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Abstract

The present study employed functional magnetic resonance imaging (fMRI) to examine the

characteristics of negative blood oxygen level-dependent (Negative BOLD) signals during

motor execution. Subjects repeated extension and flexion of one of the following: the right

hand, left hand, right ankle, or left ankle. Negative BOLD responses during hand move-

ments were observed in the ipsilateral hemisphere of the hand primary sensorimotor area

(SMI), medial frontal gyrus (MeFG), middle frontal gyrus (MFG), and superior frontal gyrus

(SFG). Negative BOLD responses during foot movements were also noted in the bilateral

hand SMI, MeFG, MFG, SFG, inferior frontal gyrus, middle temporal gyrus, parahippocam-

pal gyrus, anterior cingulate cortex, cingulate gyrus (CG), fusiform gyrus, and precuneus. A

conjunction analysis showed that portions of the MeFG and CG involving similar regions to

those of the default mode network were commonly deactivated during voluntary movements

of the right/left hand or foot. The present results suggest that three mechanisms are involved

in the Negative BOLD responses observed during voluntary movements: (1) transcallosal

inhibition from the contralateral to ipsilateral hemisphere in the SMI, (2) the deactivated neu-

ral network with several brain regions, and (3) the default mode network in the MeFG and

CG.

Introduction

Recent neuroimaging studies using functional magnetic resonance imaging (fMRI) reported

not only increases, but also decreases in blood oxygen level-dependent (BOLD) signals during

tasks. These decreases are often referred to as ‘Negative BOLD responses’, and several phe-

nomena have been suggested to be involved. The first involves transcallosal inhibition from

one hemisphere to the other. BOLD signals generally increase in the primary motor area (MI)

of the contralateral hemisphere during the voluntary movement of a limb, but decrease in the

MI ipsilateral to the movement [1–8]. The second phenomenon involves the task-related deac-

tivation of associated areas that belong to an irrelevant sensory modality. For example,

PLOS ONE | https://doi.org/10.1371/journal.pone.0215736 April 19, 2019 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Nakata H, Domoto R, Mizuguchi N,

Sakamoto K, Kanosue K (2019) Negative BOLD

responses during hand and foot movements: An

fMRI study. PLoS ONE 14(4): e0215736. https://

doi.org/10.1371/journal.pone.0215736

Editor: Andreas Mierau, LUNEX International

University of Health, Exercise and Sports,

LUXEMBOURG

Received: September 20, 2018

Accepted: April 8, 2019

Published: April 19, 2019

Copyright: © 2019 Nakata et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This study was supported by a Grant-in-

aid for the Global COE, Waseda University “Sport

Sciences for the Promotion of Active Life”, from

the Ministry of Education, Culture, Sports, Science

and Technology (MEXT) of Japan, and by JSPS

KAKENHI Grant (HN). The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

http://orcid.org/0000-0002-8549-6468
https://doi.org/10.1371/journal.pone.0215736
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0215736&domain=pdf&date_stamp=2019-04-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0215736&domain=pdf&date_stamp=2019-04-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0215736&domain=pdf&date_stamp=2019-04-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0215736&domain=pdf&date_stamp=2019-04-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0215736&domain=pdf&date_stamp=2019-04-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0215736&domain=pdf&date_stamp=2019-04-19
https://doi.org/10.1371/journal.pone.0215736
https://doi.org/10.1371/journal.pone.0215736
http://creativecommons.org/licenses/by/4.0/


deactivation of the visual cortex occurs during somatosensory (tactile) discrimination tasks

[9–12]. The third involves the “blood steal” phenomenon. When BOLD signals in some parts

of the primary visual cortex increase after particular types of visual stimuli, signals in other

parts of the visual cortex decrease [13, 14]. This is often explained by the blood steal phenome-

non, which occurs due a decrease in blood flow (i.e. Negative response) in regions that are

adjacent to activated regions with increased blood flow (i.e. Positive response) and supplied by

a common artery. However, if the distance between Negative and Positive BOLD foci is large

(e.g., left and right hemispheres, and frontal and occipital cortices), it is difficult to explain the

relationship between Negative and Positive BOLD responses by the blood steal phenomenon

[15]. The fourth is related to default mode network. This phenomenon comprises task-inde-

pendent deactivation regions during the baseline or resting state of the brain involving a spe-

cific set of mental operations [16–18].

