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Abstract

This work presents an adapted Random Sampling - High Dimensional Model Representation (RS-HDMR) algorithm for
synergistically addressing three key problems in network biology: (1) identifying the structure of biological networks from
multivariate data, (2) predicting network response under previously unsampled conditions, and (3) inferring experimental
perturbations based on the observed network state. RS-HDMR is a multivariate regression method that decomposes
network interactions into a hierarchy of non-linear component functions. Sensitivity analysis based on these functions
provides a clear physical and statistical interpretation of the underlying network structure. The advantages of RS-HDMR
include efficient extraction of nonlinear and cooperative network relationships without resorting to discretization,
prediction of network behavior without mechanistic modeling, robustness to data noise, and favorable scalability of the
sampling requirement with respect to network size. As a proof-of-principle study, RS-HDMR was applied to experimental
data measuring the single-cell response of a protein-protein signaling network to various experimental perturbations. A
comparison to network structure identified in the literature and through other inference methods, including Bayesian and
mutual-information based algorithms, suggests that RS-HDMR can successfully reveal a network structure with a low false
positive rate while still capturing non-linear and cooperative interactions. RS-HDMR identified several higher-order network
interactions that correspond to known feedback regulations among multiple network species and that were unidentified by
other network inference methods. Furthermore, RS-HDMR has a better ability to predict network response under
unsampled conditions in this application than the best statistical inference algorithm presented in the recent DREAM3
signaling-prediction competition. RS-HDMR can discern and predict differences in network state that arise from sources
ranging from intrinsic cell-cell variability to altered experimental conditions, such as when drug perturbations are
introduced. This ability ultimately allows RS-HDMR to accurately classify the experimental conditions of a given sample
based on its observed network state.
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Introduction

The development of high-throughput and multiplexed biolog-

ical measurement techniques has led to the growing richness of

data sets that describe biological networks [1–6]. These methods

include particle-based and multiplex flow cytometric assays [7–9],

kinase and protease activity assays [10,11], and higher-throughput

mass-spectrometry [2,12,13]. Such techniques not only allow for

the simultaneous observation of multiple (w10) network nodes,

but are of high enough resolution to capture complex nonlinear,

high-order network interactions characteristic of many biological

systems. When paired with systematic perturbation experiments,

these methods can be used to infer network structure and

understand the regulatory interactions among the network

components. To achieve these objectives, a key challenge is to

devise appropriate analysis tools that can handle the rich data

efficiently and reliably.

Several network inference techniques have previously been

developed for analyzing multivariate biological data. Network

identification algorithms based on linearized steady-state models

and regression analysis [14–18] are particularly effective in

conditions of sparse sampling and noisy data. However, they

often discount nonlinear interactions which may become signifi-

cant in complex biological networks. To capture both linear and

nonlinear interactions, Bayesian networks (BNs) [19,20], clustering

algorithms [21,22], and information-theoretic approaches

[5,23,24] have been employed. In some cases, BNs can infer

directionality, causality, and allow for quantitative predictions of

biological network responses [25]. Nevertheless, this capability can

be limited by the high data-sampling requirements of the

algorithm. Several nonlinear regression methods have an ability

to predict biological network structures and their corresponding

responses from multivariate and time-dependent data [26–28],

although in general these methods do not readily support network
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structure inference while also efficiently allowing for the determi-

nation of higher-order cooperative statistical relationships.

This article introduces an adapted Random Sampling - High

Dimensional Model Representation (RS-HDMR) algorithm for a

nonlinear, deterministic, and predictive characterization of inter-

actions among biological network components and their response

to exogenous perturbations [29,30]. RS-HDMR has previously

been applied to a wide range of scientific (including biological)

problems [31–34], and this work extends it to suit noisy, highly

correlated data in biological network applications. From a

multivariate data set, RS-HDMR extracts a hierarchy of low-

order input-output (IO) relationships (termed RS-HDMR com-

ponent functions) among the network components. These

component functions are inherently nonlinear and have clear

physical interpretations: they describe the independent and

cooperative effects of perturbing one or more network components

on the activity of other network components. Consequently,

analysis of the RS-HDMR functions provides a quantitative

understanding of the network interactions. In addition, the

collection of these functions can serve as a fully equivalent

operational model (FEOM) to predict the network response under

previously unsampled conditions, including external perturbations.

In this article, we further show that the network structure (that is, a

map of the functional connections among the network compo-

nents) can be generated from a global sensitivity analysis based on

the extracted component functions.

As a general identification and interpolation technique, RS-

HDMR has various advantages in bio-applications [29]. The

operation of RS-HDMR does not require any mechanistic

knowledge of the target network; the algorithm can perform even

in the presence of unknown/unmeasured network components.

Second, RS-HDMR analysis is robust against issues of over-fitting,

sampling sparsity, and data noise. Third, RS-HDMR identifies the

nonlinear and cooperative interactions, which can be important

for biological networks, using an efficient and readily interpretable

statistical framework. The inherent nonlinearity of RS-HDMR

also enables the laboratory perturbations to go beyond the linear

regime around the nominal state, which is a limitation of linear

based methods. The data-sampling requirements of RS-HDMR

scale favorably with the number of network nodes, therefore a

moderate sampling effort is usually sufficient even with very large

networks [35]. One result of this feature is that data discretization

is generally not necessary for RS-HDMR analysis, hence

information loss is minimized. In addition to inferring network

structure, RS-HDMR can predict unsampled network response

with in some cases better accuracy than several statistical methods

that focus on prediction while not providing a clear interpretation

of the underlying network structure. Lastly, RS-HDMR can be

used to classify a network based on its observed state, again with

accuracy in some cases better than that achieved by statistical

techniques not associated with network structure inference. All of

these properties render RS-HDMR an attractive technique for

applications in systems biology and bioengineering.

Network species, or nodes, described by RS-HDMR can involve

a wide range of biological entities, including proteins, RNAs,

metabolites, and their combinations. In this proof-of-principle

study, RS-HDMR was applied to several sets of cell-signaling data,

including those used for benchmarking methods from the

‘‘Dialogue on Reverse Engineering Assessment and Methods’’

(DREAM) competitions [36–39]. This work chiefly focuses,

however, on an application to a human T-cell signaling

transduction cascade. Experimentally, single-cell intracellular

protein expression and phosphorylation levels of the network

nodes were simultaneously measured through multi-color flow

cytometry, and the laboratory data was collected under nine

different perturbative conditions [25]. RS-HDMR was imple-

mented to analyze the laboratory data, resulting in a nonlinear

quantitative input-output (IO) model of the network. The model

can be utilized in both forward and reverse directions: it predicts

the network response under previously unsampled conditions and

it allows for the response of exogenous perturbations to be inferred

by the observed network state. A map of network structure was

also deduced and compared to network structures obtained

through mutual information network analysis, through descrip-

tions of the network in the literature, and through a previous

Bayesian network analysis [25]. RS-HDMR was successful in

identifying, with high-confidence, all but three of the first-order

connections (connections between two protein species) well

documented in the literature. The significant second-order RS-

HDMR functions were shown to characterize several known

feedback and cooperative mechanisms, which were unidentified

through other methods in the T-cell signal transduction cascade.

Results

The RS-HDMR Algorithm
RS-HDMR is a tool to deduce nonlinear and cooperative

interactions between a set of inputs and an output. In application

to biological systems, input-output relationships include both

direct biochemical reactions, such as protein-protein phosphory-

lation, and indirect interactions such as transcriptional regulatory

events. The independent and cooperative effects of multiple input

variables x~(x1,x2,:::xn) on an output y~f (x) can be described

in terms of a hierarchy of RS-HDMR component functions [29]

f (x)~f0z
Xn

i~1

fi(xi)z
X

1ƒivjƒn

fij(xi,xj)z:::

z
X

1ƒi1v:::vilƒn

fi1i2:::il
(xi1

,xi2
,:::xil

)z:::zf12:::n(x1,x2,:::xn)

ð1Þ

Here f0 represents the mean value of f (x) over the input sample

space, the first-order component function fi(xi) describes the

generally nonlinear independent contribution of the input variable

xi to the output, the second-order component function fij(xi,xj)

describes the pairwise cooperative contribution of xi and xj , and

further terms describe higher order cooperative contributions. In

this application, we limit component functions to the zeroth, first,

second, and third order. When the exact form of f (x) is unknown,

the RS-HDMR component functions can be approximated by

empirical functions, such as polynomials or splines, as long as they

satisfy several orthogonality conditions. A more detailed descrip-

tion of the RS-HDMR algorithm can be found in the Methods and

Supplementary Text S1.

