, with Plk2 being 

dominant. Interestingly, Plk2 coprecipitation with NSF was significantly enhanced with 

GluA2 coexpression (Fig. 2b), suggesting Plk2 has higher affinity for NSF prebound to 

GluA2.

To ask if Plk2 could disrupt native GluA2-NSF complexes, we infected hippocampal 

cultures (18–21 DIV) at saturating titers with Sindbis virus expressing Plk2 (Sind-Plk2) or 

control GFP (Sind-GFP). In GFP-expressing neurons, NSF coimmunoprecipitated readily 

with GluA2, but modestly with the limited pool of basal Plk2 (Fig. 2c). In contrast, NSF 

interaction with GluA2 was abolished in Sind-Plk2-infected neurons, in exchange for strong 

association with overexpressed Plk2 (Fig. 2c). Thus, Plk2 attachment to NSF efficiently 
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displaced the interaction of NSF with GluA2 in neurons. Remarkably, PTX induction of 

Plk2 also completely disrupted NSF-GluA2 interaction, while association of GluA2 and the 

adapter PICK1 markedly increased in the same stimulated cultures (Fig. 2d).

The fate of GluA2 dissociated from NSF was further probed using hippocampal cultures 

infected with Sind-Plk2 or Sind-GFP and immunoprecipitated for GluA2. Accompanying 

Plk2-induced disruption of GluA2 and NSF binding, GluA2 association was dramatically 

increased with both PICK1 and GRIP1 (Fig. 2e), adapter proteins implicated in binding 

GluA2 intracellularly10,21,22. Additionally, Plk2 significantly enhanced GluA2 serine 880 

phosphorylation (Fig. 2f), a PKC-dependent biochemical signature of PICK1 binding, 

GluA2 endocytosis, and LTD10,23 (but see24). As total GluA2 levels always remained 

constant (Fig. 2c–f), these data suggest disruption of GluA2-NSF binding by Plk2 promotes 

redistribution of GluA2 among adapter proteins and intracellular sequestration.

Plk2 reduces surface GluA2 expression via NSF

We next used surface biotinylation assays to assess the effect of Plk2 on GluA2 surface 

expression in COS-7 cells. As expected, Plk2 (or Plk2 and NSF together) caused a large 

decrease in surface levels of GluA2 (sGluA2) compared to GluA2 transfected alone (Fig. 

2g,h). The effect of Plk2 by itself on sGluA2 was likely mediated through endogenous NSF 

present in COS-7 cells. Similar results were obtained by surface immunostaining of GluA2 

expressed in HEK cells (with cotransfected Plk2 and/or NSF) using an extracellular epitope-

directed GluA2 antibody under non-permeabilizing conditions (Fig. 2i,j). Unexpectedly, 

NSF itself decreased sGluA2 in heterologous cells (Fig. 2g–j) and in NSF-overexpressing 

hippocampal neurons (Supplementary Fig. 3a), albeit less potently than Plk2, possibly due to 

excess intracellular NSF impeding GluA2 membrane trafficking to the cell surface.

To examine the effect of Plk2 on endogenous GluA2 surface expression, we infected 

primary hippocampal cultured neurons (18–21 DIV) with Sind-Plk2 and live-labeled for 

sGluA2 with N-terminal antibodies. Steady-state sGluA2 was profoundly decreased in 

secondary dendrites by Sind-Plk2 compared to Sind-GFP (Fig. 3a,c) whereas surface GluA1 

(sGluA1) levels were only modestly decreased (Fig. 3a,d). No change was observed in total 

GluA1 or GluA2 under any conditions (Fig. 3b,c,d), suggesting an alteration in receptor 

trafficking rather than metabolism. NSF levels and distribution were also unchanged 

(Supplementary Fig. 3b,c), consistent with the lack of degradation of NSF by Plk2 in COS-7 

cells and neuronal lysates. We observed an even greater effect of Plk2 on neuronal cell 

bodies that displayed virtually undetectable levels of sGluA2, whereas somatic sGluA1 

trended to a slight decrease by Plk2 that did not reach significance (Fig. 3e). Thus, Plk2 can 

specifically and potently remove all surface GluA2-containing receptors.

We previously reported that Plk2 causes synapse elimination, primarily within proximal 

dendrites15. Although the preferential effects on sGluA2 vs. sGluA1 were unlikely to be 

secondary to synapse loss, we analyzed PSD-95 puncta in Plk2-infected neurons and found 

no significant changes in secondary dendrites where we observed strong depletion of 

sGluA2 (Supplementary Fig. 4a,b). These data suggested loss of surface AMPARs with 

otherwise intact postsynaptic sites. Furthermore, we confirmed removal of PSD-95 

immunofluorescence in proximal primary dendrites due to Sind-Plk2 (Supplementary Fig. 
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4a), as previously shown15. Loss of proximal dendritic PSD-95 required Plk2 kinase 

activity, as we found significantly increased proximal PSD-95 levels with expression of 

Sind-Plk2-KN (Supplementary Fig. 4a,b), a construct known to exert dominant negative 

effects15. Surprisingly, Plk2 reduction of sGluA2 did not require kinase activity and 

occurred equally with both Plk2 and Plk2-KN (Fig. 3a,c). Thus, the actions of Plk2 on 

synapse elimination and GluA2 are mechanistically dissociable by dendritic locus and 

kinase dependence.

To ask whether endogenous Plk2 regulates sGluA2 levels, we used PTX stimulation to 

induce Plk2 expression. We observed that basal Plk2 levels as well as Plk2 induction 

displayed considerable cell-to-cell variation, likely as a function of heterogeneity of synaptic 

input in dissociated cell culture. Nevertheless, the level of sGluA2 in secondary dendrites 

was, on average, significantly decreased after PTX treatment (Fig. 4a,b). Quantifying Plk2 

expression together with sGluA2 intensity in individual neurons revealed a strong negative 

correlation (Fig. 4c), suggesting that endogenous Plk2 downregulates sGluA2 in a dose-

dependent manner. However, a ceiling effect could be seen in the flattening of the best-fit 

line for induced cultures, approaching a maximal value of ∼75% loss of sGluA2 (Fig. 4c), 

similar to values obtained with Plk2 overexpression. There was also significant but more 

modest loss of sGluA1 with PTX stimulation in secondary dendrites (Fig. 4a,b), but no 

change in total GluA2 (Fig. 4a,b) or PSD-95 (Supplementary Fig. 4c,d).