The physiological basis of Negative BOLD responses remains a matter of debate. Non-

human studies revealed a relationship between Negative BOLD signals and decreases in neural

activity [19–21]. Devor and colleagues [20] utilized a somatosensory stimulation in the rat to

investigate neurovascular coupling in the primary somatosensory cortex (SI). They demon-

strated that neuronal inhibition and concurrent arteriolar vasoconstriction were coupled with

decreases in blood oxygenation, and that this may form the physiological basis for the Negative

BOLD responses observed in the fMRI of humans. On the other hand, Maggioni and col-

leagues [22] reported a relationship between the neuronal rhythms at 10 and 12 Hz on electro-

encephalography and Negative BOLD responses in the extra-striate visual cortex, suggesting

that Negative BOLD responses to visual stimuli were neuronal in origin rather than reflecting

pure vascular phenomena.

As described above, previous studies reported Positive BOLD responses in the MI contra-

lateral to the moved hand and Negative BOLD responses in the ipsilateral MI. Zeharia and col-

leagues [7] showed somatotopic organization in the MI for Negative BOLD responses. They

demonstrated that the Negative BOLD spatial pattern in the MI was not randomly distributed,

but was organized somatotopically across the entire MI. Negative BOLD responses were

located outside the somatotopic location of the classified body parts (e.g., Negative BOLD elic-

ited by bilateral hand movements were located in the leg and face areas). However, this study

did not focus on Negative BOLD responses in brain regions other than the MI, and the under-

lying mechanisms of the Negative BOLD response across the entire brain during voluntary

movement remain unclear. Furthermore, previous studies utilizing Positive BOLD responses

reported neural substrates related to simple hand, foot, and tongue movements, and complex

movements with the hand and foot [23, 24]. However, the laterality of the Negative BOLD

response during even simple hand and foot movements has not yet been clarified. The objec-

tive of the present study was to elucidate how Negative BOLD responses are recruited across

the whole brain during voluntary unilateral movements of the hands or feet on either side of

the body.

The present study also used the term ‘primary somatosensory-motor area (SMI)’ to refer to

a condition in which neural activities in the MI and/or SI were observed during voluntary

movements. This is because corticocortical connections have been reported between the MI

and SI [25], the distance between them is small and activation in the MI and SI may not be dis-

criminated. Moreover, voluntary hand and foot movements themselves give rise to proprio-

ceptive inputs. Therefore, many fMRI studies have used the term “SMI” to refer to condition

in which voluntary movements were performed [26, 27]. We employed this usage of SMI in

the present study.
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Materials and methods

Subjects

Fifteen normal right-handed subjects (two females and thirteen males; mean age 20.8 years,

range 18–25 years) participated in the present study. All subjects were undergraduate or grad-

uate students. They were all right handed according to the criteria of the Edinburgh Inventory

[28]. Subjects had no record of neurological or psychiatric disorders. The protocol was

approved by the Human Research Ethics Committee of Waseda University, Japan. Subjects

were informed in detail about the experiments prior to their participation, and gave written

informed consent for the involvement in this study.

Procedure

Recordings were conducted under four conditions: (1) right hand movement (RH), (2) left

hand movement (LH), (3) right foot movement (RF), and (4) left foot movement (LF). Under

the RH and LH conditions, subjects were asked to repeatedly perform extension and flexion of

the right or left hand. Under the RF and LF conditions, subjects were instructed to repeatedly

perform plantar flexion and dorsiflexion of the right or left ankle. Subjects were told to per-

form each movement at their own pace, and to not count the number of movements per-

formed. In addition, they were asked to match the pace of the hand and foot movements

throughout all of the experiments. A practice session of several trials for each movement was

performed before the recording in order to enable subjects to become familiar with the experi-

mental conditions.

Two experimenters monitored the number of movements under all of the conditions tested

(S1 Table), and we performed an analysis of variance (ANOVA) with repeated measures using

within-subject factors, limb (hand vs. foot), laterality (left vs. right), and block (1st, 2nd, 3rd, 4th,

and 5th), to assess differences in motor performance between the various conditions. This anal-

ysis revealed that there was a main effect of limb (F (1, 14) = 6.028, p< 0.05), which indicated

a significant difference in the speed of movement between the hand and foot conditions. Mean

movement frequencies across all subjects were 1.33 Hz in the RH condition, 1.33 Hz in the LH

condition, 1.16 Hz in the RF condition, and 1.14 Hz in the LF condition.

fMRI data acquisition and analysis

On MRI, a 5-min 12-s run for each condition consisted of five alternate repetitions of the task

and rest periods, each of which was 30 s. The first four volumes (12 s) of each fMRI session

were discarded because of unstable magnetization. Subjects were informed about the start and

end of each task period via a tactile cue. The cue was presented by an experimenter to the dor-

sum of the hand or foot that was to be subsequently moved or stopped from moving. The

order of the four conditions (RH, LH, RF, and LF) was randomized for each subject and coun-

terbalanced across all subjects. Subjects were also asked to keep their muscles relaxed and not

to think about anything throughout the entire procedure. Any communication between the

experimenter and subject was made via an intercom.

