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Abstract: Since their identification over twenty-five years ago, the plethora of cell-penetrating
peptides (CPP) and their applications has skyrocketed. These 5 to 30 amino acid in length peptides
have the unique property of breaching the cell membrane barrier while carrying cargoes larger
than themselves into cells in an intact, functional form. CPPs can be conjugated to fluorophores,
activatable probes, radioisotopes or contrast agents for imaging tissues, such as tumors. There is no
singular mechanism for translocation of CPPs into a cell, and therefore, many CPPs are taken up
by a multitude of cell types, creating the challenge of tumor-specific translocation and hindering
clinical effectiveness. Varying strategies have been developed to combat this issue and enhance
their diagnostic potential by derivatizing CPPs for better targeting by constructing specific cell-
activated forms. These methods are currently being used to image integrin-expressing tumors, breast
cancer cells, human histiocytic lymphoma and protease-secreting fibrosarcoma cells, to name a few.
Additionally, identifying safe, effective therapeutics for malignant tumors has long been an active
area of research. CPPs can circumvent many of the complications found in treating cancer with
conventional therapeutics by targeted delivery of drugs into tumors, thereby decreasing off-target
side effects, a feat not achievable by currently employed conventional chemotherapeutics. Myriad
types of chemotherapeutics such as tyrosine kinase inhibitors, antitumor antibodies and nanoparticles
can be functionally attached to these peptides, leading to the possibility of delivering established
and novel cancer therapeutics directly to tumor tissue. While much research is needed to overcome
potential issues with these peptides, they offer a significant advancement over current mechanisms
to treat cancer. In this review, we present a brief overview of the research, leading to identification of
CPPs with a comprehensive state-of-the-art review on the role of these novel peptides in both cancer
diagnostics as well as therapeutics.

Keywords: cell-penetrating peptides; protein transduction domains; tumor imaging; targeted
therapies

1. Introduction

As so often happens in science, the discovery of cell-penetrating peptides (CPP) was a
serendipitous one. Two independent groups of researchers working on the human immun-
odeficiency virus (HIV) viral coat Trans-activator of Transcription (Tat) protein observed
the protein’s ability to cross cell membrane barriers without any transfection reagents [1,2].
Similarly, the homeobox Antennapedia (Antp) transcription factor of Drosophila melanogaster
was demonstrated to enter nerve cells in a receptor-independent manner, where it could
then regulate neural morphogenesis [3]. Further mapping studies of the domains within Tat
and Antp responsible for the observed transduction led to the identification of the first two
CPPS: the 11 amino acid cationic, arginine- and lysine-rich domain of Tat protein (YGRKKR-
RQRRR) [4] and the 16 amino acid sequence from the third helix of the Antennapedia
domain (RQIKIWFQNRRMKWKK) termed Antp, also known as penetratin [5]. The next
big development in the field of CPPs came with the demonstration of Tat peptide’s ability
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to cross cell membrane barriers while carrying cargo many times its size in a functional
form [6]. Since this initial description, the plethora of CPPs has expanded exponentially.
Although the first two CPPs identified were non-cell specific, researchers have utilized
phage-display methodologies to identify multiple tissue-specific peptides. Phage display
was a technique developed by Smith in 1985 [7], and for which he subsequently received
the Nobel prize for chemistry in 2018 [8]. The technique of phage display was initially
utilized to identify NRG and RGD motifs targeting tumor cells, and the utility of these
peptides in delivering chemotherapeutic agents specifically to tumor vasculature was
demonstrated [9]. Phage display has also been used to identify peptides targeting vascular
endothelium [10], synovial tissue [11], dendritic cells [12], pancreatic islet cells [13] and
cardiac myocytes [14]. Additionally, this list continues to grow every year. Hence, no
one review article can do full justice to the entire breadth of CPPs, tissue and non-tissue
selective, their myriad cargoes, and the number of disease conditions being tackled using
them. Therefore, out of necessity, this review will be limited to tumor-homing CPPs, and
utility of these in tumor imaging and tumor-specific therapeutics. Interested readers are
referred to several recent comprehensive reviews on other uses of CPPs [15,16].

