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Abstract: Environmental sustainability is driving an intense search for “green materials”. Biobased
plastics have emerged as a promising alternative. Their building blocks can now be obtained
from diverse biomass, by-products, and organic residues due to the advances in biorefineries and
bioprocessing technologies, decreasing the demand for fossil fuel resources and carbon footprint.
Novel biobased polymers with high added value and improved properties and functionalities have
been developed to apply diverse economic sectors. However, the real opportunities and risks
of such novel biobased plastic solutions have raised scientific and public awareness. This paper
provides a critical review on the recent advances in biobased polymers chemistry and emerging
(bio)technologies that underpin their production and discusses the potential for biodegradation,
recycling, environmental safety, and toxicity of these biobased solutions.
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1. Introduction

Since the introduction of plastics into the markets, their role in the world economy
has grown immensely, now being omnipresent in several sectors, including construction,
agriculture, medicine, and many others [1]. Diversity, malleability, durability, and a
high degree of personalization are among plastics’ best qualities, leading the dependence
upon these materials to naturally increase throughout the last century. This preference,
together with the growth in population during this period, has led to massive production of
these materials, resulting in equally huge waste generation and greenhouse gas emissions
(GHG) [2,3]. In 2019, plastics production accounted for 10% of the global fossil feedstocks
and reached a global production of approximately 370 million tons (Mt) [4,5]. A global
generation of 150 Mt of post-consumer plastic waste and an emission of 390 Mt of CO2 were
estimated in a World Economic Forum report for the year 2012 alone, and it should be noted
that since then, plastic production has steadily increased [6]. If plastic usage continues at
such a rate, plastics are expected to account for 20% of total fossil oil consumption and
15% of the total carbon budget, compared to approximately 1% at the time of writing that
report. These numbers can be aggravated if we consider pandemic scenarios without
implementing sustainable solutions [7].

Waste management infrastructures are still failing to cope with the waste generated
from the continuous production and consumption of plastics, contributing to intensive
loads of plastic waste ending up improperly managed [4]. Ideally, the plastics economy
should be circularized to reduce plastic pollution worldwide; however, a significant share
of plastic waste (around 79%) end up in landfills or improperly discarded in natural
environments [1,8]. There, they can persist for hundreds to thousands of years, threatening
animal and human health and affecting the balance of ecosystems [9,10].
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To solve these shortcomings and reduce the plastic economy’s strain in the areas
of environmental pollution and climate change, the modern plastics economy must be
converted into a sustainable, circular framework [11]. Such a transition was prioritized
by the United Nations in their 2030 Agenda for Sustainable Development, with goals
such as 11 to 14 highlighting the need for the widespread implementation of measures to
increase balance and sustainability in resource exploration and waste generation, and the
importance of said measures for both environmental issues, such as ecosystem pollution
and climate change, and societal issues, such as social cohesion and precarity, which
can draw heavily from the former [12]. Several advances have been made, for example,
in plastics recycling, with new technologies increasing the amount of plastic types that
can be reconverted. Still, perhaps the most promising of these advances are biobased
plastics [13,14]. However, focusing only on the fact that this next generation of “green”
plastics can be produced free from fossil fuel intervention might be mistaking the forest
for the trees, perhaps conveniently ignoring (in a purely market-oriented perspective) the
issues of plastic recycling and reconversion, which are vital for the circularization of the
plastics market, as well as those of environmental friendliness, to promote the marketable
idea that these “green” polymers are the solution to humanity’s plastics woes [15].

This critical review is focused on the recent advances in biobased polymers chem-
istry and emerging (bio)technologies that underpin their production, addressing their
opportunities and challenges when envisioning a sustainable and circular economy. It
also discusses the potential biodegradation, environmental safety, and toxicity of these
biobased solutions.

2. Plastic Pollution: A Social, Economic, and Environmental Problem

Since the 1950s, the volume of produced plastics has increased dramatically, from 2 Mt
per year to 370 Mt in 2019, an over 190-fold increase that dwarfs the roughly tripling of
the human population in the same timeframe [1,16]. Meanwhile, only 600 Mt of all the
estimated virgin plastics produced ended up being recycled, with the vast majority being
landfilled instead [1]. Plastic waste processing infrastructures worldwide have, therefore,
proven incapable of adequately dealing with the sheer amount of incoming residual
plastics, courtesy of today’s largely linear plastics economy, which emphasizes continuous
production of new plastic over reconversion of used materials. On the other hand, even
if the infrastructure in place could deal with the entirety of the incoming waste volume,
the ability to recycle the plastics would be limited by the available methods of sorting and
recyclability, which limit yields and, consequently, economic attractiveness. For instance,
the different melting and glass transition temperatures of biobased PLA (Polylactic Acid)
and fuel-based PET (Polyethylene Terephthalate) can interfere with drying and processing
steps, resulting in lower-quality recycled PET [17,18]. Considering the economic point of
view, it is also essential to keep in mind that failure to recycle plastics costs EUR 105 billion
in the EU alone [19]. As such, this is a problem with multiple fronts beyond just the
scientific, with economic, political, and social factors that must be dealt with to curb plastic
pollution and the contamination of the ecosystems and food stocks, helping to minimize
financial losses while at it.