To perturb Plk2 function in this process, we developed an RNA interference (RNAi) 

construct that decreased basal Plk2 immunoreactivity in neurons and prevented Plk2 

induction by PTX, and also efficiently knocked down Plk2 expression in heterologous cells 

(Supplementary Fig. 5). In vector control-transfected neurons, sGluA2 immunofluorescence 

was again strongly reduced with PTX treatment (Fig. 4d,e). However, PTX-induced loss of 

sGluA2 was fully blocked with Plk2 knockdown (Fig. 4d,e) and restored by cotransfection 

of a Plk2 rescue construct (Fig. 4e) insensitive to the RNAi (Supplementary Fig. 5b,c). 

Combined with earlier data, we conclude that Plk2 is both necessary and sufficient for 

overexcitation-induced downregulation of sGluA2.

Decreased surface expression of GluA2 could result from impaired cell surface delivery, 

increased internalization, or both. To distinguish these possibilities, we live-labeled sGluA2 

and conducted internalization assays to analyze endocytosis of GluA2-containing AMPARs, 

as well as recycling assays to measure their rate of return to the cell surface (see Methods). 

Plk2 slightly increased the absolute rate of GluA2 internalization (Fig. 5a; at 30 min, 

GFP=10.3±2.1, Plk2=12.2±2.2; p=0.35) and decreased its recycling (Fig. 5b,c; 

GFP=40.5±4.7, Plk2=35.6±4.0, p=0.19), although neither effect was significant. However, 

these data did not account for the greatly reduced pool of available surface GluA2 and 

consequently increased pool of intracellular GluA2 in Plk2-expressing cells, as shown by 

both surface staining and biotinylation (Fig. 5a,d,e). When expressed as the ratio of 

internalized to available surface receptors, the rate of sGluA2 internalization per receptor 

was significantly increased in Sind-Plk2 infected neurons vs. Sind-GFP at all time points 

examined (Fig. 5f). Similarly, Plk2 significantly decreased the rate of sGluA2 recycling per 

available intracellular receptor (Fig. 5c). Thus, Plk2 increases the fraction of surface GluA2 

receptors undergoing endocytosis, while decreasing the fraction subsequently reinserted.

Evers et al. Page 5

Nat Neurosci. Author manuscript; available in PMC 2011 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To test the involvement of NSF in Plk2-mediated loss of sGluA2, we performed occlusion 

experiments using N-ethylmalemide (NEM), a thiol-reactive compound that inhibits NSF 

function. NEM greatly reduced sGluA2, quantitatively resembling the effect of Plk2; 

however, in Plk2-infected neurons, NEM treatment was largely occluded (Supplementary 

Fig. 6). Because NEM does not act specifically against NSF, we also used previously 

characterized peptide inhibitors of NSF (Fig. 6a–c). Pep2m contains the NSF binding site on 

the GluA2 C-terminus and inhibits NSF-GluA2 interaction, causing loss of surface 

AMPARs and rundown of AMPAR-mediated mEPSCs3,4,6,11. However, pep2m also 

blocks GluA2 binding to AP225. In contrast, pepR845A (pepRA) specifically inhibits NSF 

binding to GluA2 without affecting AP2, while control peptide pepK844A (pepKA) does 

not interfere with either NSF or AP225. As with NEM, pepRA dramatically lowered 

sGluA2, and coexpression of pepRA and Plk2 caused no further effect than Plk2 or pepRA 

alone (Fig. 6a,b); similar results were observed for pep2m (not shown; quantified in Fig. 6c). 

The pepKA control did not affect GluA2 surface expression or removal of sGluA2 by Plk2 

(Fig. 6a,b). Occlusion of the effects of Plk2 by pep2m and pepRA further supports the idea 

that Plk2 decreases sGluA2 through NSF.

NSF binds a novel Plk2 interaction motif

Based on Plk2's atypical kinase-independent regulation of sGluA2, we sought to 

characterize the NSF-Plk2 interaction in greater detail. First, we confirmed that the Plk2c C-

terminal fragment, which lacks the kinase domain but contains the PBD and is sufficient to 

bind NSF (Fig. 1a–c), caused a reduction in sGluA2 immunofluorescence intensity similar 

to full-length Plk2 (Fig. 7a,b). In contrast, Plk2c had no effect on postsynapse number, as 

suggested by unchanged PSD-95 signal (Supplementary Fig. 7). Surprisingly, mutation of a 

critical residue (W504F) required for PBD-mediated interactions19,26, including Plk2 

binding to SPAR17, failed to prevent co-immunoprecipitation with NSF from COS-7 cells 

(Fig. 7c). Furthermore, Plk2-W504F transfected into neurons decreased sGluA2 with similar 

potency to wild-type Plk2 (Fig. 7a,b). Thus, the ability of Plk2 to bind NSF and to regulate 

sGluA2 were both independent of the PBD, implying the existence of an unknown 

interaction site.

To map this putative site, we conducted deletion analysis of the NSF-binding Plk2c region 

using yeast two-hybrid (Y2H) assays. PBD primary structure consists of two homologous 

polo boxes, along with a linker region (termed PC) between the kinase domain and the PBD 

(Fig. 7d). We tested NSF interaction with various fragments of the two polo boxes, the PC 

linker, or their flanking regions. Interestingly, NSF bound a region (aa395–480) near the N-

terminal boundary of Plk2c but including neither polo box (Fig. 7di).

A series of additional deletions revealed a minimal 24-residue polypeptide of Plk2 (aa430–

453) sufficient for binding NSF (Fig. 7dii,iii). This region included no portion of the PBD 

and thus represents an entirely new polo kinase interaction site; we have termed this element 

the polo box independent (PBind) site. Alignment of Plk2 and the highly related Plk3, which 

also binds NSF (data not shown), identified two clusters of conserved residues (Fig. 7dv). 