2. Cell-Penetrating Peptides as Tumor Imaging Agents

CPPs are a promising tool for tumor imaging due to their high binding affinity, small
size, specific uptake, high stability, rapid clearance from non-specific targets, and retention
in specific targets [17–21]. They can be conjugated to radioisotopes, fluorophore-labeled
or activatable probes, nanoparticles (NPs), polymers, quantum dots, metal chelates, and
other contrast agents in order to image tumors [22–27]. CPPs are able to carry, transport,
and deliver these imaging agents, providing the imaging cargo with intracellular access
and functionality. Since every CPP is different and has varying chemical properties due to
differences in their amino acid sequence, each faces its own challenges. An additional layer
of complexity comes from the cargo it carries as that too can affect the chemical properties.
Therefore, it is always important to assess the short comings of each CPP individually and
when loaded with its cargo [28,29]. Some challenges to using CPPs for tumor imaging
include serum stability, immunogenicity, cytotoxicity, and endosomal entrapment [30,31].
There is also no singular mechanism for translocation of CPPs into a cell, and therefore many
CPPs are taken up by a multitude of cell types, creating the challenge of tumor-specific
translocation and hindering clinical effectiveness [32]. Various strategies are currently
being developed to combat these issues and enhance tumor diagnostic imaging. Some
examples include selecting CPPs for their targeting abilities or labeling CPPs with specific
cell-activated constructs [33,34]. One of the strategies is to select CPPs to image cancer
tissues by taking advantage of overexpression of integrins by tumors, as seen in breast
cancer, human histiocytic lymphoma U937, HT-1080 human fibrosarcoma cells, and SCC-7
tumors, to name a few [35–37].

Non-tumor-targeting CPPs have nevertheless been used for imaging tumors. Al-
though Tat cannot specifically target tumors, its stability in vivo and rapid translocation
across cell membranes show promising abilities as peptide chelates and fluorophore con-
jugates to serve as imaging agents (Figure 1). One study labeled the Tat peptide with
technetium-99m (99mTc), one of the most common radioisotopes for medical imaging. The
peptide was synthesized using two functional domains, the first being the non-cell-specific,
membrane permeant portion of the Tat protein (Tat peptide), and the second domain using
a peptide-based chelator for 99mTc (ε-KGC). The [99mTc]-Tat-peptide combination was im-
aged in mice using a gamma scintillation camera and, as expected, showed whole-body
distribution [38]. Another study also used non-specific CPPs labeled with fluorophores
instead of isotopes. The CPPs studied consisted of Tat, penetratin (Pen), or octa-arginine
L-enantiomer (R8). Each CPP was synthesized with a cysteine or glycyl cysteine amide
and labeled with Alexa660 at the C-terminus, injected into HeLa xenografted into nude
mice and imaged using an IVIS Spectrum System. The accumulation of R8 in tumors was
significantly higher than all other CPPs. Since the number of arginine residues affects
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internalization efficiency, and D-enantiomers decrease degradation by proteases, the L- and
D-forms of the oligoarginines (2, 8, 12, and 16 mers) were repeated. The results showed the
D-isoform of R8 as having the highest accumulation in tumors. This study not only high-
lights CPPs as promising agents for tumor imaging, but also demonstrates how changes in
peptide amino acid sequence and configuration can affect their physicochemical properties,
leading to a CPP better suited to the task of imaging [39].
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Figure 1. (A) CPP + imaging agent directly combines a specific or non-specific CPP with an imaging
agent via a linker and/or conjugation. (B) Dual targeting combines a CPP with another target-specific
component, such as a nanoparticle, via a linker and/or conjugation. An imaging agent can then be
linked to the combination or embedded within a nanoparticle. (C) Dual-modality imaging combines
a CPP with two imaging agents, allowing for different imaging methods. In this case, the imaging
agents are attached via a linker and embedded within a nanoparticle. (D) Activatable targeting
combines CPP and an imaging agent with a MMP2/9-cleavable linker and quencher for the imaging
agent. The CPP can only be imaged when MMP2/9 are present to cleave off the quencher.