In addition, it is vital to encompass other regions’ socioeconomic contexts to mini-
mize plastic pollution and leakage. The EU is one of the richest areas of the world, but
pales, population-wise, compared to the current developing regions, such as Brazil (over
212 million) and India (over 1380 million), put together [20]. In addition, whereas European
citizens might be more economically comfortable and aware of plastics’ environmental
footprint, developing regions are busy playing catch-up socioeconomically and thus less
capable of implementing the sweeping reforms and infrastructure needed to deal with a
tremendous waste output, especially when considering the lack of immediate economic
benefits [21]. The Brazilian government’s position on Amazon development is a prime
example of promoting economic opportunity near a vital ecosystem, with possible disas-
trous ecological consequences [22]. Rapid populational growth and a focus on exploration
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and economic development, combined with severe waste processing shortcomings, turn
communities such as Manaus, population 2.2 million, in the Middle Amazon Basin, into
waste generation behemoths; the result is a (conservatively) estimated 180,000 Mt of plastic
wastes discarded into Amazonian environments yearly. Effects of this waste mismanage-
ment might already be popping up downstream, with reports of fish, sea anemones, and
stingrays being affected by plastic debris, the former in the Amazon River Estuary and
the latter two from the Amazon Coast [23–25]. India also has quite the predicament, with
estimates ranging between 4.8 and 12.7 Mt of discarded plastic entering the ocean yearly;
this environmental situation is not helped by the fact India is crossed by heavily polluted
rivers from other Asian countries, and that the Indian Ocean is also bordered by 10 of
the 20 biggest plastic polluting nations worldwide [26]. Additionally, despite a growing
interest in the long-lasting effects of environmental plastic pollution, the country’s waste
management and regulation situation is expected to remain dire, thanks to high levels
of single-use plastic consumption, ineffective legislation, insufficient infrastructure, and
the low prioritization of this problem. Slowly, legislation is being enacted to reduce this
problem, but great challenges remain for India in this regard.

Plastic pollution of the environment entails a wide range of negative consequences to
animal and human health (Figure 1) [10]. For instance, due to their hydrophobic surface
and longer half-life than most natural substrates, plastics in the environment slowly start
being colonized by a diverse microbial community of heterotrophs, autotrophs, predators,
pathogens, and symbionts, constituting the “Plastisphere” [27]. Such plastics and plasti-
sphere can, therefore, promote the distribution of potentially non-native/allochthonous
organisms/pathogens to other environments. In addition, plastic waste accumulation in
soil systems can create a conducive environment for biological disease vectors [28] and
affect water percolation and normal soils aeration, with repercussions on land productivity,
as reviewed by Alabi et al. [29]. In addition, organisms can interact with plastic wastes:
more than 260 different species of vertebrate and invertebrate animals were reported to
have ingested plastics or have gotten entangled by plastic or plastic products, resulting
in more than 400,000 deaths. Additionally, ingestion of plastic wastes/debris by animals
often induces physiological effects such as perforation of digestive tracts, false satiation,
and obstipation [30,31].

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 3 of 16 
 

exploration and economic development, combined with severe waste processing short-

comings, turn communities such as Manaus, population 2.2 million, in the Middle Ama-

zon Basin, into waste generation behemoths; the result is a (conservatively) estimated 

180,000 Mt of plastic wastes discarded into Amazonian environments yearly. Effects of 

this waste mismanagement might already be popping up downstream, with reports of 

fish, sea anemones, and stingrays being affected by plastic debris, the former in the Ama-

zon River Estuary and the latter two from the Amazon Coast [23–25]. India also has quite 

the predicament, with estimates ranging between 4.8 and 12.7 Mt of discarded plastic en-

tering the ocean yearly; this environmental situation is not helped by the fact India is 

crossed by heavily polluted rivers from other Asian countries, and that the Indian Ocean 

is also bordered by 10 of the 20 biggest plastic polluting nations worldwide [26]. Addi-

tionally, despite a growing interest in the long-lasting effects of environmental plastic pol-

lution, the country’s waste management and regulation situation is expected to remain 

dire, thanks to high levels of single-use plastic consumption, ineffective legislation, insuf-

ficient infrastructure, and the low prioritization of this problem. Slowly, legislation is be-

ing enacted to reduce this problem, but great challenges remain for India in this regard. 