Site-directed mutagenesis of each conserved amino acid to alanine revealed that multiple 

residues contributed to NSF interaction (Fig. 7diii,iv).
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Conversely, to explore the binding site for Plk2 on NSF, we used Y2H analysis of individual 

domains of NSF (N-domain and two homologous ATP binding domains D1 and D2) and 

discovered no single domain was sufficient for PBind interaction (Fig. 7e). Similarly, all 

NSF domains are required for binding to GluA23, suggesting the overall structure of NSF 

may be important for both Plk2 and GluA2 recognition. Additionally, we found that Plk2 

interaction was abolished by an ATP-binding mutation of NSF (K266A) but unaffected by 

an ATPase-deficient mutation (E329A) (Fig. 7e). These results suggest that ATP binding, 

but not hydrolysis, is necessary for NSF to recruit Plk2.

Plk2 binding NSF is sufficient to remove synaptic AMPARs

To confirm interaction of the minimal PBind motif with NSF, we showed that PBind fused 

to GFP could coimmunoprecipitate with NSF when coexpressed in COS-7 cells (Fig. 8a) 

and that a purified fusion protein of PBind linked to maltose binding protein (MBP-PBind) 

could pull-down native NSF from rat brain lysate (Fig. 8b). Furthermore, expression of 

GFP-PBind in cultured hippocampal neurons, but not GFP alone, fully mimicked the loss of 

sGluA2 immunofluorescence seen with intact Plk2 (Fig. 8c).

Finally, we generated a synthetic peptide comprising the PBind site (pep-pBind) to 

investigate the physiological effect of Plk2 binding NSF on synaptic AMPARs. We first 

verified via surface plasmon resonance that pep-PBind and purified His6-NSF bound 

directly, whereas a peptide with scrambled PBind sequence (pep-scr) showed no interaction 

(Fig. 8d). We then recorded synaptic AMPAR EPSCs from CA1 pyramidal neurons in acute 

hippocampal slices while electrically stimulating the Schaffer collateral input. We dialyzed 

pyramidal neurons with pep-PBind in the intracellular solution and observed a time-

dependent decrease in EPSCs to ∼57% of its initial amplitude, while pep-scr caused no 

significant change in EPSC amplitude (Fig. 8e,f). These results strongly suggest that binding 

of NSF by the PBind site of Plk2 is sufficient to disrupt NSF-GluA2 interaction and cause 

profound and rapid loss of synaptic AMPARs.

Discussion

Homeostatic synaptic plasticity is thought to be important for stabilization of neuronal firing 

within an optimal operational range despite fluctuations in network activity27, but the 

mechanisms involved are not fully understood. Here we report that direct Plk2 binding to 

NSF was sufficient to cause its dissociation from GluA2. As Plk2 did not accelerate ATP 

hydrolysis by NSF, and NSF binding to Plk2 and GluA2 appeared comparable (Fig. 1c), we 

favor a model in which Plk2 exerts an allosteric conformational change in NSF that 

dislodges GluA2. The observed potency of such a noncatalytic mechanism may be explained 

in at least two ways: first, by the increase in Plk2 affinity for NSF bound to GluA2 (Fig. 2b). 

Second, stabilization of Plk2 binding to NSF by ATPγS, reminiscent of the GluA2-NSF 

interaction, suggests ATP-dependent cycling of Plk2 attachment to NSF could allow Plk2 to 

act processively on multiple NSF-GluA2 complexes.

A consequence of disrupting NSF-GluA2 interaction was the striking loss of surface GluA2 

but not GluA1. Such preference mirrors the binding specificity of NSF for these 

subunits3-6,25, and is also consistent with the specific requirement for GluA2 in 
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homeostatic synaptic scaling28. Furthermore, we found that all surface GluA2, dendritic as 

well as somatic, was subject to removal by Plk2. These results differ from previous reports 

blocking NSF-GluA2 interaction11,25. However, our study is the first to exploit an 

endogenous mechanism to perturb NSF-GluA2, which may exhibit different properties than 

nonphysiological competitive peptides.

Because the majority of AMPARs in hippocampus consists of GluA1/2 heteromers29,30, 

nearly complete depletion of sGluA2 with minimal effect on sGluA1 could be achieved by 

delivery of GluA1/3 heteromers or homomeric GluA1 to partly compensate for lost GluA2. 

Homomeric GluA1 insertion has been previously observed in various forms of synaptic 

plasticity31-33, in response to brain injury34, and in GluA2 knockout mice29. Extensive 

loss of sGluA2 by Plk2, as detected during homeostatic plasticity, suggests that GluA2-

independent AMPAR trafficking35-37 may represent physiological mechanisms, rather than 

compensatory ones. Reduced GluA2 levels could contribute to decreased synaptic strength 

due to fewer synaptic receptors, but also increased calcium permeability, a property of 

GluA2-lacking receptors8,29,38. Both functions may be important for adaptation to 

hyperactivity; for instance, GluA2-lacking neurons undergo AMPAR internalization with 

more extensive spatial distribution37.

Plk2 caused rapid depletion of sGluA2 via heightened endocytosis and impaired receptor 

recycling, rather than degradation, since total GluA2 levels were insensitive to Plk2. These 

results unite previous reports that NSF constrains internalization7,25 but can promote 

receptor insertion39-43. NSF disassembles GluA2 from PICK144, a transport molecule that 

has also been implicated in both AMPAR endocytosis10,23,45,46 and surface delivery21. 

Our data support this dual role of NSF and PICK1 in AMPAR endocytosis/exocytosis; 

deprived of access to NSF by Plk2, GluA2 became trapped in greater complex with PICK1, 

which simultaneously promoted its endocytosis and hindered its release from intracellular 

retention. Plk2 also increased GluA2 phosphorylation at ser880, a PKC-dependent 

modification promoted by PICK110,23. Our results suggest ser880 phosphorylation 

correlates with removal of sGluA2, at least during homeostatic adaptation to overactivity, in 

contrast to a previous study that utilized primarily exogenous receptors and PKC 

stimulation24; such technical differences may explain these inconsistencies.