Problems of over-fitting frequently arise when analyzing noisy,

sparsely sampled, highly correlated data. We adapt RS-HDMR to

these problems by employing a form of ‘‘model reduction’’, where

only inputs and their respective component functions measured to

be significant at pv0:01 using the F-test are included in the RS-

HDMR expansions [40] (Supplementary Text S1). Although not

central to our aims here, precise type-I error quantification

requires multiple hypothesis testing correction. RS-HDMR may

alternatively incorporate other methods of regularization to deal

with over-fitting, such as LASSO [41] or the Bayesian Information

Criterion [42], which introduce penalty terms for the number of

parameters in the model. Controlling false inclusions is especially

relevant in application to network inference, where we aim to

eliminate connections that proceed through measured intermedi-
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ate nodes. We implemented a synthetic network model to

demonstrate how variable selection can successfully address such

issues (Supplementary Text S1, Table S1, and Figures S1, S2, S3,

S4). Once the variables are selected, the coefficients describing

each of the RS-HDMR component functions are calculated

through Monte-Carlo integration and weighted least squares

fitting (see Methods). The resultant expansion in Eq. (1) can then

serve as a FEOM for predicting the network’s input-output

relationships.

Network Structure Identification by RS-HDMR
To characterize the network structure, the relative strength of

network interactions is determined through a global sensitivity

analysis based on the respective RS-HDMR component functions.

In many applications of network structure identification, the

measured nodes may not be defined a priori as being either inputs

(strictly upstream) or outputs (strictly downstream) relative to other

measured nodes in the network. In other words, causal relation-

ships may not be defined a priori among network nodes. This is

particularly the case when examining systems with inherent

cyclical feedback mechanisms amongst the measured variables

[43]. Time-dependent data can often be used to resolve

directionality and causality within feedback mechanisms, and

RS-HDMR can easily be applied to such data. Without time-series

data, however, the mechanisms of interaction may not be strictly

uni-directional. Reversible biochemical reactions can be driven in

one direction or another and biochemical perturbations may have

off-target effects. When measured nodes are not defined as strictly

inputs or outputs, a separate RS-HDMR IO expansion can be

formulated using each measured node as an output f (x) that is a

function of the remaining network nodes. Consequently, n RS-

HDMR IO mappings are determined for a system of n network

components. For each of the n nodes, a single RS-HDMR model

is trained for all experimental conditions, thus yielding a single,

fully equivalent operational model (FEOM) of system behavior

describing that node. The agglomeration of the n RS-HDMR

expansions then constitutes a complete predictive model of

network behavior with clear statistical and physical inference,

where higher sensitivity indices correspond to significant connec-

tions that are more likely to be direct interactions (see Methods). For

each RS-HDMR expansion, the total sensitivity/variance s of the

output f (x) is decomposed into hierarchical contributions

(si,si,j , . . .) from the individual RS-HDMR component functions

of the remaining input variables

1~
Xn

i~1

Siz
X

1ƒivjƒn

Sijz:::zSE ð2Þ

In Eq. (2), Si~s2
i =s2 is defined as the sensitivity index of the

corresponding RS-HDMR component function, fi(xi).

Sij~s2
i,j=s2 is the sensitivity index of the corresponding second-

order component function, fij(xi,xj). SE is the sensitivity index of

the residual variation of the model (see Methods). The collection of

sensitivity indices Si,
Pn

j=i Sij ,
Pn

j=i

Pn
k=i,j Sijk corresponding to

first, second, and third order component functions of the input

variable xi can then be summed into an index ST
i (i~1,2:::n),

describing both independent and higher-order effects of xi on an

output. The magnitudes of ST
i (i~1,2,:::,n) can be used to quantify

the relative interaction strength between the outputs and the

inputs.

For ready interpretation and visualization, network interactions

described by a sensitivity index ST
i falling above a defined

threshold value Smin are considered significant/direct and are

included in the map of the network structure. An insignificant

network connection is defined as a biochemical interaction that

likely proceeds indirectly through other measured network nodes.

Several approaches have been used to define the optimal Smin,

ranging from imposing an upper limit on the number of network

connections allowed [20], to network structure averaging [44] and

the Bayesian Information Criterion [45,46]. In this work, Smin was

defined empirically as Smin~0:15 (see RS-HDMR Identification of the

T-Cell Signaling Network). Network structure defined by lower and

higher Smin values are included in Supplementary Figures S5 and

S6. The advantages of RS-HDMR in biological applications are

summarized in the Introduction and will be demonstrated in the

following sections.

Single-Cell Data Analysis
The data used in this work are taken from high-dimensional

cytometry measurements [25] where individual cells observed in a

given population describe network behavior under statistically

sampled microenvironments. Flow cytometry was used to simul-

taneously measure eleven different phospholipid and phosphory-

lated protein levels in individual cells ½Akt (S473), Jnk, Raf,

mitogen-activated protein kinases (MAPKs) Erk1 and Erk2, p38

MAPK, Mek1 and Mek2, protein kinase A (PKA) substrate

phosphorylation, phospholipase Cc (PLCc), protein kinase C

(PKC), phosphatidylinositol 4,5-bisphosphate (PIP2), and phos-

phatidylinositol 3,4,5-triphosphate (PIP3)�. Nine data sets, each

describing the same cell-signaling network but under different

perturbative experimental conditions (Supplementary Table S2),

were first analyzed individually using RS-HDMR. Eleven RS-

HDMR IO mappings were determined from each data set to

identify all significant connections among the eleven signaling

nodes observed. Each IO mapping considered a single measured

node as the dependent variable (the output, f (x)) and the

remaining ten nodes as the input variables. Every individual RS-

HDMR mapping (99 total for this application) then provided a

quantitative description of the nonlinear relationships between the

output variable and its respective inputs.

In the second step, results from experimental conditions

employing activation or inhibition of specific protein species (data

sets d3{d9) were paired with data taken from general stimulatory

conditions (the control, d1 and d2) in order to examine the

population-wide effects of exogenous perturbative (i.e., drugged)

conditions. Specific perturbations were not directly observed

through cytometry. Consequently, the measured levels of the

perturbed node were discretized as either high (f (x)~1) or low

(f (x)~0) according to the relative exogenous perturbation,

creating a ‘‘pairwise-comparison’’ dataset with a Boolean output.

We define activating drugs as making their targets high, and

inhibiting drugs as making their targets low. For example, when

pairing the control data set d1 with data observed under PKA

activating conditions (d9), all PKA values in d1 were uniformly set

to low (0), and PKA values from d9 were set to high (1). RS-

HDMR was applied to determine the effect of the specific

activating or inhibitory cue on measured protein species, using the

perturbed species (PKA in this example) as the output f (x).

RS-HDMR Identification of the T-Cell Signaling Network
To generate an overall description of the eleven-node T-cell

signaling network, sensitivity analysis results from the 99 RS-

HDMR IO mappings utilizing individual data sets and the RS-

HDMR IO mappings describing the thirteen (Supplementary

Text S1) pairwise comparisons were aggregated. We calculated the

maximum total sensitivity indices, ST
i,max, for each network

Analyzing Biological Network Behavior Using HDMR
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connection under all experimental conditions (Fig. 1A). We

compared the set of network connections defined by ST
i,max to

connections previously described in the literature (Supplementary

Table S3), to the most significant results from the BN analysis as

presented in Sachs et al (Fig. 1D), and to mutual information

based networks using the ARACNE and CLR algorithms (Fig. 2,

see Comparison with Mutual Information Methods).