Plastic pollution of the environment entails a wide range of negative consequences 

to animal and human health (Figure 1) [10]. For instance, due to their hydrophobic surface 

and longer half-life than most natural substrates, plastics in the environment slowly start 

being colonized by a diverse microbial community of heterotrophs, autotrophs, predators, 

pathogens, and symbionts, constituting the “Plastisphere” [27]. Such plastics and plas-

tisphere can, therefore, promote the distribution of potentially non-native/allochthonous 

organisms/pathogens to other environments. In addition, plastic waste accumulation in 

soil systems can create a conducive environment for biological disease vectors [28] and 

affect water percolation and normal soils aeration, with repercussions on land productiv-

ity, as reviewed by Alabi et al. [29]. In addition, organisms can interact with plastic wastes: 

more than 260 different species of vertebrate and invertebrate animals were reported to 

have ingested plastics or have gotten entangled by plastic or plastic products, resulting in 

more than 400,000 deaths. Additionally, ingestion of plastic wastes/debris by animals of-

ten induces physiological effects such as perforation of digestive tracts, false satiation, and 

obstipation [30,31]. 

 

Figure 1. Schematic representation of sources, fate, and effects of plastic pollution on environmental and human health. 

MPs—Microplastics; UV- Ultra Violet (radiation); WWTP—Wastewater Treatment Plants 
Figure 1. Schematic representation of sources, fate, and effects of plastic pollution on environmental and human health.
MPs—Microplastics; UV- Ultra Violet (radiation); WWTP—Wastewater Treatment Plants.



Int. J. Environ. Res. Public Health 2021, 18, 7729 4 of 16

Regardless of initial dimensions, plastic debris can suffer degradation to various
degrees in natural environments, slowly becoming smaller (from micro- to nanosized)
and bioavailable to small-sized organisms [32]. This problem is amplified by the fact that
plastics debris does not resist natural transport when in the environment, in other words
meeting no borders. Plastic debris has been found in remote or guarded environments such
as human-protected sanctuaries, such as the Pelagos Sanctuary in the Mediterranean Sea
surrounding Corsica (France), or Gray’s Reef, off the coast of Georgia, USA, and Trindade,
an island part of a remote Brazilian archipelago in the Atlantic, courtesy of economic and
touristic activities for the former two, and the South Atlantic Gyre for the latter [33–35].
The ease of migration of this debris can pose an urgent threat to the health of watched and
endangered species and, consequently, to the health of their ecosystems as a whole.

The effect of microplastics and nanoplastics (microplastics: 1 um–5 mm in size;
nanoplastics: <1 um in size, with colloidal behavior [36]) on organisms and human health
remain largely unknown; notwithstanding, studies conducted in controlled conditions on
various organisms, including human and other animal cells, point to harmful effects when
these are exposed to concentrations higher than reported in the field, thus exposing the
potentially detrimental effect of these materials [37]. For example, both in vertebrates and
invertebrates (with different feeding guilds), microplastics were found to affect feeding
patterns, and therefore energy availability at best, or to trigger more severe symptoms in
worse case scenarios—these can include severe inflammations and the triggering of stress
pathways, endocrine disruptions, reduction in reproductive performance or even death
events [22,38–40].

Given the tendency of persistence of these particles in organisms’ guts or other organs,
bioaccumulation can also result in the effective poisoning of entire food webs, on which
many human populations also rely. Humans are exposed to microplastics through various
media, but their potential toxic effects still remain largely uncovered [41], although these
materials seem to be able to trigger a range of inflammatory and cytotoxic events in human
cells [42].

The risks plastic and microplastic ingestion pose for the ecosystem, and public health
is even broader, however. Although plastic debris is considered biochemically inert,
plastic additives are incorporated during manufacturing processes to improve plastics
properties [43]. Furthermore, plastic debris can also act as a vector for other harmful
chemical compounds such as heavy metals and biological pathogens, such as Vibrio cholerae
and harmful algal bloom-generating organisms [44]. Plastic additives and/or absorbed
contaminants can then leach out and eventually percolate into various environmental
compartments, decreasing soil and water quality and inducing adverse chemical effects
(summing up to the physical effects) on terrestrial and aquatic biota at different levels of
biological organization [45].

Thus, the increase of plastic matter in ecosystems, the resulting incomplete and
unsafe degradation into small-sized particles such as microplastics, their spread in the
environments, and the resulting increased bioavailability to wide food webs become a
severe health risk for chronically neglected ecosystems and public health.