Interestingly, Plk2 dramatically increased GluA2 association with GRIP1 as well. 

GRIP/ABP family scaffolds have been proposed to tether AMPARs at synapses47 and 

intracellularly7,21. However, our data suggest the primary role of GRIP1 lies mainly at 

intracellular sites, although other GRIP/ABP family members may be more synaptically 

localized, possibly depending on palmitoylation state48. Because GluA2 ser880 

phosphorylation blocks GRIP binding49, our data support the existence of two pools of 

intracellular GluA2, one tethered by GRIP1 and another associated with PICK1, which may 

reflect anchored and mobile pools, respectively21. The negligible amount of GluA2 

associated with GRIP1 or PICK1 under basal conditions may explain the low level of 

AMPAR interaction of these adapters reported by some researchers50, and also suggests that 

GRIP1 and PICK1 do not constitutively retain large reserves of intracellular AMPARs until 

recruited by activity.
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Another major finding of this work is the identification of a novel mode of polo-like kinase 

function. Plk2 has previously been implicated in homeostatic downscaling following 

overactivity via a mechanism critically dependent on PBD recognition and phosphorylation-

induced degradation of SPAR17. In contrast, removal of sGluA2 by Plk2 was independent 

of both kinase activity and the classical PBD targeting domain of polo kinases. Disruption of 

NSF-GluA2 interaction, loss of sGluA2 and rapid rundown of AMPAR currents were 

caused by simple binding of NSF by the minimal 24-residue PBind region of Plk2. These 

findings uncover an additional regulatory mode that expands the repertoire by which polo-

like kinases may exert influence over binding partners.

Although Plk2 kinase activity results in loss of proximal dendritic excitatory synapses15, the 

kinase-independent mechanism described here affected sGluA2 in secondary dendrites 

where postsynapse loss was not evident. It is currently unclear what mechanisms restrict 

synapse loss mainly to proximal dendrites; we speculate that competing phosphatase activity 

may exist that is overcome only in proximal dendrites where Plk2 expression is highest. 

Regardless, it is clear that two distinct homeostatic mechanisms are governed by Plk2 which 

may support complementary functions.

We propose NSF acts as a one-way “homeostatic gate” (Supplementary Fig. 8) that corrals 

sGluA2 by continual detachment of GluA2 from PICK1, dynamically retrieving GluA2 

from endocytic zones as well as promoting its reinsertion from intracellular mobile pools. 

Activity-induced Plk2 engages and reverses this gating mechanism to allow graded 

endocytosis of sGluA2 while slowing down recycling, providing continuous homeostatic 

negative feedback in direct proportion to the level of activity recently experienced. Plk2-

NSF interactions observed under basal conditions of synaptic activity in cultured 

hippocampal neurons and in brain further suggest this kinase-independent noncatalytic 

mechanism may operate over a fairly wide dynamic range and not only during conditions of 

overstimulation.

In the event of sustained hyperactivity, the Plk2 kinase-dependent pathway may be invoked 

to target postsynaptic substrates for degradation, leading to all-or-none loss of synapses. We 

envision that such a tiered response system, perhaps in concert with other described activity-

inducible factors27, enables homeostatic negative feedback mechanisms to compensate for a 

continuum of synaptic input levels ranging from normal ongoing activity to excitotoxic 

insults.

Methods

DNA constructs

Myc or HA epitope-tagged Plk2, hyperactivating Plk2 (T236E), kinase-dead Plk2 (K108M), 

C-terminal Plk2 (aa395–682), polo domain mutant Plk2 (W504F), NSF, GluA2 and SPAR 

were expressed from pGW1-CMV. The following oligonucleotide (5′ to 3′) was inserted 

into pLL3.7 vector for Plk2-RNAi: GCATAGGGATCTCAAGCTA. For Plk2 rescue the 

following silent mutations were made (in bold) in full-length rat Plk2: 

GCATAGAGACCTCAAGCTA. For yeast-two-hybrid analysis, Plk2 fragments were 

cloned into pBHA and NSF into pGAD. Plk2 PBind was cloned into pEGFPC1 for GFP 
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fusion protein and pMAL-c2x for MBP fusion. Site-directed mutagenesis was performed 

using QuikChange Kit (Stratagene) and confirmed by DNA sequencing.

Antibodies

Rabbit Plk215 and SPAR antibodies14 have been described. The following antibodies were 

purchased commercially: mouse NSF (Calbiochem), mouse GluA2 (BD Pharmingen), 

mouse and rabbit GFP (Qbiogene and Invitrogen), goat Plk2 (SNK C-18, Santa Cruz 

Biotechnology), rabbit GluA1 (Calbiochem and Millipore), mouse PSD-95 clone K28/43 

(NeuroMab), rabbit GRIP1 (Millipore), mouse PICK1 clone L20/8 (NeuroMab), rabbit 

phospho-Ser880 GluA2 (Millipore). AlexaFluor-488, -555 and -647 (Invitrogen) were used 

as secondary antibodies.

Affinity purification

Glutathione-S-transferase (GST) fused to Plk2c (aa352–682) was purified from E. coli and 

coupled to glutathione sepharose resin. Adult rat brain lysates were applied to a GST-Plk2c-

resin column, washed extensively, and eluted. Eluates were separated on SDS-PAGE gels 

and visualized by Coomassie blue. Bands were excised in the ∼50–120kD range that 

contained most of the visible proteins, cut into slices, and digested in-gel by trypsin. 

Peptides were identified by liquid chromatography-tandem mass spectrometry.

GST-pulldown

Cells were lysed in IP buffer (50mM Tris pH 8.0, 150mM NaCl, 1% NP-40, plus pepstatin, 

leupeptin, PMSF), centrifuged to remove cell debris, and incubated 3–4 h, 4°C with 5 μg 

GST-Plk2c (or GST alone). Following wash with GST-lysis buffer (20mM Tris-Cl, pH 8.0, 

200mM NaCl, 1mM EDTA, 0.5% Nonidet P-40, 2 μg/ml aprotinin, 1 μg/ml leupeptin, 0.7 

μg/ml pepstatin and 25 μg/ml PMSF), bound proteins were analyzed by SDS-PAGE and 

immunoblotting. For SDS wash, GST-Plk2c coupled resin was incubated in 1% SDS for 1 

min, then quenched by 10-fold dilution into IP buffer.