All images were acquired using a 1.5 T MR scanner (Signa, General Electric, Wisc., USA).

BOLD contrast functional images were acquired using T2�-weighted echo planar imaging

(EPI) free induction decay (FID) sequences with the following parameters: TR 3000 ms, TE 50

ms, FOV 22 × 22 cm, matrix size 64 × 64, flip angle 90˚, slice thickness 5 mm, gap 1 mm, and

25 slices. The orientation of axial slices was parallel to the AC—PC line. T1-weighted images

(TR 30 ms, TE 6 ms, FOV 24 × 24 cm, matrix size 256 × 256, flip angle 90˚, slice thickness 1
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mm, no gap, and 124 slices) were also obtained for each subject as an anatomical reference.

These procedures generally followed those of previous studies [29, 30].

Raw data were analyzed using Statistical Parametric Mapping (SPM12, Wellcome

Department of Cognitive Neurology, London, UK) [31] implemented in Matlab (Math-

works, Sherborn, Massachusetts, USA). The effects of head motion were corrected by

realigning all scans to the first scan. Realigned images were normalized to the standard tem-

plate of the Montreal Neurological Institute (MNI) brain using a transformation matrix

obtained from the normalization process of the high-resolution image of each individual

participant to the MNI template [32]. Images were then spatially smoothed using an isotro-

pic Gaussian kernel of 8-mm full width at half maximum (FWHM) in the x, y, and z axes.

Statistical analyses were performed on two levels. A first-level analysis was performed for

each subject using a general linear model. Individual task-related activation and deactiva-

tion were initially evaluated. We constructed a statistical parametric map of the t-statistic

for the eight contrasts: (1) Positive BOLD for RH, (2) Negative BOLD for RH, (3) Positive

BOLD for LH, (4) Negative BOLD for LH, (5) Positive BOLD for RF, (6) Negative BOLD

for RF, (7) Positive BOLD for LF, and (8) Negative BOLD for LF. Subject-specific contrast

images of the estimated parameter were used for the second-level analysis (random-effect

model) [33]. The second-level analysis utilizing a full factorial design (a one-way ANOVA,

factor = limb, four levels) was performed to extend the inference of individual activation

data to the general population. One-sample t-tests were used with a voxel-wise threshold of

p < 0.0001 (uncorrected) to generate cluster images (spatial extent > 10 voxels). In addi-

tion, we evaluated the strong deactivation regions using the familywise error rate (FWE)

with a cluster-level threshold of p < 0.05 for Negative BOLD responses for RH, LH, RF, and

LF. We also checked whether the surviving cluster at the cluster-FWE threshold of p < 0.05

involved less than 10 voxels, but no such cluster was detected. The locations of brain activity

were transformed from MNI coordinates into Talairach standard brain coordinates using

the Talairach Daemon atlas [34]. This atlas was also used to localize the local maxima of the

clusters in order to identify peak deactivation (activation) loci. All the coordinates were

reported in the Talairach space. A conjunction analysis, to assess whether tasks altered

activity in the same region of the brain, was also employed to detect brain regions com-

monly deactivated during all four (RH, LH, RF, and LF) conditions by utilizing SPM [35].

Using the SPM template, data were superimposed on a 3D-rendered standard brain.

‘Slightly in brighten blobs’ was selected as the ‘Display’ option for rendering in SPM [36–

39]. We also confirmed the time course of the hemodynamic response (HDR) in each indi-

vidual. Hand SMIs in the left and right hemispheres were selected based on Table 1. Each

set of data was collected from all subjects using the ‘Plot’ option of SPM.