3. Biobased Plastics and Circular Bioeconomy—The Road Ahead

Despite the various benefits plastics have in society, problems with plastic pollution
(originating in waste or not) are some of the biggest challenges of our time. Once in the
environment, plastic debris is somewhat difficult to recover. Research indicates that the
best strategies for recovery consist in focusing on coastal areas, but in the EU alone, one
of the regions in the world with the highest share of recycled plastic, those efforts can
cost an estimated yearly EUR 630 million—a sum that will not turn a profit or reduce
future economic damage, making it more challenging to approve and raise funding for
these initiatives [19,46]. Throughout the last decades, plastics have become not only
commonplace but entirely essential to a wide diversity of economic sectors, to the point
that a carpet ban on these materials for the sake of the environment just is not feasible. Thus,
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one of the most valuable solutions to mitigate plastic litter inputs while restoring natural
environments is by source-reduction and effective waste management to engage a more
circular plastics economy. Beyond new waste processing methods, which are arguably not
enough to sustain the ever-growing demand for these materials and the resulting influx of
waste, the production of fossil fuel-independent plastics is also being touted as one of the
key solutions in the plastics market reconversion that needs to occur in the coming years
or decades [47].

Biobased plastics, as they have been dubbed, can be obtained from different renew-
able resources (e.g., plant-, algae-, residues-based) and, according to cradle-to-grave life
cycle assessments, they seem to be generally advantageous in terms of saving fossil re-
sources and reducing GHG emissions, as reviewed by Hatti-Kaul et al. [48]. As an example,
significant savings of fossil fuel (40–50%) and GHG emissions (45–55%) have been re-
ported for PEF (polyethylene furanoate) production when compared to PET (polyethylene
terephthalate) [49]. Despite their apparent environmental attractiveness, biobased plastics
currently account for merely 1% of the overall plastics market, or 3.8 Mt, although signif-
icant gains are expected in coming years [50]. These new materials must play catch-up
against a well-established industry with over half a century of research, development and
dominating market presence to its name—conventional petrochemical plastics have been
continuously refined over the years to achieve the ideal properties for a range of different
uses. Meanwhile, biobased plastics sometimes fall short when it comes to physical and
chemical properties, highlighting the need for further research and funding and again
hurting their short-term viability.

Notwithstanding, these new materials boast more attractive properties than the tra-
ditional alternatives. Still, considering the example of PEF, this polymer offers better
performances reported for qualities such as permeability to oxygen and carbon dioxide
than its fossil-based counterpart/competitor, PET [51]. Still, if a wider substitution of
petrochemical plastics by biobased alternatives is to be achieved, biobased polymers with
properties on par with other types of plastics must be developed. To that end, legislative
and regulatory action is needed to boost the attractiveness of these emerging markets, thus
incentivizing research and investment, which are often bottlenecks in biotechnological
industries, especially in biobased instances such as this one [52].

Doing so will allow for better characterization and streamlining of production and
end-of-life processes for these emerging biobased alternatives, such as those presented in
Table 1, thus easing their entry into the broader markets.

Table 1. Production, usage, and end-of-life options for commercially available (or soon to be available) biobased polymers.

Polymer Synthesis Market Application End-of-
Life/Biodegradability References

Agrobiofilm®

Formulated using a starch
base complemented with
renewable raw materials

from vegetable oils.

Used as additives in
horticultural and perennial

soils

Biodegradable and intended
for in situ degradation [53]

Bio-PA11
Synthesized using

11-aminoundecanoic acid
from castor oil

Automotive and fuel tubings,
electrical components,

coatings

Non-Biodegradable,
Chemical Recycling and

Mechanical Recycling
[54–56]

Bio-PE Dehydration of bioethanol
from glucose

Food Packaging, Automotive
applications, toy production,

cosmetics and other
industrial and agricultural

applications

Non-biodegradable,
mechanical recycling [56,57]
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Table 1. Cont.

Polymer Synthesis Market Application End-of-
Life/Biodegradability References

Bio-PEF

Derived from
2,5-furandicarboxylic acid,

which can be generated
entirely from sugars such as

cellulose

Being developed as a
competitor to PET, mostly for

packaging applications

Non-biodegradable,
enzymatic depolymerization [51,56,58]

Bio-PET

Synthesized using
bio-ethylene glycol or

bio-terephthalic acid from
Glucose and Fructose

Fibres and a variety of
packaging applications

Non-biodegradable,
chemical recycling,

mechanical recycling and
enzymatic depolymerization

[56,57,59]

Bio-PP Butylene dehydration of
bio-isobutanol from glucose

Not yet industrially
produced, confidential pilot

plant phase

Non-biodegradable,
mechanical recycling [56,57]

PBS Produced with succinic acid
derived from biomass

A variety of packaging
applications, including food

packaging, as well as
agricultural mulch films

Biodegradable,
chemical recycling and

enzymatic depolymerization
[56,60,61]

PHA and PHB
Bioproduction within

micro-algae, bacteria and
archaea

Various packaging,
agricultural and medical

applications

Biodegradable, home and
industrial composting,

anaerobic digestion and
chemical recycling

[56,62,63]

PLA
Derived from

microbial-produced lactic
acid

Food packaging, electronic
components and 3D printing

materials

Biodegradable,
mechanical recycling,

chemical recycling and
industrial composting

[56,64,65]

Chitosan
Derived from exoskeletons of

crustaceans, insects, cell
walls of fungi and yeast.