A separate strategy to enhance tumor targeting is by dual targeting. In this method, the
CPP is conjugated with another agent to increase its targeting ability (Figure 1). Huang et al.
synthesized linear RGERPPR (RGE) and cyclic-peptide CRGDRGPDC (cRGD) due to their
demonstrated higher affinity for multiple tumor cell lines. The linear RGE and cRGD were
conjugated to a lipid carrier in order to enhance cell uptake and tumor targeting. The lipid
carrier was embedded with the fluorescent dye DiR for tumor imaging. MDA-MB-231
breast tumor xenograft mouse models were injected with the conjugate and imaged using
a near-infrared fluorescence imaging system. The linear RGE conjugate showed the highest
uptake and retention in tumors, making RGE and the CPP-NP combination promising tools
for tumor imaging [40]. Another study used the CPP and NP dual targeting combination
to target tumor cells, but with the addition of another imaging agent for dual-modality
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imaging (Figure 1) (photoacoustic (PA) and MRI imaging). In this study, the CPP, F3
peptide, and NP, poly(lactic-co-glycolic acid) (PLGA), were used for their cell targeting and
penetrating abilities, respectively. The sonosensitizer, methylene blue, was embedded in
Gd-DTPA-BMA-linked-PLGA to combine the new imaging modality, PA, with the current
clinical imaging modality MRI. MDA-MB-231 tumor-bearing mice were injected with
the synthesized F3-PLGA@MB/Gd NP and evaluated using dual-imaging. The results
showed that F3-PLGA@MB/Gd NP had the highest concentration in tumors compared to
the non-targeted groups in both PA and MRI, most notably at 6 h post-injection. Again,
this study highlights a promising CPP (F3) and CPP-NP combination for tumor imaging,
demonstrating that there are multiple variations of CPPs and combinations that can be
used to advance tumor imaging [41].

Another strategy to enhance tumor imaging is via use of activatable CPPs (ACPPs).
In this method, the CPP contains a region which can penetrate cells and carry cargo
(polycation), a region which can target metalloproteases-2 (MMP-2) and MMP-9 (protease-
cleavable linker), and a region which quenches the function of the cell-penetrating region
(polyanion). When activated by MMP-2 and MMP-9, the neutralizing region is cleaved
and the CPP can enter the cell (Figure 1). Since MMP-2 and MMP-9 are over expressed in
many cancer lines, the hypothesis was that ACPPs will preferentially target tumors over
non-tumor tissues. A recent study used an ACPP labeled with Cy5 to target and image
colorectal cancer. In vivo and ex vivo fluorescent imaging was performed using an IVIS
imaging system in HCT-116 xenograft nude mice. The results showed that ACPP-Cy5
accumulated in tumors, and liver metastases, making it a promising imaging agent for
detecting tumors as well as metastases [42]. Specific cargo can also be attached to ACPPs
to enhance tumor targeting and imaging abilities. Macromolecules can increase circulation
time and tumor uptake, decrease background noise through less glomerular and synovial
filtration, amplify the amount of imaging agent on a single peptide, decrease toxicity, and
allow for multimodality imaging. Olson et al. conjugated polyamidoamine dendrimer to
the polycationic domain of an ACPP. Using Cy5 and Gd chelates allowed for dual labeling
of the ACPP dendrimer combination for fluorescent and MRI imaging in tumor-bearing
mice. The results showed better uptake and tumor specificity than previously reported
results, once again illustrating the myriad ways in which CPPs can be altered and combined
to improve tumor imaging [43].