In vitro binding and ATPase Assay

His6-NSF was purified from E. coli by disruption in lysis buffer (100mM Hepes/KOH, pH 

7.4, 500mM KCl, 5mM MgCl2, 1mM DTT, and 0.5mM ATP plus protease inhibitors), 

incubation with Ni-NTA resin, and elution by 50–500mM imidizaole gradient in binding 

buffer (20mM Hepes/KOH pH 7, 200mM KCl, 2mM β-mercaptoethanol, 10% glycerol). 

His6-NSF was then incubated with GST-Plk2c or GST-GluA2c (aa834–883), with ATP, 

ADP or ATP-γ-S (all at 2mM) in binding buffer. For ATPase assay, 1 μg His6-NSF was 

incubated in ATPase buffer (25mM Tris-HCl, pH 8.8, 100mM KCl, 0.5mM DTT, 2mM 

MgCl2, 0.6mM purified ATP, 10% glycerol) at 37°C with 10 μg of GST, GST-GluA2c, or 

GST-Plk2c. An ATPase colorimetric assay (Innova Biosciences) was used according to 

manufacturer's directions to detect formation of free phosphate and values read at 595nm.

Cell culture, Transfection, Sindbis virus infection and Picrotoxin induction

COS-7 cells were grown in DMEM (Gibco) supplemented with 10% fetal bovine serum and 

0.1% gentamicin (Invitrogen). COS-7 cells were transiently transfected with 1μg of plasmid 
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DNA using Lipofectamine 2000 (Invitrogen), expressed for 24 h and harvested in IP buffer 

(see above). Primary hippocampal neurons were prepared from day 18 rat embryos and 

maintained 18–24 DIV. All animals were used in accordance with guidelines of the 

Georgetown University Animal Care and Use Committee. Cells were plated at medium 

density (∼150 cells/mm2) on coverslips coated with poly-D-lysine (Sigma) and laminin 

(2μg/mL, Roche). Cultures were grown in Neurobasal medium (Invitrogen) supplemented 

with B27 (Invitrogen), 0.5mM glutamine and 12.5 μM glutamate. Neurons were transfected 

using calcium phosphate as described14 or Lipofectamine 2000 (Invitrogen). Transfected 

neurons were incubated for 1–2 days, 3 days for RNAi experiments. For some experiments 

picrotoxin (100μM, Tocris Bioscience) was applied to neurons for 24 h. Plk2, K108M, or 

GFP were cloned into the pSinRep5 Sindbis virus vector (Invitrogen) and replication-

defective pseudovirions produced according to the manufacturer's directions. Neurons were 

DIV18–21 at time of infection and duration of infection limited to 18–24 h, during which no 

significant toxicity could be observed.

Immunoprecipitation and immunoblotting

For immunoprecipitation, cells were lysed in IP buffer (see above), centrifuged to remove 

cell debris, and incubated ∼18 h at 4°C with 1 μg antibody. Complexes were precipitated 

with Protein A-sepharose or glutathione sepharose, as appropriate. Bound proteins were 

eluted by boiling in Laemmli sample buffer, centrifuged and the supernatants separated by 

SDS-PAGE, transferred to nitrocellulose and imaged with enhanced chemiluminescence 

(Western Lightning (Perkin Elmer) or SuperSignal West Femto (Pierce)) following HRP-

linked secondary antibody.

Immunocytochemistry

For immunolabeling of cell surface receptors, infected primary hippocampal cultured 

neurons DIV19–22 were treated with primary N-terminal specific antibody under 

nonpermeabilizing conditions, fixed, washed and treated with saturating concentrations of 

fluorescently-tagged secondary antibody. Cells were permeabilized and immunostained for 

Plk2 (or GFP) to visualize infected cells. Antibodies for immunostaining were diluted in 

conditioned media or ADB buffer (3% normal goat serum, 0.1% BSA, PBS) prior to 

permeabilization and GDB buffer (0.1% gelatin, 0.3% Triton X-100, 16mM sodium 

phosphate pH 7.4, 450mM NaCl), thereafter. For experiments with NEM, drug was applied 

for 10min at 10μM immediately before immunolabeling.

Cell Surface Biotinylation

COS-7 cells were transfected with GluA2 and combinations of NSF and Plk2 (WT or KN) 

and expressed for 24 h. Cells were washed twice with PBS, and surface proteins labeled 

with Sulfo-NHS-SS-Biotin (Pierce) (10 μl at 500 μg/ml in PBS) with gentle shaking at 4°C 

for 30 min. Cells were bathed in quenching solution (50μL, Pierce), washed twice with Tris-

buffered saline, lysed in 500 μl of IP buffer, collected and disrupted by sonication on ice. 

After 30-min incubation on ice, cell lysates were clarified by centrifugation (10,000×g, 2 

min). To isolate biotin-labeled proteins, lysates were added to immobilized NeutrAvidin TM 

Gel (50 μl) and incubated for 1 h at room temperature. Gels were washed 5 times with wash 

buffer and incubated 1 h with SDS-PAGE sample buffer including 50mM dithiothreitol. 
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Surface proteins were then analyzed by immunoblotting for GluA2. For neurons, labeling 

was performed in ice-cold ACSF for 60 min, and lysis was performed in RIPA buffer. 

Intracellular receptor pool was calculated as [(total – surface)/total receptors].