After the whole-brain analysis was completed, we conducted a region of interest (ROI)

analysis to compare the strength of the hand SMI regions under each condition using MarsBaR

(http://marsbar.sourceforge.net/). The coordinates of the ROI centers were defined by the

local maximum voxel for the hand SMI in the group analysis. We detected the mean amplitude

values of ROIs over the task block for each subject. Each ROI was defined as a 10-mm-radius

sphere with the peak coordinates of the cluster (threshold p< 0.05, uncorrected), following a

previous study using ROIs for SMIs [8]. The mean amplitude values of hand SMIs ipsilateral

to the moving hand over the task block under the RH and LH conditions were evaluated by a

repeated measures ANOVA using the factor of Condition (RH vs. LH). The mean amplitude

values of bilateral hand SMIs over the task block under the RF and LF conditions were assessed

by a repeated measures ANOVA using the factors of Condition (RF vs. LF) and Hemisphere

(right vs. left). Significance was set at p< 0.05.
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Table 1. Deactivation regions for each condition.

Talairach coordinates Z-score

Region Side BA X Y Z

<RH condition>

Frontal Lobe

Superior Frontal Gyrus L 8 -20 26 47 4.60 #

L 9 -8 51 20 4.11 #

Medial Frontal Gyrus L 9 -16 40 22 4.57

L 10 -2 53 12 4.74 #

R 10 2 49 12 4.67

Middle Frontal Gyrus L 8 -24 35 37 4.37

L 9 -30 17 32 4.41 #

Precentral Gyrus R 4 40 -19 53 4.40 #

R 6 50 -5 50 4.08

Parietal Lobe

Precuneus L 7 -18 -53 38 4.04

Postcentral Gyrus R 5 32 -44 57 4.07

Temporal Lobe

Superior Temporal Gyrus R 39 44 -51 27 4.40

Limbic Lobe

Parahippocampal Gyrus L -28 -28 -7 4.55

R 36 36 -34 12 4.01

Sub-lobar

Insula L 13 -42 26 8 4.06

R 13 40 -9 19 4.44

Cerebellum (Tuber) R 40 -65 -27 4.05

<LH condition>

Frontal Lobe

Superior Frontal Gyrus R 11 12 48 -12 4.41

Medial Frontal Gyrus L 6 -12 -26 60 3.88

R 11 6 48 -11 4.18

Middle Frontal Gyrus L 9 -28 33 35 4.82

Precentral Gyrus L 4 -46 -13 54 4.23

Paracentral Lobule L 6 -10 -32 55 3.97

R 5 12 -32 50 4.38

Sub-lobar

Insula L 13 -32 -19 18 4.18

<RF condition>

Frontal Lobe

Superior Frontal Gyrus L 8 -20 22 49 4.29

R 9 26 35 31 4.90 #

Medial Frontal Gyrus L 10 -8 42 -9 4.15 #

R 10 4 49 9 4.07

Middle Frontal Gyrus L 11 -30 36 -19 4.17

Precentral Gyrus L 4 -40 -20 58 5.23 #

R 4 36 -26 55 4.33 #

R 6 30 -13 54 4.27

Inferior Frontal Gyrus L 47 -24 15 -19 4.80

R 13 34 13 -12 4.27 #

(Continued)
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Table 1. (Continued)

Talairach coordinates Z-score

Region Side BA X Y Z

Parietal Lobe

Postcentral Gyrus L 3 -46 -17 52 4.93 #

R 3 42 -17 52 4.11 #

Temporal Lobe

Inferior Frontal Gyrus R 13 32 5 -10 3.76

Middle Temporal Gyrus R 21 50 -14 -13 4.09

Occipital Lobe

Fusiform Gyrus L 37 -34 -43 -11 4.76 #

Limbic Lobe

Parahippocampal Gyrus L 36 -24 -32 -14 5.23 #

R 36 34 -35 -10 4.98 #

Anterior Cingulate L 10 -12 50 -1 4.25 #

L 24 -8 31 0 4.78 #

L 32 -4 41 -2 3.83

R 32 2 41 -2 3.99

Cingulate Gyrus L 31 -10 -39 30 4.37 #

R 31 8 -41 35 4.40 #

<LF condition>

Frontal Lobe

Middle Frontal Gyrus R 9 26 37 35 4.42

Precentral Gyrus L 4 -42 -17 41 3.98 #

R 4 32 -18 38 4.46 #

R 6 40 -12 32 3.97 #

Parietal Lobe

Postcentral Gyrus L 3 -42 -19 53 4.96 #

R 3 42 -17 51 4.89 #

Precuneus L 7 -16 -42 46 4.54

R 7 4 -48 45 4.85 #

Temporal Lobe

Superior Temporal Gyrus R 22 51 -12 -1 4.10 #

Middle Temporal Gyrus R 21 51 -12 -13 4.63 #

Sub-Gyral R 21 48 -16 -13 4.55

Limbic Lobe

Parahippocampal Gyrus L 36 -24 -39 -6 3.75

R 32 -6 -13 4.84 #

Cingulate Gyrus L 31 -10 -35 33 4.19 #

Sub-lobar

Lentiform Nucleus L -28 -18 -6 3.96

BA, Brodmann’s area; L, left hemisphere; R, right hemisphere

#, activation regions using the FWE with a cluster-level threshold of p < 0.05.