We identified twenty-one connections to be ‘‘high-confidence’’

using the threshold ST
i,max§Smin~0:15, which corresponds to the

lowest ST
i,max observed in the individual (rather than pairwise) data

sets (Fig. 1C). Of these connections, all have been reported to some

extent through previous experimental studies in a variety of

systems (Supplementary Table S3). Three previously reported and

well-known connections were ‘missed’ by RS-HDMR and only

identified at a confidence below the threshold Smin~0:15 [PKA/

Raf [47], PKA/p38 [48], and PKC/PIP2 [49,50]]. RS-HDMR

analysis successfully identified all but two of the connections

revealed through the BN approach (Figs. 1C-D), as well as two

additional connections well-established in the literature but not

identified by BN analysis [PIP3/Akt [51,52], PKC/Plcc
[49,50,53]]. Similar to BN analysis, RS-HDMR dismisses

connections (or arcs) already explained by other identified arcs,

thereby minimizing indirect relationships involving measured

intermediate species. For example, Raf is known to activate Erk

through an intermediate, Mek. RS-HDMR infers the interaction

between Raf and Erk to be indirect. Moreover, RS-HDMR

successfully identified indirect relationships defined through

unmeasured nodes. For example, the RS-HDMR identified

connection between PKC and p38 is known to proceed through

unmeasured mitogen activated protein kinase kinase kinases

(MAPKKK).

RS-HDMR analysis successfully identified several high-confi-

dence second-order connections. Significant cooperative IO

interaction generally occurred between nodes already described

by significant first-order component functions. Three sets of three

nodes each were observed to have significant second-order

interaction among themselves: (1) PLCc, PIP2, and PIP3; (2)

PKA, Akt, and Erk; and (3) PKC, Jnk, and p38. RS-HDMR

analysis revealed the connections between PIP2, PIP3, and PLCc
to be the most significant of the above three sets of second-order

high-confident interactions. These three proteins are unique from

other measured nodes in that they have significant negative

feedback interaction. Activated PLCc catalyzes the destructive

cleavage of PIP2. PIP3, the product of PIP2 phosphorylation,

serves as a docking site for PLCc and ultimately catalyzes PLCc
phosphorylation and activation. Evidence in the literature also

supports the presence of complex feedback and cooperative

interactions among Erk, Akt, and PKA [54–56]. Akt may interact

with Erk through the Raf/Mek/Erk pathway and with PKA

independently of Erk through a Calmodulin-dependent protein

kinase kinase (CaMKK)-mediated pathway. However, PKA has

been reported to negatively regulate Erk activity by phosphory-

lating Raf [57,58]. In RS-HDMR expansions, these cooperative

and/or feedback interactions are one explanation for the

significant second-order RS-HDMR component functions ob-

served.

Comparison with Mutual Information Methods
ARACNE and CLR are two common mutual-information

based network inference algorithms that, similar to RS-HDMR,

are designed to (A) infer non-linear network connections that

may/may not proceed through unmeasured intermediates, and (B)

eliminate indirect connections that proceed through measured

intermediates [5,24,59]. We applied these algorithms to the T-cell

signaling data as a further comparison to RS-HDMR network

inference. To implement ARACNE and CLR, the data from each

of the nine individual data sets were discretized into
ffiffiffi
n
p

bins of

equal frequency, where n is the number of data points in a given

set. We used an empirical estimator of mutual information and the

most stringent threshold (0.0) for ARACNE’s Data Processing

Inequality filter [59]. As with RS-HDMR analysis, we combined

the maximum network connection scores over all of the individual

data sets to generate the ensemble network structure. Figs. 2A-C

juxtaposition the resultant network structures for RS-HDMR,

ARACNE, and CLR, using data only from the individual data

sets. The matrix symmetry reflects the non-directionality of the

inferred networks, and network connections (‘‘edge weights’’) are

normalized to have values between 0–1 for each graph. For the

RS-HDMR case (Fig. 2A), the heat map values represent the

maximum ST
i values observed regardless of which species was the

HDMR output or input. Venn diagrams also compare the three

methods: we use a threshold on normalized network edge weights

to define a network connection as either present or absent (similar

to Smin described above), and use Venn diagrams to depict the

overlap in network structure for a given threshold (Figs. 2D-G).

For this data, all RS-HDMR network edges are captured by both

CLR and ARACNE at some non-zero value (Fig. 2D), suggesting

RS-HDMR is not as sensitive as the other methods. However, the

fact that RS-HDMR edges are a perfect subset of both the CLR

and ARACNE networks suggests RS-HDMR has a low false-

positive rate in detecting insignificant edges that proceed through

measured intermediate nodes. At higher edge weight thresholds,

the network structures become more consistent across the three

inference methods, and the root-mean-squared difference (RMSD)

between RS-HDMR and either of the other two networks is

*15%. Figs. 2H-Q incorporate pairwise-comparison data sets

into the network structures, where only network edges between the

perturbed species (ordinate) and the other network nodes are

added (consequently, the networks become asymmetrical). Venn

diagrams compare these networks (Figs. 2K,L,P,Q), and Figs. 2M-

O display only those network edges with a normalized weight of

w0:4 (corresponding to Fig. 2P, RMSD = 0.17).

One of the most significant differences between RS-HDMR and

the mutual information algorithms (with regard to network

inference) is that RS-HDMR has the capability to infer higher

order cooperative network interactions. This difference may

explain some of the discrepancies between the algorithms’ results.

For example, pairwise-comparisons have a relatively small impact

on the number of network edges detected by either ARACNE or

CLR; however, they dramatically increase the number of edges

inferred by RS-HDMR. RS-HDMR identifies much more

significant higher-order interactions in the pairwise-comparison

data relative to inference within individual data sets, and these

cooperative interactions heavily add to the network inference

results. As another example, RS-HDMR tends to have more edges

with high edge weights compared to CLR or ARACNE (Figs. 2M-

O, P,Q). The edges that are strongest only in RS-HDMR

inference (such as PKA–Akt and PKC–Jnk) tend to also have

significant higher-order interactions with other nodes.

Physical Interpretation of RS-HDMR Results
In addition to providing an overall description of network

structure, RS-HDMR also serves as a tool for enabling a physical

interpretation of network interactions. This is achieved by

analysis of the individual RS-HDMR component functions and

their relative contributions to the network behavior. For

example, all of the nine RS-HDMR IO mappings formed with

Analyzing Biological Network Behavior Using HDMR
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PKC as the output show the same two input variables to be most

significant, quantified by the sensitivity indices of both their total

and first-order RS-HDMR component functions (ST
l and S

(1)
l ,

respectively). Each of the nine mappings describe PKC to be

most sensitive to p38, with an average first-order sensitivity index

(S
(1)
p38) of 0.3. The second most significant component function in

each RS-HDMR mapping corresponds with Jnk, having an

average first-order sensitivity index (S
(1)
Jnk ) of 0.1 (Fig. 1B). The

average RS-HDMR mapping with PKC as the output can be

described with the following equations:

Figure 1. Network Inference Using RS-HDMR. (A) Heat Map of RS-HDMR sensitivity indices. The indices ST
i,max shown are the maximum ST

i values
among the nine individual data sets and thirteen pairwise comparison data sets. Network species on the ordinate describe the output y~f (x), and
species on the abscissa represent the inputs xi . (B) Sensitivity Indices Si of First Order RS-HDMR Component Functions fi(xi). First-order RS-HDMR
component functions were calculated from all nine individual data sets, using each variable as the output f (x). The first (S1) and second (S2) most
significant functions were consistent across all nine data sets, and their average sensitivity index values Si are reported. (C) RS-HDMR Identified
Significant Network Connections. Significant network interactions (Smin~0:15) from individual and pairwise RS-HDMR analysis. (D) Bayesian Network
Analysis Identified Network Topology. Reproduced from Sachs et al., 2005.
doi:10.1371/journal.pone.0037664.g001

Figure 2. A Comparison of ARACNE, CLR, and RS-HDMR Network Inference. Network inference results both excluding (A–G) and including
(H–Q) connections identified through pairwise comparison datasets. (M–O) Network connections with normalized edge weights w0:4. (A,H,M) RS-
HDMR sensitivity indices, ST

i,max. (H,M) Network species on the ordinate describe the output y~f (x), and species on the abscissa represent the inputs

xi , for the connections identified through pairwise-comparison. (B,I,N) ARACNE network inference results. (C,J,O) CLR network inference results. (D–G,
K–Q) Venn diagrams comparing network connections identified with normalized edge weights above a defined threshold of 0, 0.2, 0.4, or 0.6. Circle
areas scaled by the number of connections.
doi:10.1371/journal.pone.0037664.g002
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PKC½ �{f0~fp38( p38½ �)zfJnk( Jnk½ �)z
Xnp

l~3

glzE ð3Þ

1~S
(1)
p38zS

(1)
Jnkz

Xnp

l~3

(Sl)zSE ð4Þ

where fp38( p38½ �) and fJnk( Jnk½ �) represent the first-order

component functions of p38 and Jnk, respectively, with

corresponding sensitivity indices S
(1)
p38~0:3 and S

(1)
Jnk~0:1. f0

represents the zeroth-order component function, equal to the

average response of PKC½ �.
Pnp

l~3 (gl) and
Pnp

l~3 (Sl) represent

the remaining component functions in the expansion and

corresponding sensitivity indices, respectively, where np is the

total number of significant component functions included in the

model. E and SE respectively describe the residual error of the

model and its corresponding sensitivity index.