Fluorescence Lifetime Microscopy

Proximity of NSF and Plk2 was assessed by FLIM, a fluorescence resonance energy 

transfer-based technique using multiphoton microscopy. Myc-tagged NSF and HA-tagged 

Plk2 were transfected into COS-7 cells and labeled by indirect immunocytochemistry using 

mouse myc and rabbit HA antibodies, and then labeled with secondary Alexa488 anti-mouse 

(donor fluorophore) and Cy3-anti-rabbit secondary as the acceptor fluorophore. Lifetime of 

the Alexa488 donor fluorophore attached to NSF decreases due to nonradiative energy 

transfer if Cy3-Plk2 (acceptor fluorophore) is positioned within 1–10 nm of the donor. Thus, 

a decreased donor lifetime indicates proximity of the two fluorophores (and the proteins 

labeled with these fluorophores). Images of Alexa488 fluorescence lifetimes on a pixel-by-

pixel basis were acquired using a Bio-Rad Radiance 2000 multiphoton microscope, 

Ti:sapphire laser (Spectra Physics), a high-speed detector MCP R3809 (Hamamatsu), and a 

time-correlated single-photon counting acquisition board (SPC 830, Becker and Hickl 

GmbH). Images were analyzed using SPC-Image V2.8 (Becker and Hickl GmbH). Donor 

fluorophore lifetimes were fit using this software to two exponential decay curves to 

determine a fraction of the donor interacting with an acceptor. Results are presented in 

pseudocolored images representing color-coded donor lifetime on a pixel-by-pixel basis.

Internalization and recycling assay

Cultured hippocampal neurons were live labeled with 1° antibody recognizing GluA2 N-

terminus. After incubation with antibody, cells were returned to conditioned media at 37°C, 

5% CO2 for 0–30 min to allow receptor endocytosis. Cells were then fixed and remaining 

surface GluA2 labeled using saturating concentrations of 2° antibody. Following 

permeabilization, internalized receptors were labeled using a different 2° antibody. For 

recycling assays, the same procedure as above was followed except that cells were returned 

to conditioned media at 37°C, 5% CO2 for 30 min to allow for receptor internalization. 

Remaining surface-bound primary antibody was then acid stripped (0.5M NaCl and 0.2M 

acetic acid, at 4°C, 2 min). Neurons were incubated at 37°C, 5% CO2 for 1 hour with 2° 

antibody to allow for and label internalized receptors recycling back to the cell surface, or 

immediately fixed and incubated with 2° antibody to verify complete acid stripping. After 

washing, neurons were subsequently fixed and permeabilized and immunolabeled to show 

transfected cells (GFP or Plk2).

Yeast two-hybrid assay

Yeast two-hybrid analysis was conducted as described15. NSF was cloned into the prey 

vector, pGAD, and fragments of Plk2c cloned into the bait vector, pBHA. L40 yeast strain 

and beta-galactosidase reporter were used to assay for interaction of NSF and Plk2 

fragments.
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Maltose binding protein fusion purification and pull-down

Plk2 PBind was cloned into the vector pMAL-c2× (New England Biolabs), expressed in 

E.coli, and purified according to the manufacturer's directions with amylose resin and 

maltose elution. Purified MBP-PBind or MBP alone (10 μg) was added to binding buffer 

(20mM Tris pH 7.4, 150mM NaCl) with 200 μg of whole brain homogenate (extracted with 

1% deoxycholate, clarified by centrifugation at 100,000×g, and dialyzed against PBS) and 

10 μl amylose beads for 2 h at 4°C with gentle agitation. Pellets were washed 3× with 20mM 

Tris pH 7.4, 500mM NaCl and analyzed by immunoblotting against NSF as well as 

Coomassie staining for fusion proteins.

Quantification and image analysis

Images were acquired using an Axiovert 200M epifluorescnece inverted microscope (Zeiss) 

using consistent laser intensity or camera exposure levels for each fluorescent marker in 

each experiment. For image analysis and quantification, measurements were made using 

MetaMorph software (Molecular Devices). Average intensity was calculated from integrated 

intensity and area for each selected area. Secondary dendritic branches (>20μm from the cell 

body) were used for quantification except where noted.

Surface plasmon resonance (SPR)

Biacore T100 instrument was used to measure direct interaction between recombinant NSF 

protein and synthetic Plk2 peptides, pep-PBind (sequence 

SAVENKQQIGDAIRMIVRGTLGSC) and a scrambled version, pep-scr (sequence 

SGDISVKINARITVCARLQGEMQG). Biacore series S NTA sensor chip was charged with 

3 min injection of 100mM Ni2SO4. Injection of 122nM NSF protein for 4 min captured 

5842 RU ligand on flow cell 2. Ni+ charged flow cell 1 was used as reference surface. 

Peptides were injected at 1 μM concentration for 1 min. Injections were repeated 3 times. 

All injections were made at 10μl/min flow rate. HBS-P (10mM Hepes pH 7.4, 150mM 

NaCl, 0.05% P-20) buffer supplemented with 2mM ATP was used as running and dilution 

buffers.

Electrophysiology

Wistar rats 14–18 days old were anesthetized with isoflurane and decapitated in accordance 

with NIH animal care and use guidelines. Transverse hippocampal slices (400 μm) were cut 

in ice-cold artificial cerebrospinal fluid (ACSF) containing (mM): 119 NaCl, 2.5 KCl, 2.5 

CaCl2, 9 MgSO4, 1 NaH2PO4, 26.2 NaHCO3, 11 glucose equilibrated with 95% O2 and 5% 

CO2. Slices were allowed to recover for at least 1 hour in ACSF at room temperature 

(composition as above except 1.3mM MgSO4). Whole cell patch clamp somatic recordings 

were made from visually identified CA1 pyramidal neurons in the presence of 50 μM 

picrotoxin at room temperature. The whole cell solution contained (mM): 135 CsMeSO4; 8 

NaCl; 10 HEPES; 0.5 EGTA; 4 Mg-ATP; 0.3 Na-GTP; 5 QX-314 (pH 7.25), 285 mOsm. In 

addition, 100 μM of peptide was included together with 100 μM of each of the following 

protease inhibitors: bestatin, leupeptin, and pepstatin-A. EPSCs (at a holding potential of 

−70 mV) were evoked by afferent stimulation (0.1Hz) of fibers in the stratum radiatum. All 

recordings were made using a Multiclamp 700B amplifier (Axon Instruments), signals were 
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filtered at 4 kHz, digitized at 10 kHz, and analyzed on-line using pClamp 9.2 (Axon 

Instruments). EPSCs were averaged during the first and last 2 minutes of recording for 

statistical analysis.