https://doi.org/10.1371/journal.pone.0215736.t001

Negative BOLD responses during hand and foot movements

PLOS ONE | https://doi.org/10.1371/journal.pone.0215736 April 19, 2019 6 / 18

https://doi.org/10.1371/journal.pone.0215736.t001
https://doi.org/10.1371/journal.pone.0215736


Results

Negative BOLD under each condition

Regions deactivated under the RH condition were located in the left superior frontal gyrus

(SFG) (Brodmann’s areas: BA 8 and 9), medial frontal gyrus (MeFG) (BA 9 and 10), middle

frontal gyrus (MFG) (BA 8 and 9), precuneus (BA 7), parahippocampal gyrus (PHG), and

insula. Areas deactivated in the right hemisphere were in the SMI (BA 3/4), MeFG (BA 10),

precentral gyrus (BA 6), postcentral gyrus (BA 5), superior temporal gyrus (STG) (BA 39),

PHG (BA 36), insula (BA 13), and cerebellum (Tuber) (Fig 1, Table 1). The time courses of

HDRs in the left (Positive BOLD) and right (Negative BOLD) SMI are shown in Fig 1C.

Regions deactivated under the LH condition were observed in the left SMI (BA 3/4), MeFG

(BA 6), MFG (BA 9), paracentral lobule (BA 6), and insula (BA 13). Areas deactivated in the

right hemisphere were in the SFG (BA 11), MeFG (BA 11), and paracentral lobule (BA 6) (Fig

2, Table 1). The time courses of HDRs in the right (Positive BOLD) and left (Negative BOLD)

SMI are shown in Fig 2C.

Negative activities under the RF condition were found in the left hand SMI (BA 3/4), SFG

(BA 8), MeFG (BA 10), MFG (BA 11), inferior frontal gyrus (IFG) (BA 47), PHG (BA 36), fusi-

form gyrus (BA 37), anterior cingulate cortex (ACC) (BA 10, 24, and 32), and cingulate gyrus

(CG) (BA 31). In the right hemisphere, deactivated regions were detected in the hand SMI (BA

3/4), SFG (BA 9), MeFG (BA 10), precentral gyrus (BA 6), IFG (BA 13), inferior temporal

gyrus (BA 13), middle temporal gyrus (MTG) (BA 21), PHG (BA 36), ACC (BA 32), and CG

(BA 31) (Fig 3, Table 1). The time courses of HDRs in the foot (Positive BOLD) and hand

(Negative BOLD) SMI are shown in Fig 3C.

Negative activities under the LF condition were found in the left hand SMI (BA 3/4), precu-

neus (BA 7), PHG (BA 36), CG (BA 31), and lentiform nucleus. In the right hemisphere, deac-

tivated regions were detected in the hand SMI (BA 3/4), MFG (BA 9), precentral gyrus (BA 6),

precuneus (BA 7), STG (BA 22), MTG (BA 21), sub-gyral (BA 21), and PHG (Fig 4, Table 1).

The time courses of HDRs in the foot (Positive BOLD) and hand (Negative BOLD) SMI are

shown in Fig 4C.

Comparison of BOLD strength between conditions in the ROI analysis

In the ROI analysis, the ANOVA for the strength of the ipsilateral hand SMI of Negative

BOLD during the right and left hand conditions revealed no significant main effect of Condi-

tion (Fig 5A). The ANOVA for the hand SMI strength of Negative BOLD during the right and

left foot conditions also showed no significant main effect of Condition (Fig 5B).

Conjunction analysis

A conjunction analysis for common regions deactivated under all four (RH, LH, RF, and LF)

conditions revealed significant deactivation in the left precuneus (BA 19), SPL (BA 7), cuneus

(BA 17), and CG (BA 31), and in the right MeFG (BA 10), SFG (BA 10), precuneus (BA7),

postcentral gyrus (BA 7), MTG (BA 39), cuneus (BA 7, 18 and 19), middle occipital gyrus (BA

18 and 19), posterior cingulate (BA 30), and cerebellum (declive) (Fig 6, Table 2).