As demonstrated by Fig. 3A–B, first-order component functions

can show significant nonlinear behavior. Inspection of the shape of

the component functions can provide meaningful physical insights.

For example, the function dependence of PKC upon p38 is

strongly positive, nearly linear, and consistent across several

experimental conditions (Fig. 3A). In contrast, the function

describing Jnk’s effect on PKC is much more nonlinear and only

consistent under different experimental conditions at lower levels

of Jnk. The function defining the relationship between Jnk and

PKC is neither monotonic nor consistent across experimental

conditions at high levels of Jnk, and consequently may be

considered less significant (Fig. 3A).

Second and third order cooperative IO relationships were

generally observed to be less significant than first-order

dependencies in the T-cell signaling network. For example, all

RS-HDMR expansions in data set d1 had total first-order

sensitivity indices of 40% on average. The average total second

and third order sensitivity indices were 5% and 2%, respectively.

Nonetheless, several significant second-order terms were identi-

fied. Fig. 3C describes the second-order term with the highest

sensitivity index (Sl~0:13) of the nine RS-HDMR expansions

with PKC as the output. This term captures the cooperative

influence of p38 and Jnk on PKC, as calculated from data set d7.

In this example, the cooperative influence is highest when both

Jnk and p38 are high. Adding the significant higher-order

component functions in this case increased the data-fitting quality

of RS-HDMR by 40% (Fig. 3D-E) according to the correlation

coefficient R2.

Other significant cooperative interactions were identified

among PIP2, PIP3, and PLCc, where second-order component

functions accounted for up to 10% of the total observed variance.

These identified higher order terms significantly improved data

fitting and the predictive ability for several IO mappings. Inclusion

of second order RS-HDMR component functions for data set d3,

using PLCc as the output y~f (x), increased data-fitting quality so

that the portion of RS-HDMR calculated data falling within 1% of

observed values increased by 40%.

RS-HDMR second-order component functions are not con-

strained to pre-defined logic-based functions such as AND and

OR gates, compared to some other methods [39]. However, in

some cases RS-HDMR component functions are amenable to a

logic-based interpretation. Fig. 4E-F shows the first and second

order component functions corresponding to RS-HDMR expan-

sions describing each of the eleven network nodes as the output in

data set d1. Several of the second-order component functions

Figure 3. First and Second Order RS-HDMR Component Functions Describing PKC. (A-B) First-order RS-HDMR component functions
describing interaction between inputs and an output, PKC, were averaged over corresponding RS-HDMR functions describing the same network
connections under various experimental conditions. The thick line describes the mean function, and thin lines are one standard deviation above and
below the mean function. (C) With PKC as the output variable f (x), the heat map indicates fi,j(xi ,xj) values as a function of xi (p38) and xj (Jnk)
shown on the ordinate and abscissa, calculated from data set d7 . (D-E) The correlation coefficient R2 (D) and scatter plot (E) describe RS-HDMR fitting
accuracy for predicting PKC in data set d7 , with or without including higher-order component functions. (A-C) p38 and Jnk are normalized to [0,1],
and component function outputs are the same scale as (E).
doi:10.1371/journal.pone.0037664.g003
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roughly follow the shape of an OR function, where fi,j(xi,xj) is

high only when either xi or xj is high, but not both. This is

particularly the case for the interactions between PIP2, PIP3, and

PLCc. As another example, the second-order function relating the

inputs p38 and PKC to the output Jnk resembles a NAND

function, where the function is high only when both p38 and PKC

are low.

Network State Prediction
As described in previous works, the RS-HDMR functions can

serve as a quantitative predictive FEOM when the explicit IO

relationships among the network components are unknown. In the

present application, RS-HDMR FEOMs can use incomplete

information about the network state to predict unmeasured

network properties. To illustrate, we use RS-HDMR to predict

single-cell Akt levels based on observed values for the other

network nodes in the same cell. 70% of the samples in data sets d1

to d9 were randomly selected as the training set to identify the RS-

HDMR component functions, which then served as an FEOM to

predict Akt levels for the rest of the samples (the test set). Table 1

shows that for all data sets, w90% of the Akt values predicted by

the RS-HDMR FEOM fell within 20% of the laboratory values.

We defined the sum of sensitivity indices S’ as the portion of total

variance s2 observed through first, second, and third-order

interactions.

Figure 4. RS-HDMR Component Functions and the Predictive Capability of RS-HDMR Compared to Amelia II. RS-HDMR-generated
FEOMs predict the values of network nodes (shown in columns) in a single cell based on the other node values in that cell, using data set d1. (A)
Fitting accuracy described by the correlation coefficient, R, of the predicted vs. observed values of the test data for RS-HDMR (blue) and Amelia II
(red). (B–D) Fitting accuracy scatter plots, where a higher density of data points is indicated by warmer color. Observed values are normalized to the
maximum for each network node. (B,C) Observed vs. RS-HDMR inferred values of the training (B) and test (C) data. (D) Observed vs. Amelia-inferred
values of the test data. (E–F) RS-HDMR component functions of the first (E) and second (F) order. Only the most significant second order function is
shown, and the heat map indicates fi,j(xi,xj) values as a function of xi and xj shown on the ordinate and abscissa. Inputs xi and xj are linearly
normalized to [0,1]. Component function outputs fi(xi) and fi,j(xi,xj) are normalized to the same scale as in B–D.
doi:10.1371/journal.pone.0037664.g004

Table 1. Portion of Total Variance Accounted for by First-
Order RS-HDMR Expansions for Akt and Relative Errors of First-
Order RS-HDMR IO-mappings.

data set S’ (Eq. 5) 1% 5% 10% 20%

d1 0.72 0.11 0.52 0.78 0.93

d2 0.85 0.16 0.60 0.80 0.96

d3 0.85 0.12 0.54 0.81 0.95

d4 0.93 0.28 0.88 0.97 0.99

d5 0.80 0.13 0.60 0.85 0.96

d6 0.47 0.07 0.33 0.65 0.93

d7 0.65 0.11 0.48 0.73 0.92

d8 0.90 0.18 0.68 0.85 0.97

d9 0.85 0.10 0.51 0.80 0.93

Accuracies are defined as the portion of data points falling within a given
relative error range (1%, 5%, 10%, 20%) from the RS-HDMR-calculated value.
doi:10.1371/journal.pone.0037664.t001
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Table 1 indicates that S’ correlates qualitatively with the

predictive accuracy of the FEOM. The residual variance 1{S’ is

due to higher-order (greater than third order) cooperative

dependencies, measurement noise, and interaction with unob-

served species. The ability of RS-HDMR to accurately infer the

network response to an unsampled perturbation is a key advantage

of the algorithm compared to other network inference algorithms.

Fig. 4 compares the prediction ability of RS-HDMR to a multiple

imputations algorithm, Amelia II, which was top-scoring in the

DREAM 3 signaling-prediction challenge but is less applicable to

network structure inference [37,38,60]. Briefly, Amelia II ‘‘fills in,’’

or imputes, incomplete data sets using an expectation-maximiza-

tion algorithm with a bootstrap approach. To test the predictive

capabilities of the two algorithms, 70% of the samples in the data

set d1 were randomly selected as the training set to identify both

the Amelia II statistical model (see Methods) and the RS-HDMR

component functions. The resultant FEOMs from both algorithms

were then used to predict the test set values of individual network

nodes for a single cell based on the measured state of other nodes

in the same cell. RS-HDMR performs roughly as well as (R2

within 1%) or better than Amelia II in predicting the value of all

eleven network nodes. In some cases RS-HDMR’s improved

performance, such as in predicting PLCg, can be attributed to

cooperative interactions where higher-order RS-HDMR compo-

nent functions significantly add to the predictive accuracy.