Statistical analysis

All values were expressed as means ± SEM, unless otherwise stated. Experiments were 

performed at least in triplicate and Student's t-test used for pairwise tests of significance, and 

ANOVA with Tukey's post-hoc test for group comparisons.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Interaction of Plk2 and NSF
(a) Proteins were recovered from rat brain extracts by GST or GST-Plk2c pulldown, in the 

presence or absence of brief 1% SDS treatment, and immunoblotted as indicated. (b) 

Schematic representation of Plk2 domain structure. PBD, polo box domain. Plk2c, C-

terminal fragment used for GST pulldown. Tandem polo boxes within PBD are shown in 

gold. (c) GST pulldown assays following incubation of purified GST-Plk2c or GST-GluA2c 

with His6-NSF, in the presence of ATP, ADP or ATP-γ-S, and immunoblotted as indicated. 

(d) COS-7 cells were transfected as indicated at top of blots, and lysates immunoprecipitated 

(IP) and analyzed by immunoblotting (IB) for proteins as indicated. (e) IP and IB were 

performed on cell lysates of COS-7 cells transfected with NSF and Plk2 wild-type (WT), 

constitutively active (CA), or kinase negative (KN) as shown. (f) FLIM analysis of 

interaction between NSF and Plk2. Myc-tagged NSF and HA-tagged Plk2 were transfected 

into COS-7 cells and labeled by indirect immunocytochemistry using mouse myc and rabbit 

HA antibodies, followed by secondary Alexa488 anti-mouse (donor fluorophore) and Cy3-

anti-rabbit (acceptor fluorophore). Lifetime range shown in pseudocolor. Scale bar, 10 μm. 

(g) Interaction of endogenous NSF and Plk2. Lysates from cultured cortical neurons, 

stimulated with picrotoxin (PTX) for 24 h, were used for IP and IB as indicated. (h) Co-

immunoprecipitation of endogenous NSF and Plk2 from rat brain lysates. IP and IB were 

performed for proteins as indicated. IN, Input, 5% lysate used for IPs. MW shown in kDa. 

Full-length blots are presented in Supplementary Fig. 9.
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Figure 2. Plk2 binding disrupts NSF association with GluA2
(a, b) Lysates from COS-7 cells transfected as shown at top were analyzed by IP and IB for 

proteins as indicated. For (b), densitometry of Plk2 associated with NSF plus GluA2: 

3.45±0.34 (arbitrary units); minus GluA2: 1.57±0.15; p=0.03. (c) Lysates from cultured 

hippocampal neurons, infected for 18–20 h with Sindbis virus expressing Plk2 or GFP, were 

subjected to IP and IB as indicated. (d) Cultured hippocampal neurons were treated with 

PTX or vehicle (Veh.) for 24 h, and cell lysates used for IP and IB as indicated. (e) Lysates 

from cultured hippocampal neurons, infected for 18-20 h with Sind-Plk2 or -GFP, were 

subjected to IP and IB as indicated. Full-length blots are presented in Supplementary Fig. 9. 

All MW in kDa. IN, Input, 5% lysate used for IPs. (f) Lysates of cultured hippocampal 

neurons infected with Sind-GFP or -Plk2 for 18–20 h were immunoblotted as indicated. 

Densitometry of phospho-ser880 with GFP: 0.25±0.09 (arbitrary units); with Plk2: 

0.89±0.16; p=0.008. (g) COS-7 cells were transfected as shown at top, and cell surface 

proteins were biotin-labeled, isolated with avidin-beads, and immunoblotted for total and 

surface GluA2 (sGluA2). (h) Quantification of data in (g); surface GluA2 was normalized to 
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total GluA2, then plotted as percent of control. (i) HEK cells were transfected as indicated 

across top row. Cells were immunostained for sGluA2 (top row, red) and total GluA2 

(tGluA2, middle row, green); overlay is shown in yellow (bottom row). Scale bar, 10 μm. (j) 

Quantification of surface to total GluA2 ratio from (i). **p<0.01; ***p<0.001.

Evers et al. Page 19

Nat Neurosci. Author manuscript; available in PMC 2011 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Plk2 decreases neuronal surface GluA2
(a, b) Hippocampal cultured neurons were infected with Sind-Plk2 (WT or KN) or Sind-

GFP, as indicated at top. Immunostaining is shown for exogenous protein (green) and either 

surface GluA2, surface GluA1, total GluA2, or total GluA1 (violet) as indicated. 

Colocalization appears white in merged images (upper rows). Higher magnification views of 

representative dendrites are shown below for infected and nearby uninfected control 

neurons. Arrows indicate infected neurons. (c, d) Quantification of results from (a, b). 

Average immunofluorescence intensity for surface and total GluA2 (c) and for GluA1 (d); N 

= 40–50 neurons per condition. (e) Quantification of surface GluA2 and GluA1 

immunofluorescence intensity measured on the cell body for same neurons as above. 

***p<0.001, *p<0.05. Scale bars, 20 μm (wide view), 5 μm (magnified images).
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Figure 4. Plk2 induction is required for activity-dependent decreases in surface GluA2
(a) Immunolabeling as indicated for endogenous Plk2 and surface or total GluAs in cultured 

hippocampal neurons under basal conditions and after stimulation with picrotoxin (PTX) for 

24 h. Higher magnification views of representative dendrites are shown below. Arrows 

indicate cell body of neuron shown. (b) Quantification of data in (a). ***p<0.001, *p<0.05; 

N=25 neurons per condition. (c) Inverse correlation between Plk2 expression and surface 

GluA2 levels in individual cells under basal and PTX induced conditions. (d) Hippocampal 

neurons were transfected with pLL3.7 empty vector or Plk2 RNAi as indicated, along with 

pEGFP to mark transfected cells. Neurons were treated with PTX or vehicle (basal) and 

immunostained for GFP and sGluA2 as indicated. Arrows indicate transfected neuron cell 

body. (e) Quantification of data from (d). N=10–15 neurons per condition; ***p<0.001. 