Discussion

As described in the Introduction section, many studies have demonstrated deactivation in the

ipsilateral MI during voluntary hand movements, suggesting transcallosal inhibition from one

hemisphere to the other [1–8]. To the best of our knowledge, only one study has reported

deactivation in brain regions other than the ipsilateral MI during actively initiated movements
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[2], and deactivation was observed in the precuneus when subjects performed a right-handed

pinch grip. However, since only six right-handed subjects were used in that study, deactivation

regions need to be confirmed using a larger number of subjects.

In the RH and LH conditions of the present study, Negative BOLD responses were detected

not only in the ipsilateral SMI, but also in several brain regions, such as the MeFG, MFG, and

SFG (Figs 1 and 2, and Table 1). These results suggest that Negative BOLD responses occurred

during voluntary hand movements in addition to conventional transcallosal inhibition from

the contralateral to ipsilateral hemisphere in the SMI. We also found Negative BOLD

responses during the RF and LF conditions in the hand areas of the SMI, MeFG, SFG, IFG,

MTG, PHG, ACC, CG, fusiform gyrus, and precuneus (Figs 3 and 4, and Table 1).

Fig 1. Group activation map showing (A) activated (Positive BOLD) and (B) deactivated (Negative BOLD) brain

regions in the RH condition. (C) The mean time course of HDRs in the left (Positive BOLD) and right (Negative

BOLD) SMI across all subjects. SMI = primary somatosensory-motor area.

https://doi.org/10.1371/journal.pone.0215736.g001
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Negative BOLD responses were previously recorded during tongue movement [40]. Tongue

movement generally showed a bilateral pattern of activation in the MI (a Positive BOLD) [41,

42]. Sakamoto and colleagues [40] did not detect a Negative BOLD response in cortical motor

areas, such as the MI, SMA, premotor area (PM), and cerebellum, whereas this response was

present in the paracentral lobule (BA 5), SPL, precuneus, and MTG. Sakamoto’s findings indi-

cated that neural inhibition during voluntary movements occurred in brain regions not neces-

sarily related to transcallosal inhibition mediated between the bilateral MI. On the other hand,

as discussed in the Introduction section, Zeharia and colleagues [7] reported a Negative BOLD

homunculus in the MI related to tongue, hand, and foot movements. They used a ROI analysis,

which located a Negative BOLD homunculus in the MI, but not the SMA. Previous studies [2,

Fig 2. Group activation map showing (A) activated (Positive BOLD) and (B) deactivated (Negative BOLD) brain

regions in the LH condition. (C) The mean time courses of HDRs in the right (Positive BOLD) and left (Negative

BOLD) SMI across all subjects.

https://doi.org/10.1371/journal.pone.0215736.g002
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40] together with the present results indicate that a neural network of Negative BOLD signals

exists during voluntary movements, which involves regions such as the precuneus, SPL, SFG,

and MTG. Anatomical data demonstrated that the precuneus has strong reciprocal corticocor-

tical connections with adjacent areas of the SPL, MTG, and prefrontal cortex (BA 8, 9, and 46)

[43]. The prefrontal cortex, including the SFG, is also connected with many brain regions,

such as the SPL, MTG, and limbic system, but not with primary sensory and motor cortices

[44]. Negative BOLD signals in the MeFG and CG are discussed in more detail below.

We need to consider why bilateral hand SMI were deactivated under the RF and LF condi-

tions (Figs 3 and 4). Since no direct anatomical connection was found between hand MI and

foot MI [45], the functional hand-foot connection may be elicited by common inputs arising

Fig 3. Group activation map showing (A) activated (Positive BOLD) and (B) deactivated (Negative BOLD) brain

regions in the RF condition. (C) The mean time courses of HDRs in the foot (Positive BOLD) and hand (Negative

BOLD) SMI across all subjects.

https://doi.org/10.1371/journal.pone.0215736.g003
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from secondary motor areas, such as the SMA and PM, rather than via horizontal connectivity

within the MI [46]. If this is the case, the Negative BOLD responses of bilateral hand SMI dur-

ing foot movements may be accomplished by inhibitory signals from the SMA and PM to the

hand SMI. These signals may be generated together with excitatory signals to the foot SMI.