Various packaging,
agricultural and medical

applications

Biodegradable, anaerobic
digestion and chemical

recycling
[66]

Bio-PA11—Bio-Polyamide; 1Bio-PE—Bio-Polyethylene; Bio-PEF—Bio-Polyethylene Furanoate; PET—Polyethylene Terephthalate; Bio-
PET—Bio-Polyethylene Terephthalate; Bio-PP—Bio-Propylene; PBS—Polybutylene Succinate; PHA/B—Polyhydroxyalkanoate/Poly-
hydroxybutirate; PLA—Polylactic Acid.

Slowly but surely, governments are realizing the vital importance of the reconversion
of the plastics economy away from fossil fuel exploration. In 2016, the French govern-
ment published a decree on energy transition and green growth mandating the use of
bioplastics in certain packaging applications, specifically biobased and home composting
polymers [67]; the European Union, despite as of yet lacking specific legislation compre-
hensively regulating biobased, biodegradable, and compostable plastics, introduced in
its European Green Deal and Circular Economy Action Plan (2019 and 2020, respectively)
a policy framework regarding the main issues of sourcing, labelling and uses of these
materials [68]; the United Kingdom, on the other hand, claims commitment to the tackling
of plastic pollution, but still raises pertinent concerns with production and waste manage-
ment, and highlights the need for more research to explore this issue further [69]. However,
the legislation seems limited, and these deliberations seem to be only the exception to the
rule [70]. Should these initiatives succeed and be adopted by more and more authorities,
however, the biobased plastic sector can expect an increasingly favorable regulatory sit-
uation compared with traditional plastics’ going forward, adding the factor of economic
attractiveness to the ecological perspective.

4. Biobased Plastics: Environmentally Friendly or Possible Foe?

Biobased plastics are touted as solutions to the environmental problems caused by
conventional plastics production and waste (mis)management. However, they might come
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with a handful of environmental downsides of their own, and ignoring them can hinder the
potential they have to curb the plastics economy’s large environmental footprint (Figure 2).
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The environmental attractiveness of current biobased plastics remains controversial
among academics and different stakeholders. Current production patterns for biobased
plastics still presents considerable limitations that underline their weaknesses in the mar-
kets (Table 2). The production of biobased plastics remains associated with energy re-
quirements (with most being dependent on fossil fuel resources), leading to controversies
regarding their carbon emissions. For example, and as reviewed by Gerassimidou et al. [71],
ethanol production from corn can be more energy-intensive than petrochemical plastic
resin production, but the production of bio-PE leads to approximately 140% savings in
CO2eq compared to high-density PE derived from fossil resources. In addition, woody
feedstocks are highly lignocellulosic and resistant to degradation, so their conversion to
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a bio-based polymer resin requires an integrated biorefining process that involves the
pre-treatment, enzymatic hydrolysis, fermentation, and further processing to iso-butanol
(i.e., the starting monomer of bio-based plastic), which produces more GHG emissions
and higher ecotoxicological impacts when compared with fossil-based plastics [72]. The
replacement of fuel-based energy by renewable energy sources (e.g., solar, hydro, wind)
and the development of microorganisms/enzymes to improve bioprocessing can reduce
such limitations.

Table 2. Summary of pros, cons, and emerging solutions regarding biobased plastics (from cradle to crate).

Pros Cons Emerging Solutions

� (Partly) based on natural
feedstock

� Generally, lower GHG
emissions

� Lower dependence on crude oil
� Favorable policy landscape (e.g.,

EU plastic strategy)
� Biodegradable options can

simplify waste management
and returns carbon to the soil,
potentially mitigating plastic
pollution

� Costly manufacturing
� (Partly) use of genetically modified

organisms
� Use of arable land, fertilizers, and

pesticides for crops (which results
in soil erosion and degradation)

� Potential food competition
� Narrow processing window (e.g.,

lower melting temperature)
� Brittleness
� Thermal degradation
� Bioconversion requires a high

amount of energy
� Potential for harmful effects on

biota (similar to petrochemical
counterparts)

� Potential to contaminate recycling
streams

� Uncertainty regarding
biodegradability in open
environments (due to current and
limited international guidelines for
product certification)

� Biorefinery technology
� New strains of

microorganisms/enzymes required to
improve bioprocessing

� Algae, waste residues, by-products as
sources to retrieve building blocks

� Implementation of renewable energy
sources (e.g., solar, geothermic) for
plastic production

� Advances in nanotechnology (e.g.,
application of nanocomposites such as
clays) to improve physicochemical and
mechanical properties

� Production of biobased plastics of pure
polymers, or blended with compounds
free of (eco)toxic effects

� Dedicated recycling streams and
adequate labelling

� Appropriate and coordinated
international guidelines for product
certification

� Increased public awareness and
education efforts

� Increase in financial programs for
sustainable plastics production and
management of wastes

GHG—Greenhouse Gas.