We also constructed HDMR FEOMs to infer experimental

conditions based on the measured network state. For pairwise-

comparison of two experimental conditions, datasets describing

the signaling network under generally stimulating conditions were

combined with datasets describing the system under specifically

perturbative experimental conditions (see Single-Cell Data Analysis).

The experimentally targeted nodes are defined as the output

rather than input variables in this case; hence, we call these

‘‘inverse’’ FEOMs. In this particular application, the laboratory

values for the outputs are Boolean (either inhibited (0) or activated

(1)), while the corresponding RS-HDMR predictions generate

continuous values, forming two Gaussian-like distributions (Fig. 5).

When these two distributions are clearly separated, it indicates that

the inverse FEOM can reliably distinguish/predict the two

perturbation conditions. When the perturbations have higher

resolutions (e.g., high, medium, and low perturbations), the inverse

FEOM can similarly deliver more quantitative predictions.

Nonetheless, the inference problem is a simple two-category

classification when the perturbations are Boolean.

An analysis of the inverse FEOM data shows that perturbation

of a node upstream of other measured variables in a signaling

cascade affects the system more significantly. Consequently, RS-

HDMR is able to accurately reveal the differences between the

perturbed and generally stimulated networks. On the other hand,

downstream nodes can be expected to not directly impact other

measured nodes in the network when activated or inhibited. To

define accuracy for the inverse FEOMs, we use a threshold of 0.5

to group RS-HDMR output as one of the two Boolean values (0 or

1), and calculate the portion of data that are correctly modeled as

falling above or below the threshold based on their respective

experimental conditions. Perturbations of PKA, a protein previ-

ously observed to be an upstream node in the T-cell signaling

cascade [47,48,61,62], are well mapped by RS-HDMR (Fig. 5B).

RS-HDMR mapping determines from which conditions a given

data point was observed in, with over 99% accuracy, when

comparing data observed under PKA-activating conditions versus

general stimulatory conditions. In contrast, perturbations of Akt, a

species previously reported as downstream in the signal cascade

[63–66], show much less effect on network behavior. Comparison

between data from general stimulating and Akt-inhibited condi-

tions yields a significantly lower RS-HDMR fitting accuracy of

80%. PIP2 also showed a lower RS-HDMR fitting accuracy of

82%. The detectable effect of perturbations on network behavior

was observed to be significant for Mek and PKC perturbations,

resulting in inverse FEOMs with 95% and 99% accuracy,

respectively. Because PKC was inhibited and activated in two

separate datasets, it was possible to make a comparison between

each dataset observed under the perturbed condition and the

control dataset, as well as directly between the two datasets

observed under perturbative conditions. As evidenced in Fig. 5F-

H, RS-HDMR best identifies differences in network behavior

between the two datasets observed under specific perturbed

conditions. We implemented a well known method, a support

vector machine (SVM) classifier, to categorize the network states

and benchmark RS-HDMR inference accuracy (Fig. 5C). In all

cases, RS-HDMR performs roughly as well as (accuracy within

*1%) or better than SVM while having the advantage of also

providing network structure inference.

Robustness of RS-HDMR Results to Sample Size and
Data Noise

The performance of many network identification algorithms,

including BN analysis, are sensitive to the data sample size being

analyzed. The data sample size used in the individual dataset RS-

HDMR analyses was reduced to 25% of the original size to

similarly test the sensitivity of RS-HDMR network identification

capability. As with analysis of the full data sets, multiple subsets of

data were generated and analyzed for consistency purposes. The

effect of truncated sample size on the individual RS-HDMR

expansions was different for each of the 99 RS-HDMR mappings.

In several cases, reduced data size led to complete loss of

calculated first and second order interactions determined to be

significant by the F-test, resulting in a collapse of the RS-HDMR

expansions to only the zeroth-order term (such that f (x)~f0). In

most cases, however, first-order interactions were still captured,

with insignificant effect on data-fitting and predictive accuracy as

compared to mappings derived from the entire data set. In this

application, network structure identification through RS-HDMR

sensitivity analysis was robust to the tested decrease in sample size.

All of the ten high-confidence first-order network connections

indentified by using the full data sets were also captured through

Table 2. Dream3 Phosphoprotein Prediction Results.

Team NSE PVAL

Amelia II 3102 2 * 10222

RS-HDMR No Noise 3250 3 * 10222

Team 106 3310 4 * 10222

RS-HDMR Noise 3500 6 * 10222

Team 302 11329 7 * 10214

Numbered teams are as of yet unnamed participants. Inference performance is
judged by the normalized square error (NSE) and corresponding p-value (PVAL).
‘‘Noise’’ and ‘‘No Noise’’ refer to whether or not training data was pre-processed
with multiplicative noise.
doi:10.1371/journal.pone.0037664.t002
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RS-HDMR analysis of the truncated data sets. Significant second

and third order functions were still observed in many data sets,

although higher-order mapping was slightly more sensitive to data

truncation.

The robustness of the RS-HDMR analyses to noise in this

application was tested through the addition of artificial noise

beyond that naturally present in the experimental data. Noise was

increased in the system by the addition of a random number E to

the measured value xi, such that Xi~xizE. E was chosen from the

Figure 5. Inverse FEOMs Infer Experimental Conditions. Inverse FEOMs were constructed between data sets describing the network under
general stimulatory (‘‘Control’’) and specifically perturbative (‘‘Activated’’ or ‘‘Inhibited’’) experimental conditions. The perturbed node was used as
the output, whose values were digitized according to experimental conditions, being either relatively high (1) shown in black or low (0) shown in
white. (A–B, D–H) These histograms describe RS-HDMR-fitting ability for data observed under activating or inhibiting conditions. Although the
experimental perturbations are approximated as discrete, RS-HDMR expresses the model output as continuous, thus the distribution of RS-HDMR
fitted results approximately resembles two Gaussian distributions. Clear separation of the two distributions for a given plot indicates good RS-HDMR
prediction of the corresponding perturbation. (C) Inverse FEOM accuracy using a SVM classifier and RS-HDMR. RS-HDMR accuracy corresponds to
histograms in A–B, D–H.
doi:10.1371/journal.pone.0037664.g005
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normal distribution N(0,si,n), with i being a given node in data set

n, and si,n~(�xxi)=4. The effect of additive noise to individual RS-

HDMR expansions varied such that while some mappings were

insignificantly affected, several lost all significant first and second

order component functions. This also occurred in the RS-HDMR

analysis of the truncated data sets. Generally, both noise and

reduced sample size mostly affect accurate identification of

component functions previously described by lower sensitivity

indices. Added noise or small sample size potentially masks weak

network connections, leading them to be excluded from the RS-

HDMR formulation. In this work, however, the aggregated RS-

HDMR sensitivity results proved to be robust to the increased

stochasticity. All ten of the high-confidence first-order connections

identified through single data set analysis were captured using the

noisy data. As with the effect of reduced sample size, the higher-

order RS-HDMR analyses were more sensitive to the artificial

noise than the first-order connections. Most of the second and

third-order interactions identified using the original data set were

observable with added noise, although some previously significant

higher-order component functions lost significance.

Benchmarking RS-HDMR Performance with the DREAM
Challenges

The DREAM project organizes reverse-engineering challenges

that are open to the research community [36,37]. The past two

challenges from Dream3 (2008) and Dream4 (2009), in the

categories of ‘‘Signaling Response Prediction’’ and ‘‘Predictive

Signaling Network Modeling,’’ respectively, are published online

(http://wiki.c2b2.columbia.edu/dream). We have analyzed these

challenges using RS-HDMR to further demonstrate the algo-

rithm’s broad applicability and to compare its performance to

other computational methods used in the field.

Dream3 and Dream4 challenges are similar in both the

experimental data and the prediction task. Briefly, the challenges

explore the extent to which cellular signals and behaviors can be

predicted in response to various extracellular cytokines, growth

factors, and signaling inhibitor drugs [67]. The Dream3 challenge

provides a training set of data that describes the secretion of 20

cytokines and the signaling activities of 17 phophoproteins in

response to a panel of inhibitors, growth factors, and cytokines,

across three time points (Fig. 6A). Furthermore, two cell lines are

analyzed: human normal and cancerous (HepG2) hepatocytes.