3. Cell-Penetrating Peptides as Vectors for Targeted Drug Delivery to Tumors

Cancer is a leading cause of mortality globally, second only to cardiovascular dis-
eases [44]. In 2017, cancer claimed the lives of nearly 10 million people worldwide [44]. As
the average life expectancy, standard of living and access to healthcare increase, people are
living longer lives, with consequently a shift in mortality rates from infectious diseases [45]
to a rise in cancer-related mortality that is predicted to increase globally over the com-
ing decades. Despite advancements in oncological research and medicine, conventional
chemotherapeutics still have many limitations and deficiencies. One example is doxoru-
bicin, a common chemotherapeutic agent, which suffers from poor tumor penetrance [46].
This poor penetration translates into deeper areas of the tumor not receiving adequate
drug concentrations allowing cancer cells to remain viable and continue to mutate and
proliferate [46]. A second issue is the high interstitial pressure present in tumors which
blocks efficient delivery of drugs through transcapillary transport [47,48]. This elevated
interstitial pressure causes a radially outward pressure away from the tumor, making
access by chemotherapeutics through simple diffusion challenging [48]. Another issue is
development of tumor resistance to chemotherapy over time [49], the mechanism of which
is not well understood, but is thought to involve cancer stem cells playing a role, leading to
tumor relapses [50]. Another issue with modern cancer drugs are the large doses needed
due to lack of targeting specificity [51,52], which contributes substantially to toxicity and
side effects, making chemotherapy poorly tolerated by patients [53].
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Cell-penetrating peptides have shown great preclinical and clinical evidence over-
coming many of the shortfalls of conventional chemotherapeutics. Multiple drugs have
been attached to cell-penetrating peptides in preclinical research in an attempt to target
tumors. Five classes in particular have shown great promise: conventional chemothera-
peutics, pro-apoptotic peptides/proteins, NP formulated peptides, antitumor antibodies
and siRNA. Co-administration of a cell-penetrating peptide with a tumor-targeting drug
allowed the drug to penetrate into tumor’s extravascular space in a tumor-specific and
neuropilin-1-dependent manner [54]. Interestingly enough, peptide coadministration with
a wide variety of tumor-targeting drugs, such as small molecule chemotherapeutics, NPs,
and monoclonal antibodies, have all had their therapeutic indices increased as a result
of this coadministration [54–56]. Thus, the increased tissue permeability seen with these
tumor-targeting drugs co-administered with cell-penetrating peptides is a viable strategy
for overcoming the poor penetration of currently available chemotherapeutics.

Another promising area of development in cell-penetrating peptides is their apparent
ability to overcome drug resistance issues previously seen with modern anticancer drugs.
iRGD is a cyclic 9 amino acid residue peptide that was identified using in vivo screening of
phage display libraries in mice with tumors [54]. This peptide has unique tumor-homing
abilities that has led it to be a candidate for antitumor drug delivery [54]. In one study, the
peptide iRGD was administered with nab-paclitaxel, an albumin-bound form of paclitaxel,
leading to effective treatment of a previously resistant breast cancer xenograft [54]. While an
exact mechanism by which CPP co-administration reduces drug resistance is unknown, it is
hypothesized that co-administration could result in drugs entering via endocytosis rather
than by classical mechanisms through the cell membrane, resulting in a greater amount
of cellular uptake of the chemotherapeutic [49,57]. Furthermore, due to the excellent
targeting and transduction of drugs attached to CPPs, a lower systemic drug dose can be
used so that the body’s natural mechanisms that induce resistance are less of a factor [58].
Modern anticancer chemotherapeutics lack targeting specificity, which often results in
side effects such as nausea, insomnia, bone marrow depression, fatigue, weakness, and
many other adverse effects [59]. All malignant tumor masses contain certain molecular
markers that are not expressed in normal cells or are expressed at significantly lower
rates [60]. Receptors such as IL-11Rα, GRP78, EphA5 have been found to be differentially
overexpressed in tumor cells and thus make attractive candidates for targeting [61,62].
By coupling an anticancer drug to a targeting ligand for these receptors, the drug can
effectively accumulate in the tumor, leading to greater therapeutic effect and fewer side
effects [60,62].

Remarkably, recent research suggests that drug delivery with cell-penetrating peptides
may also occur via a second general mechanism known as the bystander effect [63]. This
pathway allows for co-administration of a drug payload without the drug actually being
covalently attached to the cell-penetrating peptide [63]. The pathway involved in this
bystander effect is known as the C-end Rule (CendR) pathway, which is an endocytic
transport pathway related to but distinct from micropinocytosis [63]. iRGD has been
shown to be the peptide that activates this pathway [63]. This peptide binds to a tumor-
specific receptor, after which it is proteolytically cleaved and then binds to a second
receptor, neuropilin-1, resulting in activation of the CendR pathway [63]. The endocytic
vesicles that are formed in the CendR pathway are large and can contain and hence
transport a large amount of extracellular fluid [63], including chemotherapeutic drugs
present in the interstitium. This phenomenon of the CendR pathway explains why certain
peptides can transport drug payloads that are simply co-administered with the peptide
and not necessarily covalently attached to the peptide. Many preclinical trials have utilized
iRGD and the CendR pathways to deliver anticancer drugs. In one study, a wide variety
of anticancer drugs were co-administered with iRGD and all saw an increase in their
therapeutic indices [54]. In another study, the anticancer effects of gemcitabine were
enhanced in a murine pancreatic cancer model that overexpressed neuropilin-1 when
co-administered with Irgd [64]. Similar results have been seen in studies examining gastric
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cancers and hepatocellular carcinoma [65,66]. These successful preclinical trials that co-
administered anticancer drugs with iRGD validate the CendR pathway and provide a basis
for future clinical research.