The use of chemical compounds (additives/fillers) at the polymerization stage of
biobased polymer resins can impact environmental and human health. For example,
acetyl tributyl citrate (ATBC) or polyethylene glycol (PEG) may be intentionally added to
deal with PLA’s brittleness, high oxygen permeation, and poor thermal properties [73],
which can aggravate both their biodegradability and ecotoxicity if discarded in open
environments. Applying less toxic compounds, such as nanoclays and environmentally
friendly nanocomposites (due to advances in nanotechnology as further discussed in
Section 4), can improve biobased plastics properties [74].

End-of-life processing options for biobased plastics also raises environmental and
economic concerns, as they are often misunderstood [15]. Although biobased plastics are,
as the name indicates, plastics derived from renewable biological resources, that does
not mean that their biodegradability is guaranteed. Some biobased plastics present resis-
tance to degradation, such as PEF, some PLA options, Bio-PE, and Bio-PET, among others
(Table 1). Hence, carelessly branding biobased plastics as green plastics might instill the
wrong ideas in the minds of the consumers—the consequences of discarding these plastics,
biodegradable or not, might be unintentionally ignored by the consumer lulled by the false
sense of security given off by that green branding [75]; even certified biodegradable plastics
are so only under specific conditions (e.g., in industrial composting facilities/bioreactors).
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For instance, PHA is biodegradable, but the extent of such biodegradability in aquatic envi-
ronments was shown to depend on the inorganic water composition, water temperature,
and polymeric chemical structure [76]. Some PLA options can also be biodegradable, but if
discarded in marine environments, such polymers can take centuries to break down (weight
loss of 2.5% was observed in a simulated marine environment over 600 days) [77]. Thus,
careless discarding of these polymeric materials into the environment could have virtually
the same effect as the “environmentally harmful” traditional petrochemical plastics, with
toxicity assays demonstrating in vivo and in vitro toxicity [78,79]. For example, for PLA,
Souza et al. found cytotoxic and genotoxic effects on the common onion (Allium cepa) [80],
whereas Adhikari et al. detected inhibition of microbial activity caused by PLA films after
84 days of incubation in soil [81]. Huerta-Lwanga et al. [82] found that 1% PLA in composts
resulted in significant mortality in earthworms (Lumbricus terrestris). The toxicity of PLA
can be attributed to additives that are included in polymerization to improve mechanical
properties. For example, substances such as tributyl citrate or PEG are commonly added
to PLA for plasticization; additionally, to improve impact resistance, isocyanates can also
be added as chain extension agents by forming a polyurethane bond with the terminal
hydroxyl group of PLA [83,84].

On large scales, these attitudes could end up offsetting any positive impact biobased
plastics might achieve. To solve this problem, the consumer base must be thoroughly
educated on these materials and their waste management practices. This might seem at
first like an obvious point. However, its importance is backed up by data that suggests that
consumers are somewhat unfamiliar with the concept of biobased plastics, which is in their
minds is more associated with environmental issues rather than technical ones—keywords
such as “biodegradable” and “environmentally friendly” being more linked to these plastics
than “independent from oil”, one of their actual defining features, highlighting how easy it
is to misrepresent biobased plastics [85].

Regulating authorities also have the responsibility to demand clear labelling to easily
relay the proper disposal methods to the consumers to convert them into active partici-
pating members of the plastic waste processing infrastructure. For such correct labelling,
international guidelines must also be updated. International standards specify the re-
quirements for biodegradable plastics in composting, home composting, and soil or water
compartments (e.g., EN 13432, ASTM D6400, Vinçotte OK Biodegradable Soil/Water).
Typically, full biodegradation is assessed as the first tier of testing, and ecotoxicity is ad-
dressed as the second tier of testing [86]. However, as reviewed by Kjeldsen et al. [86], such
international guidelines have several issues that can limit their reliability when attempt-
ing to predict biodegradation in environmental scenarios, such as limited methodology
(primarily based on respirometry measurements), unrealistic testing conditions (e.g., aque-
ous/soil medium, controlled conditions or anaerobic digesting sludge), lack of guidance
for employing different test materials (e.g., powder, film), insufficient statistical power
from limited replicates (often <3), unsuitable procedures for aquatic environments, many
related to wastewater treatment plants (WWTP) situation, and flaws in toxicity testing that
are often based on single-(model) species assays, without considering the impact of plastic
litter and potential persistent compounds from the biodegradation process on multispecies
communities, biochemical processes and ecosystem functioning.