Measurements of cytokine release and phosphoprotein activity

were obtained using the Luminex xMAP sandwich assay, under a

total of 122 conditions/time-points for each cell type. The

challenge is to accurately predict the cytokine secretion and

signaling activities in response to conditions that are not included

in the training set. The Dream4 challenge is fairly similar, but

explores fewer conditions/time-points (95), uses only one cell type

(HepG2), measures only signaling activities of seven phosphopro-

teins, and applies fewer growth factors, cytokines, and inhibitors

(Fig. 6B). Unlike Dream3, the Dream4 challenge provides a

proposed network structure culled from the literature that is to be

potentially incorporated into modeling efforts (Supplementary

Figure S7A). RS-HDMR has the capability to incorporate prior

information regarding network structure. However, for this work

we tackle both Dream3 and Dream4 challenges using RS-HDMR

to infer network structure and predict network behavior with no a

priori information of the network structures.

We implement RS-HDMR in a manner consistent with the

DREAM competition guidelines: we organize the training and test

data in a naive manner by defining experimental conditions (e.g.,

time, IL-1a stimulation, presence of inhibitor), as inputs used to

predict an output (e.g., IL-1b secretion, phospho-Akt concentra-

tion). We model time explicitly by considering it as an input

variable, such that RS-HDMR captures temporal network

structure dependencies through higher-order RS-HDMR compo-

nent functions between time and other input variables. Outputs

are known in the training data and allow for us to infer an FEOM

of system input-output relationships based on RS-HDMR

component functions. We then use this FEOM to predict

unknown outputs in the test data, based on the given experimental

conditions for that data. Fig. 6 depicts each input variable as a

column in the ‘‘Condition’’ array, and each output variable as a

column in either the ‘‘Phosphoproteins’’ or ‘‘Cytokines’’ array. We

identified RS-HDMR component functions describing the IO

relationships within each training set and used these functions as

FEOMs to predict cellular response to conditions in the test data.

For the Dream3 challenge, we identified separate RS-HDMR

component functions for each of the two cell-types (indicated as

‘‘+/2 Cancer’’ in Fig. 6A), and consequently employed the two

sets of component functions as cell-type specific FEOMs. The

predictive accuracies of the RS-HDMR FEOMs for each

challenge are described in Tables 2, 3, 4 and shown graphically

in Fig. 7. For the Dream3 challenges, fitting accuracy was judged

by normalized square error (NSE) and an associated p-value,

described in detail elsewhere [37]. For the Dream4 challenges, the

overall score was a function of both the sums of squared errors and

the number of network edges used in the modeling [37]. We report

a network structure consisting of 23 significant first-order RS-

HDMR component functions with associated network edges

(Supplementary Figure S7B), although many higher-order func-

tions among these 23 interactions contributed to the predictive

model.

The higher dimensionality and sparse sampling of the Dream

data compared to the single-cell T-cell data make RS-HDMR

inference relatively ill-conditioned, especially considering all input

variables except ‘‘time’’ are sampled at only two concentrations

over all experimental conditions. To address this issue, we

implemented RS-HDMR after applying a small amount of

Gaussian multiplicative noise (s~4%) to the training data input

variables that was representative of the expected experimental

variation [37,39]. We repeated this procedure ten times to average

the stochastic effects and compared the results to RS-HDMR

inference without added noise (Tables 3, 4). For the Dream3

challenge this procedure significantly improved RS-HDMR

prediction of cytokine release and reduced the NSE by roughly

35%. Individual RS-HDMR expansions are calculated for each

output variable (i.e., each phosphoprotein or cytokine), and adding

noise decreased the RS-HDMR computation time by an order of

magnitude for several of the RS-HDMR expansion calculations

Table 3. Dream3 Cytokine Release Prediction Results.

Team NSE PVAL

Team 106 4460 8 * 10236

RS-HDMR Noise 7330 2 * 10225

RS-HDMR No Noise 11100 5 * 10215

Team 302 14000 3 * 10209

Team 126 29800 1 * 1000

Numbered teams are as of yet unnamed participants. Judging by the
normalized square error (NSE) and corresponding p-value (PVAL), RS-HDMR
performed second most accurately. ‘‘Noise’’ and ‘‘No Noise’’ refer to whether or
not training data was pre-processed with multiplicative noise.
doi:10.1371/journal.pone.0037664.t003
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because of faster solution conversion. For the Dream4 challenge,

which had even fewer training data than Dream3, we added noise

to the training data as above but also increased the sample size.

We expanded each data point in the training set to ten data points

with a centroid of the original data point and a gaussian standard

deviation of s~4%, increasing the training data sample size from

95 to 950. This over-sampling procedure improved the algorithm’s

‘‘prediction score’’ by over 200%. To mimic the original

competition we optimized data pre-processing by cross-validating

with a masked subset of the training data, before analyzing the test

data.

RS-HDMR performs well in the Dream3 and Dream4

challenges in spite of the fact that the Dream challenge

experimental designs and data do not fully exploit RS-HDMR’s

advantages. For example, the experimental conditions tested (e.g.,

the concentrations of cytokines and inhibitors) are discrete rather

than continuous. Furthermore, the data describes population

averages rather than single-cell values, and is thus further from the

ideal ‘‘random-sampling’’ experiments for which RS-HDMR is

better suited.

Discussion

BN analysis was previously employed to characterize the

protein-signaling network from data used in this work [25]. BN

analysis is similar to RS-HDMR in that it serves as a powerful tool

to characterize network interactions from stochastically sampled

multivariate data. However, BN analysis is functionally different

from RS-HDMR in several respects. BN analysis is most

advantageous in providing a framework for inferring causality

through the analysis of probabilistic dependencies. Network

connectivities can be defined within a BN framework frequently

through a multinomial model using discretized variables or

through a multiple regression model. Network connections

described by linear regression models generally fail to effectively

capture nonlinear interactions typical of biological systems [68].

To address this issue, nonparametric regression models have been

employed, but often without efficient calculation of cooperative

interactions [27]. Another common form of BN analysis is

described by multinomial distributions of discrete nodes, which

allows for the identification of both nonlinear and cooperative

network interactions. However, the discretization process often

leads to decreased inference resolution and information loss.

To address these issues, RS-HDMR was used in this work to

quantitatively characterize network interactions through construc-

tion of continuously distributed high-dimensional IO functions.

Nonlinear characterization of IO relationships is made computa-

tionally manageable without losing significant information by

approximating interactions through a hierarchy described by

orthonormal basis functions. The approximation of the RS-

HDMR component functions with orthonormal basis functions

still allows for a clear physical/statistical interpretation while

maintaining relative robustness to outliers [69]. Recent develop-

ments of the HDMR algorithm further demonstrate how the

method can robustly apply to various ill-posed problems, including

systems with correlated variables, and variations of the method

have been successfully applied to noisy and underdetermined

systems as well [70–72]. The RS-HDMR technique should scale

well with large numbers of species and with a modest amount of

data, as each data point will generally project onto all of the

variables to permit the identification of each individual contrib-

uting component function [70]. The basis functions used in

HDMR do not impose any restriction on the types of biochemical

interactions. In principle, any basis functions can be used to

approximate the HDMR component functions. The advantage of

orthonormal polynomials is that the solution is unique [73]. The

imposition of an orthogonality requirement in the RS-HDMR

expansion is consistent with the expectation that interacting

network components are likely dominated by low order terms. The

orthogonality feature also permits the determination of selected

terms of fourth-order and greater order as warranted, for example

to describe protein complexes of greater than three directly

interacting components. Although we utilize polynomial basis

functions in this work, alternative functional forms could be

implemented within the RS-HDMR framework to better capture

particular biological interactions, such as saturable processes.

Similar to many network inference methods, RS-HDMR cannot

explicitly capture feedback relationships from data collected at a

single time-point. However, the basic HDMR framework could

readily be applied to identify feedback relationships from suitable

time-series data. Ultimately, experimental data collection, espe-

cially in the context of cell-signaling networks, is generally the

greatest limitation in capturing statistically significant higher-order

and non-linear interactions when few a priori assumptions or

constraints are made regarding network structure. RS-HDMR has

the advantage of being highly efficient in extracting these

interactions from sparse and noisy experimental data [35,74].