Conventional chemotherapeutics have shown promise when attached to cell-penetrating
peptides. Paclitaxel is a widely used chemotherapeutic. Paclitaxel can stop mitosis and
cause cell death by binding to microtubules [67]. As mentioned earlier, many conventional
chemotherapeutics, such as paclitaxel, have issues such as poor solubility, toxicity and
acquired resistance. Conjugating paclitaxel to various cell-penetrating peptides has proven
to be advantageous in minimizing these negative aspects and maximizing therapeutic
effects [68–71]. Of particular interest is the recent work in attaching octa-arginine to the
C2′ position of paclitaxel via a disulfide linker [70,71]. When attached to octa-arginine,
paclitaxel was able to overcome drug resistance, and increase solubility [70,71]. In mice
with ovarian cancer the octa-arginine-paclitaxel conjugate had a 4.8-fold higher therapeutic
response compared with paclitaxel alone [71]. Another commonly used chemotherapeutic,
doxorubicin, has also shown promising results when attached to a CPP. Doxorubicin is a
topoisomerase II inhibitor that has been used clinically to treat many types of cancer [72],
but faces many of the same issues as paclitaxel. Doxorubicin has an intrinsic P-glycoprotein
overexpression, which makes it particularly difficult to obtain effective therapeutic tumoral
concentrations and can cause resistance [73,74]. In one study, a Tat–doxorubicin conju-
gate was designed and administered to resistant KB-V1 tumor cells. The results showed
86% of tumor cell cytotoxicity with the Tat–doxorubicin conjugate versus only 14% with
doxorubicin alone [75].

Pro-apoptotic proteins have also shown preclinical promise when attached to CPPs
particularly p53 [76–78]. 11 poly-arginine peptides (11R) have also been shown to suppress
the proliferation of oral cancer [76]. The conjugate 11R–p53 suppressed activity of the
p21/WAF promoter thus stopping the proliferation of cancer cells [76]. Further studies have
shown that linking the polyarginine-p53 fusion protein to the NH2-terminal of a modified
influenza virus subunit was able to inhibit the proliferation of bladder cancer [77,78]. Thus,
p53 as a pro-apoptotic protein has shown great promise when attached to CPPs, leading to
halting proliferation of many different types of cancer cells.

Monoclonal antibodies have long been used in medicine particularly in immunother-
apy. However, one of the main concerns with using monoclonal antibodies in oncology
has been the issues with cell penetration due to their large size (150 kDa) [79]. By at-
taching these antitumor antibodies to CPPs, studies have shown promise in overcoming
this cell membrane barrier. The cell-penetrating antibody 3E10 recognizes and physically
binds to the N-terminus of RAD51 subsequently sequestering it in the cytoplasm and
preventing it from binding to DNA and causing damage leading to cancer [79]. Another
cell-penetrating antibody, RT11, has been shown to be internalized and selectively bind to
activated GTP-bound form of oncogenic Ras mutants which blocks downstream signaling
of these mutants and prevents the proliferation of tumor cells [80]. Other research has
shown great promise in designing cell-penetrating antibodies with high cell-specificity
and high endosomal escape efficacy such as epCT65 which has great potential for medical
applications such as cystolic delivery of drug payloads to tumors [80]. There are currently
12 FDA-approved antibodies used for treating cancer and despite their promise in preclini-
cal research when attached to CPP, there are still issues with them such as solubility and
intracellular stability [78].