For example, Mater-Bi® (a starch-based plastic) can achieve up to 80% biodegrada-
tion in 90 days in aerobic compost conditions (according to EN14045, ISO14851) [87,88];
however, in soil and aquatic conditions, this bio-based plastic only achieves 3.4% and 1.5%
biodegradability, respectively, in the same timeframe [89]. Based on single-species tests,
such bio-based plastics seem to present no ecotoxicity [90], though the effects at lower
(cellular and biochemical level) and higher (community and ecosystem level) biological
organization remain poorly covered.

In addition to the implementation of adequate guidelines and correct labelling, an
adaptation of the existing recycling infrastructure is needed to accommodate these new
materials, including new recycling procedures and sorting mechanisms, which can prove
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to be somewhat of a challenge given the (intentionally) similar characteristics between
specific plastics and some candidates for substitutes [18]. For example, PLA can be applied
in transparent bottles (visually like PET bottles) and can end up on PET recycling streams,
and even a 2% contamination would interfere with drying and processing steps, resulting
in poor-quality recycled PET (rPET).

This fact, in turn, puts pressure on the waste management facilities, and without
support, they may be less than willing to accept these wastes. The United Kingdom’s
government has recognized that facilities related to composting and anaerobic digestion
sometimes show reluctance in even accepting the waste materials in the first place [69].
As such, adequate incentives are needed to update and expand the underlying recycling
infrastructure to accommodate biobased plastics without risking causing possibly severe
plastic pollution increases due to these new, conditionally, eco-friendly materials.

5. New Sources and (Bio)Technological Approaches for Improving Biobased Polymers
Engineering and Properties

Recent advances in biorefinery and polymer chemistry have been applied to produce
biobased solutions from alternative biomass (e.g., algae) and residues, with improved
design, properties, and functionalities for their successful introduction to the markets and
ensure their recyclability (chemical or mechanical).

The use of alternative biomass, by-products and wastes for green valorization provides
a substantial ecological advantage when comparing with plant-based biomass sources,
as they reduce arable land pressure and help lessen the issue of competition for food
production, as well as the intensive use of fertilizers, pesticides and water, while reducing
carbon footprints related to waste generation through their reuse as new raw materials [91].
Several compounds, such as lipids, flavonoids, lignocellulose, and phenolic compounds,
can be extracted from agro-industrial, forest and even food wastes to produce high value-
added biobased products via bioprocessing within a biorefinery framework (as reviewed by
Patrício Silva, 2021 [17]). Concomitantly, chitin and chitosan have come up as value-added
products that can be retrieved from industrial seafood waste, presenting several appreciated
properties such as antimicrobial activity, chelation properties, film formation, and decent
mechanical strength as a potential competitor for food packaging material [66,92–94].
Furthermore, it has also been used in edible coatings to enhance the shelf life of fresh
produce or processed fruit, vegetables, poultry, and dairy products on a lab-scale without
interfering with their sensory attributes.

In addition, algae-based biomass has been highlighted as an alternative approach to
achieving sustainable plastic production while contributing to reduce the environmental
footprint of production [95]. Algae (micro to macro) possess rapid growth, plasticity, re-
duced cultivation costs, and autotrophy that contribute to reducing the GHG emission by
sequestering CO2 (up to 1.8 lb) and releasing oxygen (>75%) [96]). Polyhydroxyalkanoates
(PHAs) and homopolymers, such as polyhydroxybutyrates (PHBs), can be algal-based, and
both can present similar physicochemical and mechanical properties as their closest petro-
chemical counterparts (e.g., polypropylene, polyethylene terephthalate, and polyethylene)
with potential applications in industry, agriculture, and packaging [97]. Microalgae can be
used as biofillers to improve mechanical properties in novel thermoplastic biocompounds
from gluten [98].

The production of polymer building blocks from biomass or residue components
relies on enzymatic tools (as reviewed by Hatti-Kaul [48]), and enormous efforts have
gone into the screening and development of enzymes that hydrolyze different components
of the biomass/residues. This process is costly, however, mainly due to the high energy
demand and biological activity. Consolidated bioprocessing that involves the development
of microbial strains with engineered degrading activities or the development of co-cultures
that would allow the direct conversion of the biomass/residue to the target molecule have
been gaining momentum to overcome such limitations. Metabolic engineering strategies
could also include pathway prioritizations by changing substrate preferences, managing
redox balances, easing the transport of metabolites, and improving resistance to inhibitory
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factors such as reaction product concentration or pH, among others to achieve high product
yields and selectivity [48].