In terms of network structure inference capability, RS-HDMR

results are fairly similar to those obtained through other methods

tested here, including BN analysis, ARACNE, and CLR. RS-

HDMR captures roughly 90% of the connections identified by BN

analysis, while capturing several additional network connections

that have been discussed in previous literature. Likewise, RS-

HDMR largely identifies the same networks connections as

ARACNE and CLR (RMSD *15% for such comparisons).

Results suggest that inference differences between RS-HDMR and

the other methods tested can be explained in part by cooperative

non-linear interactions that RS-HDMR alone captures, such as

the well-documented relationship among PLCc, PIP2, and PIP3.

Network inference accuracy can depend on the underlying

structure of the network, and benchmarking signaling network

inference has been challenging in part due to a lack of good gold-

standard metrics in the field [37,75]. In this work, we use the

accuracy of RS-HDMR with regards to network response

prediction and classification as one metric of network inference

accuracy.

As a predictive model of network behavior, RS-HDMR

FEOMs can use partial information about network state to infer

unknown network properties. This feature has applicability

ranging from controlling network behavior to optimal experimen-

tal design. For example, the predictive properties of RS-HDMR

may be especially useful when facing constraints on the number of

network nodes one can reasonably measure in an experiment.

Furthermore, we demonstrate that RS-HDMR inverse FEOMs

can discern key differences in network behavior that arise from a

Figure 6. Dream Challenge Data. Data for the Dream3 (A) and Dream4 (B) challenges are presented as heat maps, where lighter color indicates
higher value (generally concentration). For the ‘‘Condition’’ arrays, columns may represent whether a condition (e.g., a growth factor or inhibitor) is
present (white) or absent (black). For Dream3 data, the ‘‘+/2 Cancer’’ column describes whether the cell-type is normal (black) or cancer (white). Each
row in either the ‘‘Phosphoproteins’’ or ‘‘Cytokines’’ array corresponds to the adjacent row in the ‘‘Condition’’ array. Arrays labeled ‘‘Training’’ were
used to identify RS-HDMR component functions, which then served as FEOMs to predict network behavior in the ‘‘Test’’ arrays.
doi:10.1371/journal.pone.0037664.g006
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Figure 7. Dream Challenge Prediction Accuracy. Scatter plots describing the observed vs. RS-HDMR predicted values of the training (A,C,E) and
test (B,D,F) data from the three Dream challenges. (A,B) Dream3 challenge phosphoprotein prediction. (C,D) Dream3 challenge cytokine release
prediction. (E,F) Dream4 phosphoprotein prediction.
doi:10.1371/journal.pone.0037664.g007
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variety of exogenous perturbations. The concept of using the

network state to infer experimental conditions can be extended to

a wide array of biological applications. For example, biological

network state has been used in previous studies for the prediction

of cellular phenotypes ranging from embryonic cell fate decisions

to epithelial cell migration speeds [20,76].

More than a tool to map causal network interactions, RS-

HDMR serves as an algorithm to develop a quantitative FEOM of

network interactions which capturing direct, indirect, and

cooperative nonlinear interactions. The algorithm is well-suited

to capturing the effects of exogenous perturbations on network

behavior and can incorporate this information into the overall

network structure, as demonstrated in the T-cell signaling network

application. The hierarchical framework of RS-HDMR supports

the facile incorporation of priors that are usually hierarchical by

nature. For example, RS-HDMR variable selection procedures

can be modified to define a priori which component functions are

included in the network structure. More detailed information may

also be incorporated beyond whether or not the network

connection exists. For example, the weight and/or functional

form of the first-order component function describing the

relationship between two proteins may be defined a priori from

previous binding studies. This prior component function could

then be subtracted from the output f (x) before computing the rest

of the RS-HDMR expansion. Likewise, higher-order priors, which

could for example arise from information about protein complex-

es, may also be incorporated in a similar manner. Finally, prior

information regarding causality (e.g., as is present with time-series

data) can be incorporated either in the variable selection process

or after the RS-HDMR expansion has been solved, at which point

component functions are merely labeled as directional.

Higher-order interactions can be a significant factor in the

characterization of network topology, especially considering the

complexities of protein networks. In several cases, inclusion of

higher-order RS-HDMR component functions significantly im-

proved predictive capability of the model. RS-HDMR is special in

its ability to quantitatively capture such cooperativity within an

efficient hierarchical framework, without resorting to discretiza-

tion. Ultimately, sensitivity analysis derived from the resultant RS-

HDMR-generated component functions allows for quantitative

comparison of the relative interaction strength for each input

variable, and significant connectivities can be aggregated to form a

general representation of network topology.

High-throughput measurement techniques are becoming more

efficient and precise, further transforming biology into a data-

driven science/engineering field. Novel analysis techniques such as

RS-HDMR are needed to fully utilize these new sources of

multivariate data. RS-HDMR can be applied to other biological

networks, including transcriptional regulation networks and

synthetic gene circuits, as a general tool to quantitatively

characterize high-dimensional nonlinear IO interactions. Given

appropriate normalization procedures, RS-HDMR can also be

used to interpret an amalgamation of data taken from not only

different experiments, but from different assays as well. Network

identification through RS-HDMR analysis can ultimately be used

to direct biological network manipulation and control. This can be

achieved by (a) sensitivity analysis of computational models or field

data, or (b) direct optimization utilizing the FEOM [30,74,77].

Methods

RS-HDMR Component Functions
In this work, RS-HDMR component functions are approxi-

mated as weighted orthonormal basis functions in order to reduce

the sampling effort, and they take the following form:

fi(xi)&
Xk

r~1

ai
rq

i
r(xi) ð6Þ

fij(xi,xj)&
Xl

p~1

Xl’

q~1

bij
pqqi

p(xi)q
j
q(xj) ð7Þ

Table 4. Dream4 Signaling Prediction Results.

Team Overall Edge Pred. Akt Erk1/2 IKB Jnk12 p38 HSP27 Mek12

Score Num. Score PVAL PVAL PVAL PVAL PVAL PVAL PVAL

Team 441 6.678 18 8.167 24.3 28.8 29.4 29.8 28.0 210.1 26.8

Team 476 6.324 17 7.73 23.0 213.5 28.2 29.9 29.9 25.3 24.4

Team 533 6.279 26 8.43 24.7 215.7 29.4 29.4 25.7 25.7 28.3

RSHDMR 5.67 23 7.56 24.4 29.6 27.6 29.2 24.0 210.9 27.3

Team 491 5.016 18 6.505 23.1 28.0 27.9 210.3 24.3 26.0 26.0

Team 451 4.688 17 6.094 24.5 210.2 27.0 23.6 25.0 27.9 24.4

Team 256 4.58 22 6.4 24.2 27.6 29.0 210.1 23.8 23.6 26.6

Team 395 3.719 15 4.96 25.6 29.1 23.6 24.3 21.6 22.2 28.3

Team 314 3.097 27 5.33 23.8 24.8 26.6 29.2 23.9 23.4 25.8

Team 544 2.209 18 3.698 23.0 26.7 24.4 23.9 21.7 23.7 22.5

Team 504 1.545 10 2.372 22.9 24.7 21.8 22.9 22.3 21.3 20.6

Team 347 0.403 19 1.974 23.2 20.1 24.0 0.0 22.6 22.9 21.1

Team 471 0 54 4.467 23.0 27.2 23.4 210.4 22.9 22.4 21.9

Numbered teams are as of yet unnamed participants. RS-HDMR inference was the fourth most accurate, as measured by the ‘‘prediction score,’’ which is an overall
metric that incorporates p-values (PVAL) describing the statistical significance of prediction for each of the phosphoproteins. P-values are log10 transformed.
doi:10.1371/journal.pone.0037664.t004
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fijk(xi,xj ,xk)&
Xm

p~1

Xm’

q~1

Xm’’

r~1

cijk
pqrq

i
p(xi)q

j
q(xj)q

k
r (xk) ð8Þ

Where k,l,l’,m,m’,m’’ are integers (generally ƒ3 for most

applications), ai
r, bij

pq, and cijk
pqr are constant weighting coefficients

to be determined, and the basis functions fqg are optimized from

the distribution of sample data points to follow conditions of

orthonormality [74]. The basis functions are approximated in this

work as polynomials, where

qi
1(xi)~a1xiza0 ð9Þ

qi
2 xið Þ~b2x2

i zb1xizb0 ð10Þ

(10)

qi
3 xið Þ~c3x3

i zc2x2
i zc1xizc0 ð11Þ

The coefficients a0,a1,b0,…c3 are calculated through monte

carlo integration under constraints of orthonormality, such that

when integrated over all data points in the training set,

ð
qr(x)dx&0 V r ð12Þ

ð
q2

r (x)dx&1 V r ð13Þ

ð
qp(x)qq(x)dx&0 (p=q) ð14Þ

The weighting coefficient for these basis functions (e.g., ai
r and

bij
pq for first and second order component functions, respectively)

are then calculated from least-squares fitting to the data.