Antibodies formulated with CPPs into NPs are another promising strategy since they
have increased solubility and intracellular stability compared to antibodies alone [79,81].
CapG is part of the actin filament, often overexpressed in breast cancer, and is believed
to play a role in tumor cell metastasis [82]. Attaching a nanoparticle that works against
CapG to various CPPs has been shown to be an effective strategy in reducing breast cancer
metastasis [81,82]. More recent research suggests that just the presence of NPs in addition
to a CPP and antitumor drug enhances the effect of the latter [83]. One study showed
that the delivery of a pro-apoptotic drug as part of a NP-CPP system increased antitumor
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activity by a factor of 100–300 [83]. This system has shown incredible promise in treating
glioblastoma in preclinical research [83]. Interestingly enough, attaching the CPP iRGD to
NPs increased its antimetastatic activity as compared to when it is just used as a soluble
peptide [78,84].

Small interfering RNA (siRNA) are non-coding RNAs that stop the expression of
certain genes by degrading mRNA created during translation. This ultimately prevents ri-
bosomes from translating the mRNAs into functional proteins [85–89]. SiRNAs have shown
great potential at treating cancer, but their adaption in clinical settings has been slow due to
a lack of safe and effective vehicle for delivery [85]. SiRNAs are intrinsically susceptible to
degradation by enzymes, endosomal entrapment and poor cellular uptake [85–89]. Various
types of delivery vehicles have been tested to deliver siRNA such as lipids, cationic poly-
mers, inorganic materials and many others; however, synthetic polypeptides were shown
to be the most effective [85]. CPPs have shown promise in preclinical research as safe and
effective vehicles for siRNA to target tumors. Many peptides, such as CPP33, gh625, PD-L1,
and PEG-SS-PEI, have been used in combination with siRNA to target various forms of
cancer to great success in animal models [85–89]. Not only did these peptides coupled to
siRNA increase the ability to enter tumor cells, but they helped aid in endosomal escape of
the siRNAs once they were internalized into cells [85–89]. CPP33 loaded with siPLK1 (an
siRNA to target A549 lung cancer cells) exhibited additional endosomal escape but also
prolonged blood circulation, enhanced tumor accumulation and effective suppression of
tumor growth [85]. Additionally, coupling siRNA to cell-penetrating peptides reduced the
concentration of siRNA required to achieve reduction in tumor size [88]. These CPPs with
their siRNA payloads have shown enhanced antitumor effects in multiple types of cancer
in mice including lung, breast and liver cancers [85–89]. Thus, conjugating siRNAs to CPPs
offers another promising avenue in clinical research for the overall treatment of cancer.

4. Clinical Trials Using CPPs as Cancer Therapeutics

The authors currently know of ten clinical trials involving CPPs to treat cancer. This
number is expected to increase as additional advancements are made in the arena of
targeted cancer therapeutics. Of the ten clinical trials discussed in the table below (Table 1),
six have completed at least Phase 1a and are continuing onto Phase 1b and Phase 2; the other
four are in the process of recruiting and completing Phase 1. Aileron therapeutics appear to
be a leader in innovation with their ALRN-6924 peptide that is being successfully employed
in half of the clinical studies discussed below. ALRN-6924 is a CPP that disrupts interaction
between p53 tumor suppressor protein and its inhibitors MDMX and MDM2 [90–94]. This
peptide has been tested alone for safety and efficacy as well as combined to many anticancer
drugs such as cytarabine, paclitaxel and topotecan [90–94]. Phase 1 clinical trials have
shown that ALRN-6924 alone and in combination is safe and increases the therapeutic
index of the covalently attached drugs [90–94]. ALRN-6924 is currently being employed in
two clinical trials that are in Phase 2 and have shown promising results in cancer treatment
including pediatric cases [93,94]. Another peptide currently in clinical trial is BT1718,
designed to target and inhibit the function of MT1-MMP by recognizing and attaching itself
to the MT1-MMP protein [95]. Once it is attached it is internalized into cancer cells [95].
P28 is another CPP being evaluated currently in two cancer clinical trials. It is derived from
azurin and targets solid tumors that resist standard methods of treatment [96,97]. Both of
these trials have completed Phase 1 and look promising at treating solid tumors resistant
to conventional chemotherapeutics. PEP-010 is another peptide about to begin enrollment
into a Phase I trial to assess its safety profile [98].