Zeharia and colleagues [7] also suggested that Negative BOLD is related to the neural mecha-

nisms underlying the balance between the suppression and activation of muscles across the

body. Moreover, Volz and colleagues [47] used fMRI and dynamic causal modeling to investi-

gate differences in the effective connectivity responsible for isolated movements of the hands

or feet. This group showed that bilateral hand MI were inhibited during right or left foot

Fig 4. Group activation map showing (A) activated (Positive BOLD) and (B) deactivated (Negative BOLD) brain

regions in the LF condition. (C) The mean time courses of HDRs in the foot (Positive BOLD) and hand (Negative

BOLD) SMI across all subjects.

https://doi.org/10.1371/journal.pone.0215736.g004
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movements. We assumed that the inhibition of bilateral hand SMI during unilateral foot

movement was associated with adjusting body coordination in order to perform a specific,

non-routine movement in the correct manner. This unilateral foot movement is in contrast to

the more elementary, usual bi-pedal lower limb movements of our daily life and sport activi-

ties, such as walking, stepping, and running. It is interesting to note that some neuroimaging

studies demonstrated that unilateral foot movement was generated with bilateral MI activity

rather than with simple contralateral MI activity [47, 48]. Thus, unilateral plantar flexion and

Fig 5. (A) ROI analysis for Negative BOLD responses in the ipsilateral hand SMI among Hand conditions. (B) ROI

analysis for Negative BOLD responses in the bilateral hand SMI among Foot conditions.

https://doi.org/10.1371/journal.pone.0215736.g005
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dorsiflexion in this study may be regarded as specific, non-routine movements for subjects.

Specific brain activity may be required to perform the required movements correctly. To test

this hypothesis, further studies are needed that utilize Positive and Negative BOLD signals to

compare unilateral and bilateral lower limb movements.

In addition, Negative BOLD responses in the ipsilateral hand SMI did not significantly dif-

fer between the RH and LH conditions (Fig 5A), and Negative BOLD responses in the bilateral

hand SMI also did not differ significantly between the RF and LF conditions (Fig 5B). These

results suggest that the strength of the Negative BOLD response in the ipsilateral hand SMI

during the hand condition and in the bilateral hand SMI during the foot condition may not be

related to the laterality of handedness, irrespective of the right-handedness of all subjects. A

number of studies using Positive BOLD responses noted that the recruitment of MI neurons

during ipsilateral movement was more common in the left hemisphere (the left MI) than in

the right hemisphere (the right MI) in right-handed subjects [5, 49, 50]. This finding indicates

that asymmetric neural activity is involved in motor execution. To the best of our knowledge,

differences between right and left hand or foot movement for Negative BOLD responses have

not yet been examined in the whole brain. These results of this study indicate that there is no

dominance in Negative BOLD responses in the ipsilateral hand SMI.

The conjunction analysis conducted in the present study demonstrated that a common

Negative BOLD response occurred in the MeFG, CG, posterior cingulate, SPL, MTG, postcen-

tral gyrus, precuneus, middle occipital gyrus, and cerebellum under all four conditions (RH,

LH, RF, and LF) (Fig 6, and Table 2). It currently remains unclear why deactivation occur in

these regions during voluntary movements of all body parts tested (right/left hand and right/

left foot). Our hypothesis is that it occurred in ‘the context of a default mode network’. The

default mode network has been identified in task-induced deactivation or in the brain activity

associated with a passive fixation baseline condition relative to specific attention-demanding

Fig 6. Brain regions commonly deactivated among RH, LH, RF, and LF conditions. Using the SPM template, areas

showing a decrease in the BOLD signal are superimposed on a 3D-rendered standard brain (upper figures) as well as

on the sagittal plane (lower figure). MeFG = medial frontal gyrus; CG = cingulate gyrus.

https://doi.org/10.1371/journal.pone.0215736.g006
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tasks [16, 51]. This network involves the MeFG (BA 9, 10, 24, and 32), medial and lateral parie-

tal areas (BA 39 and 40), and posterior CG (BA 23, 29, 30, and 31) [17, 18, 52]. The crucial dif-

ference between previous studies investigating the default mode network and the present

study is the task condition. Previous studies investigated neural activity during cognitive pro-

cessing such as mind-wandering [53] and autobiographical remembering [54]. The present

study did not use these cognitive tasks. However, the default mode network may be active not

only during relatively unfocused cognitive tasks, but also during voluntary movements of the

hands and feet.

Another possible explanation for the Negative BOLD responses observed in the present

study involves the blood steal phenomenon. However, this explanation is not applicable to the

present study because the regions that showed Negative and Positive BOLD responses were

not adjacent (Figs 1–4). In future studies, diffusion tensor imaging may be useful for clarifying

the neuropathology related to Negative and Positive BOLD responses in more detail.