Scale bars, 10 μm (wide view), 5 μm (magnified images).
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Figure 5. Plk2 controls GluA2 endocytosis and recycling
(a) Time-course of GluA2 internalization following 18–20 h expression of Sindbis virus-

expressed GFP or Plk2. Immunolabeling of infected neurons (GFP or Plk2) and internalized 

GluA2 or steady-state sGluA2 are indicated. Bottom, higher magnification views of 

representative dendrites for Sind-Plk2- or Sind-GFP-infected neurons. Arrows indicate 

infected neurons. Scale bars, 10 μm (wide view), 5 μm (magnified). (b) GluA2 recycling 

shown 30 min after acid strip of remaining surface labeling. Immunolabeling of infected 

cells (GFP or Plk2, top row) and recycled GluA2 (bottom row) are shown. (c) Quantification 

of (b); control with acid strip and no incubation time to allow for recycling (‘Strip’) 
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demonstrates successful stripping of remaining surface primary antibody. Ratio of recycled 

receptor to available intracellular receptor is shown by line graph on secondary axis. (d) 

Surface biotinylation of cultured hippocampal neurons. Sister cultures were infected with 

Sind-GFP, Sind-Plk2-KN, or Sind-Plk2 for 20 h and cell surface proteins were biotin-

labeled, isolated with avidin-beads, and immunoblotted for total and surface GluA2 (tGluA2 

and sGluA2), total and surface GluA1 (tGluA1 and sGluA1), and Plk2 as indicated. No Plk2 

was detected in surface fractions (not shown). Both Plk2-KN and Plk2 significantly reduced 

sGluA2. (e) Quantification of data from (d), normalized to total receptor expression in GFP 

control cells. (f) Quantification of (a) plotted as ratio of internalized to available surface 

GluA2 immunofluorescence; N=18–25 neurons per condition. **p<0.01; ***p<0.001.
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Figure 6. Plk2 effects on surface GluA2 are occluded by NSF disruption
(a) Cultured hippocampal neurons were transfected with GFP or Plk2 as indicated and 

cotransfected with pepRA to block NSF-GluA2 interaction or control peptide pepKA. Cells 

were immunolabeled as indicated for sGluA2 (violet) and for GFP or Plk2 (green). 

Colocalization appears white in merged images (upper row). Arrows indicate transfected 

cells. Higher magnification views of representative dendrites are shown below wide view 

images. Scale bars, 10 μm (wide view), 5 μm (magnified images). (b) Quantification of data 

from (a) including data from pep2m expression. N=10–15 neurons per condition; 

***p<0.001. (c) Amino acid sequences of peptides used.
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Figure 7. Plk2 binds NSF through a novel interaction motif
(a) Cultured hippocampal neurons transfected with GFP, Plk2-W504F or Plk2c as indicated 

were immunostained for sGluA2 (bottom panels, violet) and for exogenous proteins (middle 

panels, green). Colocalization appears white in merged images (upper panels). Magnified 

views of representative dendrites shown at bottom. Arrows indicate transfected neurons. 

Scale bars, 10 μm (wide), 5 μm (magnified). (b) Quantification of data from (a); N=15–20 

neurons per condition; ***p<0.001. (c) COS-7 cells transfected with NSF and/or Plk2 

W504F were used for immunoprecipitation (IP) with NSF antibodies or control IgG and 

immunoblotted (IB) as indicated. Full-length blots are presented in Supplementary Fig. 9. 

(d) Deletion analysis of Plk2c-pBHA using yeast two hybrid (Y2H) assays against pGAD-

NSF (i, ii). Strongly positive interactions, colored bars. Interaction strength is reported by X-

gal reaction time (+++, <10 min; ++, 10–45 min; +, 45–75 min; +/−, 75–120 min; −, >120 

min). Numbering represents amino acid residues. (iii, iv) Site-directed mutagenesis targeting 

conserved residues between Plk2 and Plk3 (bold red in panel v). (v) Amino acid sequence of 
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the PBind site. (e) Y2H analysis of Plk2 binding site on NSF. PBind in pBHA was tested 

against pGAD constructs of individual NSF domains (N, D1 and D2 as shown) or point 

mutations in D1 ATPase domain (K266A or E329A) in full-length NSF.

Evers et al. Page 26

Nat Neurosci. Author manuscript; available in PMC 2011 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. Plk2 binding NSF is sufficient for decreased surface GluA2
(a) Lysates of COS-7 cells expressing NSF and GFP or GFP-PBind were subjected to 

immunoprecipitation (IP) with GFP antibodies and immunoblotted (IB) as indicated. Input, 

5% of lysate for IP. Full-length blots are presented in Supplementary Fig. 9. (b) Pulldown of 

brain lysates with MBP or MBP-PBind and analyzed by IB for NSF and by Coomassie stain 

for MBP fusion proteins. Note MBP contains a 73aa polylinker C-terminal tail and therefore 

runs larger than MBP-PBind. (c) Cultured hippocampal neurons expressing GFP or GFP-

PBind as indicated were immunostained for sGluA2 (bottom, violet) and GFP or Plk2 

(middle, green). Arrows indicate transfected neurons. Colocalization appears white in 

merged images (top). Magnified views of representative dendrites at bottom. Scale bars, 10 

μm (wide view), 5 μm (magnified). Surface GluA2 immunofluorescence intensities (in 

arbitrary units) were 82.8±7.3 for GFP, 18.6±3.3 for GFP-PBind; p=4.7×10-10; N=15–20 

neurons. (d) Pep-PBind or scrambled control peptide (pep-scr) were analyzed for direct 

binding to His6-NSF by surface plasmon resonance. Averages of peak values were 89.4±7.6 

response units for pep-PBind; -1.3±1.1 for pep-scr (negative value due to slight rundown 

during the experiment); p=0.0003, N=3). (e) Normalized AMPAR EPSCs peak amplitude vs 

time (pep-PBind, N=9, point 1 vs. point 2: p=0.0001; pep-scr, N=6, point 1 vs. point 2: 

p=0.17). (f) Representative EPSCs from individual neurons recorded at indicated times in 
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the peak amplitude vs. time plot in the presence of intracellular pep-PBind (top) or pep-scr 

(bottom).
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