Pharmaceutics 2021, 13, 890 8 of 13

Table 1. Summary of various clinical trials utilizing CPPs in anticancer therapies.

Sponsor ClinicalTrials.gov
Identifier Study Stage CPP Employed Cancer Targeted Drug Employed

with CPP
Study
Size

Aileron
Therapeutics

[90]
NCT02264613

Phase
1—Completed

Phase
2a—Completed

ALRN-6924

Solid tumor,
lymphoma, and
peripheral T-cell

lymphoma

ALRN-6924—
alone and in
combination

withpalbociclib

149

Aileron
Therapeutics

[91]
NCT02909972 Phase

1—Completed ALRN-6924

Acute myeloid
leukemia, and

advanced
myelodysplastic

syndrome

ALRN-6924—
alone and in

combination with
cytarabine

55

Aileron
Therapeutics

[92]
NCT03725436 Phase 1 ALRN-6924

Advanced,
metastatic or

unresectable solid
tumors

ALRN-6924—in
combination with

paclitaxel
45

Aileron
Therapeutics

[93]
NCT03654716 Phase 1 ALRN-6924

Pediatric
leukemia,

pediatric brain
tumor, pediatric

solid tumor,
pediatric

lymphoma

ALRN-6924—
alone or in

combination with
cytarabine for
patients with

leukemia

69

Aileron
Therapeutics

[94]
NCT04022876

Phase
1a—Completed

Phase 1b
Phase 2

ALRN-6924 Small cell lung
cancer

Phase
1b—ALRN-6924
with topotecan

Phase 2—topotecan
alone and in

combination with
ALRN-6924

120

Cancer
Research UK

[95]
NCT03486730 Phase 1

Phase 2 BT1718

Advanced solid
tumors,

non-small cell
lung cancer,

non-small cell
lung sarcoma,

and esophageal
cancer

BT1718—alone 130

CDG
Therapeutics
and Dr. Tapas
K. Das Gupta

[96]

NCT00914914 Phase
1—Completed P28 Refractory solid

tumors P28—alone 15

Pediatric Brain
Tumor Consor-
tium/National
Cancer Institute

(NCI) [97]

NCT01975116 Phase
1—Completed P28

Recurrent or
progressive

central nervous
system tumors

P28—alone 18

Institut Curie
[98] NCT04733027 Phase 1 PEP-010 Metastatic solid

tumor cancer

PEP-010—alone
PEP-010—in

combination with
paclitaxel

56

Amal
Therapeutics

[99]
NCT04046445

Phase
1a—Completed

Phase 1b
ATP128 Stage IV

colorectal cancer

ATP128—alone and
in combination
with BI 754091

32

5. Summary

Since their identification nearly twenty-five years ago, the number and applications
of CPPs, both in the arena of tumor diagnostics and therapeutics, continue to grow at a
brisk pace. Combining them as novel vectors for targeted delivery of both established and
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emerging therapeutics has the potential to reduce drug doses, decrease tumor resistance
and reduce off-target adverse effects that so often limit dosage of chemotherapeutics, as
well as adversely affect patient quality of life. While the future of CPPs in medicine is
promising, there are still many issues and challenges that need to be addressed to make
their future in medicine feasible. One such challenge will be endosomal entrapment of
the peptides; this could potentially be overcome by conjugating drugs or peptides to a
peptide that causes endosomal lysis. Another issue to overcome is the human body’s
natural immune response and the body’s generation of antibodies that target antitumor
drugs. This could be overcome by delivering immunosuppressants with the peptide–drug
combination, or finding ways to locally administer the conjugate. Finding a way to deliver
peptides successfully to specific organelles within specific types of cells is another challenge.
While CPPs have shown promise at delivering cargo to specific cell types, there needs
to be more work on targeting specific organelles. One possible solution to this is to add
organelle localization sequences to peptides as well as adding endosome-lytic peptides.
Finally, proteases are also a concern as they could break down the peptide. This could be
overcome by using the D-enantiomers of the amino acid forming the peptide or protecting
the CPPs in liposomal or nanoparticle formulations. All of this goes to show that CPPs
have immense potential in both cancer diagnostic and therapeutic applications; however,
further research is needed for them to become truly efficacious in the field of oncology.
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