A limitation of the present study was that the frequency of motor execution did not match

between the hand and foot conditions (S1 Table). This occurred even though subjects were

told to use a similar pace under all the conditions tested. We did not use a metronome during

recording because other cognitive neural activities, such as auditory processing and audio-

motor matching activity, may be included in Negative and Positive BOLD signals. We specu-

lated that the motor execution of repetitive plantar flexion and dorsiflexion with the right or

left ankle may be more difficult to perform than that of repetitive extension and flexion of the

Table 2. Deactivated regions for the conjunction analysis during RH, LH, RF, and LF conditions.

Talairach coordinates Z-score

Region Side BA X Y Z

Frontal Lobe

Superior Frontal Gyrus R 10 10 56 -11 3.59

Medial Frontal Gyrus R 10 10 56 1 4.24

Parietal Lobe

Precuneus L 19 -8 -80 37 4.30

R 7 6 -35 46 4.13

Postcentral Gyrus R 7 8 -55 62 4.22

Superior Parietal Lobule L 7 -24 -60 47 3.77

Temporal Lobe

Middle Temporal Gyrus R 39 42 -65 14 3.93

Occipital Lobe

Cuneus L 17 0 -79 11 3.75

R 7 22 -78 33 4.58

R 18 18 -77 17 5.23

R 19 2 -80 32 4.56

Middle Occipital Gyrus R 18 38 -85 13 4.10

R 19 24 -85 10 4.44

Limbic Lobe

Cingulate Gyrus L 31 -2 -45 28 3.44

Posterior Cingulate R 30 14 -50 14 3.47

Sub-lobar

Cerebellum (Declive) R 34 -79 -20 3.93

BA, Brodmann’s area; L, left hemisphere; R, right hemisphere

Activated regions in the Positive BOLD analysis are listed in S2 Table.

https://doi.org/10.1371/journal.pone.0215736.t002
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right or left hand. Positive BOLD signals in the SMI were enhanced as the frequency of motor

execution increased [5, 55]. In Sadato’s study [55], movements of the right index finger were

paced with the steady beat (0.25, 0.5, 0.75, 1, 2, 2.5, 3, and 4 Hz) of a metronome, which was

placed close to the subject’s ear. They classified these paces into four categories: very slow (0.25

and 0.5 Hz), slow (0.75 and 1 Hz), fast (2 and 2.5 Hz), and very fast (3 and 4 Hz). They then

compared the magnitude of brain activity for the different rates. The magnitude in the SMI

was almost the same between 0.75 and 1 Hz at the slow rate. In the present study, the mean val-

ues of frequencies across all subjects were 1.33 Hz in the RH condition, 1.33 Hz in the LH con-

dition, 1.16 Hz in the RF condition, and 1.14 Hz in the LF condition. The difference between

the right hand and foot was approximately 0.17 Hz, and approximately 0.19 Hz between the

left hand and foot. Therefore, although the difference in frequency was significant, the effects

of frequency on Negative BOLD signals between the hand and foot conditions appeared to be

negligible.

In addition, no Negative BOLD responses under the LH condition were detected using the

FWE with a cluster-level threshold of p< 0.05, whereas those for SMI under the RH, RF, and

LF conditions were found (Table 1). These findings suggest differences in the strength of Nega-

tive BOLD responses among conditions. The detailed mechanisms should be clarified in future

studies.

Conclusion

Negative BOLD responses during hand movements were observed not only in the ipsilateral

hemisphere of SMI, but also in other brain regions, such as the MeFG, MFG, and SFG. Fur-

thermore, Negative BOLD responses during foot movement were detected in the bilateral

hand SMI as well as in the MeFG, SFG, IFG, MTG, PHG, ACC, CG, fusiform gyrus, and pre-

cuneus. There were also two common deactivated regions, the MeFG and CG, which were

independent of the movements of the upper and lower limbs. These regions closely corre-

sponded to the default mode network, which was previously reported.

We suggest that the Negative BOLD responses observed during voluntary movements are

produced by three mechanisms: (1) transcallosal inhibition from the contralateral to ipsilateral

hemisphere in the SMI, (2) the deactivated neural network with several brain regions, and (3)

the default mode network in the MeFG and CG. The present results extend the potential of uti-

lizing Negative and Positive BOLD signal comparisons to obtain a better understanding of the

motor control system.
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