Meanwhile, advances in nanotechnology have revealed its potential to play an essen-
tial role in the polymerization process to improve biobased plastics’ functionalities and
properties. The inclusion of nanocomposites (e.g., nanoclays) in the polymerization process
can result in materials with an improved balance between permeabilities for oxygen, carbon
dioxide, nitrogen, and water vapor, with lower costs compared to other nanomaterials and
chemical additives [74]. A significant contribution of such an application was observed
with PLA microlayer films, which solved problems associated with loss of transparency
and heat resistance by obtaining the flexibility required for packaging applications. Still,
their environmental friendliness remains to be seen.

High-performance biobased polymers with desirable material features for recycling
are also in demand. The glass transition temperature (Tg) is one of the most important
thermal properties of amorphous plastic materials, determining their physical, mechanical,
and rheological properties and, hence, their range of applications (as reviewed by [48]).
Commercial biodegradable polymers generally have a low Tg—notably, for PHA, this
parameter can reach a relatively low value when comparing to other plastics of −28 to
−55 ◦C. [99,100]. However, the introduction of aromatic units (e.g., phenyl, phenoxy, and
benzoyl) in the PHA chain can significantly increase the Tg of the polymer, which in some
cases can then reach beyond the 20 ◦C threshold, depending on the aromatic group. Thus,
improvements in Tg of aliphatic polyesters can be an effective strategy for increasing
their performance and recycling possibilities and even their optical transparency. PEF
presents yet another example—resorting to the use of the FDCA dimer 2,2′-bifuran-5,5′-
dicarboxylate as the monomer can significantly improve the Tg of fully biobased PEF
(from 86 to 107 ◦C), even though this parameter was already higher in this plastic than its
competitor, PET (74 ◦C) [8].

Biobased polymers are getting closer to the reality of replacing their petrochemical
counterparts than ever before, paving the way towards a more sustainable and circular econ-
omy. It is expected that soon, these materials will be used in several areas, from commodities
to advanced applications, thanks to developments in biotechnology and bioprocessing.

6. Final Considerations

Despite as of this point facing a somewhat uphill battle to secure a significant foothold
in the plastics market, in coming times, the biobased plastics sector is expected to grow,
lifted by an increasingly environmentally aware consumer base and more forgiving regu-
latory circumstances, potentially helping reduce the carbon footprint associated with the
whole plastics industry.

However, simply taking these new “green” plastics at face value is risking taking
a step backwards in the fight against plastic-related pollution. Data indicate that con-
sumers, even in regions thought to be highly developed and educated, seem to easily
mischaracterize what terms relate to these new generation plastics. Before biobased plastics
become truly commonplace, though, rules and regulations should be put in place that
incentivize manufacturers to integrate environmental performance in the development of
new polymers and demand rigorous toxicity and life-cycle safety assessments for the new
products. Furthermore, when it comes to waste management, the regulatory frameworks
must strongly enforce the reutilization and recycling routes for these new materials, or, as a
last resource, the quaternary recycling to produce energy. This, in turn, means more invest-
ment will be necessary to properly integrate biobased plastic recycling methodology with
the current capacities, given that sorting different plastics that were designed to behave
similarly to existing ones is a hurdle that must be overcome to maximize the efficiency of
the incoming plastics’ reconversion.

Landfilling is a waste management solution that must be avoided at all costs, and
aggressive action against littering is a must, given that even the subset of plastics deemed
biodegradable by the admittedly lacking regulations on this matter require somewhat spe-
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cific environmental conditions to degrade in the environment safely; as such, biodegradable
options might further risk lulling the consumers into a false sense of security concerning
their ecological safety. Once again, the importance of education efforts is highlighted
but shows that prioritizing biodegradability rather than biological production might be
misguided. Some certified biodegradable materials are chemically harmful after said degra-
dation. As such, since biodegradability only ever so slightly reduces the environmental
harm of littered plastics, all the while limiting the circularization of the plastics economy
by diminishing consumers’ worries about plastic discarding and landfilling rather than
recycling, biobased plastic production might just be the better bet of the two to realize the
ideal of a sustainable, circular plastics economy.

In sum, to truly begin to fix the problem of plastic pollution and its ramifications
on the climate, ecosystems, and public health, the plastics economy must be rethought
from a sustainable, circular, and low carbon perspective. Biobased plastics can emerge as
tools with high potential for this conversion, although not without issues, both inherent
and related to their relative novelty. As such, this subset of the plastics industry must be
scaled up responsibly, always considering the economic, legislative, and social sides of this
equation so that it may have the opportunity of truly fulfilling its perceived potential.
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