RS-HDMR Sensitivity Analysis
An explicit expression is presented here for the sensitivity

indices, Sl , which are used to quantify the relative strength of the

network interactions and their respective RS-HDMR component

functions. See previous work for a more detailed description

[35,69,71,74]. The RS-HDMR expansion may be given in terms

of the np significant component functions gl(l~1,2,3,:::np), such

that.

f (x){f0~
Xn

i~1

fi(xi)z
X

1ƒivjƒn

fij(xi,xj)z:::zE ð15Þ

f (x){f0~
Xnp

l~1

glzE ð16Þ

where E represents any residual error of the model. The total

variance, s2, of an output variable f (x) is then defined as follows,

summed over all n data points:

s2~
1

2

X
f xð Þ{f0½ �2 ð17Þ

s2~
1

2

X Xnp

l~1

g1zE

" #2

ð18Þ

(18)

The RS-HDMR component functions are calculated to be

mutually orthogonal when the input variables are sampled

independently of one another. However, the orthogonality of

distinct component functions may not be strictly upheld under

conditions of correlation among input variables. Consequently, the

output variance s2 can be decomposed in terms of independent

and correlated contributions of the RS-HDMR component

functions, where the correlated contributions are described as

the summed pairwise-covariances of the individual component

functions:

s2~
1

n

X Xnp

l~1

(gl)
2z

Xnp

l~1

Xnp

i=l

(gl)(gi)zE2

" #
ð19Þ

The sensitivity indices, Sl(l~1,2,:::,np), are then defined as the

portion of the total variance represented by the lth component

function out of np total number of functions [71]. The relationship

between sensitivity indices and the output variance s2 is given as

Sl~
1

s2

1

n

X
(gl)

2z
Xnp

i=l

(gl)(gi)

" #
ð20Þ

An output f (x) can be described through the RS-HDMR

expansion as a hierarchy of first, second, and higher-order RS-

HDMR component functions. The total variance of an output s2

can likewise be decomposed into a hierarchy of sensitivity indices

which describe contributions to the total variance from corre-

sponding first, second, and higher-order component functions.

The np significant component functions and their respective

sensitivity indices Sl can be explicitly specified as corresponding to

particular component functions, such that Si represents the

sensitivity index of the RS-HDMR component function fi(xi).
Sij corresponds to the second-order component function fij(xi,xj).

The hierarchical decomposition of the output variance into

sensitivity values thus takes the following form:

1~
Xnp

i~1

SlzSE~
Xnx

i~1

Siz
Xnx

i~1

Xnx

j=i

Sijz:::zSE ð21Þ

SE represents the sensitivity index of the residual variation of the

model. The sensitivity indices describing first (Si), second (Sij ), and

third order (and higher, if warranted) component functions of

input variable xi can then be summed into indices,

ST
i (i~1,2:::nx), describing both independent and higher-order

effects of xi on an output (where nx represents the total number of

input variables). The magnitudes of ST
i (i~1,2,:::,nx) were

analyzed to quantify the relative strength of connections between
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the output variable and the inputs, acting both independently and

cooperatively.

Further discussion of the RS-HDMR algorithm and experi-

mental details regarding the single-cell signaling network data can

be found in Supplementary Text S1.

Amelia II and SVM Implementation
Amelia II was downloaded as an R-package and implemented

as previously described [37,38,60]. We used Amelia II to predict

the single-cell values of individual nodes in the T-cell signaling

network based on the values of other nodes in the same cell and

training data taken from other cells under the same experimental

conditions. We implemented an SVM classifier to infer the

experimental condition of a single cell based on its measured

network state. SVM was performed using the function SVMtrain()

in MATLAB (R2009a, The MathWorks, Natick, MA), with a two-

norm soft-margin SVM classifier and linear kernel. For both

Amelia II and SVM classification, 70% of the data served as a

training set to infer the values of the remaining 30% test set of

data. We repeated the procedures using different subsets of data as

the training set to control for stochastic effects, which ultimately

were negligible. The mean values of forty multiple imputations

served as the Amelia II predictors of the test set, as described in the

previous Dream3 implementation [38].

Software
A version of RS-HDMR [71] can be found online at http://

www.aerodyne.com. It is free for academic users.

Supporting Information

Figure S1 Model IO Network. Weights of the arrows between

input and output nodes indicate approximate sensitivity index Sl

of the respective network connectivity, ranging from 0.60 to 10{8.

The dashed blue arrow represents the indirect connection (added

as a model modification/perturbation) between x9 and the output,

where x9 is only related to the output through x2. A strong direct

connection between x9 and the output is also added for part of the

analysis, shown by the dashed red arrow.

(PDF)

Figure S2 Heat Map of the Model’s First-Order RS-HDMR

Sensitivity Indices. First-order sensitivity indices were derived

before RS-HDMR analysis directly from the model. Shown here is

a comparison of the calculated RS-HDMR sensitivity indices from

the two different algorithms (with and without model reduction)

describing the model in Fig. S3. The model was observed under

three different conditions (or topologies) to compare the two

algorithms’ performance in accurately identifying changes in

network topology. In the first model condition (no connection with

x9), the output is independent of x9. Row 1 describes the sensitivity

coefficients of the first model condition calculated directly from the

known model coefficients rather than through RS-HDMR

inference. Rows 2 and 3 describe RS-HDMR results when the

first model condition is observed through uncorrelated, randomly

sampled data points. In the second model condition (rows 4 and 5),

x9 is indirectly connected to the output Y through a correlation

with a measured intermediate, x2. In the third model condition

(rows 6 and 7), x9 is indirectly related to the output Y , as in the

previous condition, but an additional direct connection between

x9 and the output exists.

(PDF)

Figure S3 Distribution of Calculated Network Connection

Sensitivity Indices from Experimental Data. Shown are the

cumulative distributions of the RS-HDMR sensitivity indices

calculated from two different RS-HDMR algorithms: that with

model reduction (MR) and that without (no MR). The indices used

are the maximum indices for each network connection observed

over the nine individual data sets. Network connections are

included in the distribution if they fall above a sensitivity threshold,

Smin, specified on the abscissa.

(PDF)

Figure S4 Comparison of RS-HDMR Model Fitting Accuracy.

The performance of the two RS-HDMR algorithms was assessed

by fitting accuracy. Shown here is a comparison of the fitting

accuracy of the two different algorithms (with and without model

reduction) as applied to the test model described in Figure S3.

Differences in fitting accuracy become most significant under poor

sampling conditions, where data is sparse, noisy, and highly

correlated. The fitting accuracies were calculated from data

describing the model under correlated sampling conditions.

(PDF)

Figure S5 RS-HDMR Identified Highly Significant Network

Connections. Network connections fall above a sensitivity index

threshold of Smin~0:30. All network connections observed with

this level of significance have been previously described in the

literature. Black connections are those identified from analysis of

individual experimental conditions. Orange network connections

describe those identified from pairwise comparison of experimen-

tal conditions. The strong connections shown are identified

robustly despite conditions of synthetically added noise and

truncated sample size (see Results).

(PDF)

Figure S6 RS-HDMR Identified Network Connections, Lower

Significance Threshold. Network connections fall above a

sensitivity index threshold of 0.05. Connections in blue describe

network connections with sensitivity indices falling below the

‘‘High Confidence’’ threshold of Smin~0:15, and above the low

confidence threshold of Smin~0:05. All of these ‘‘Low Confi-

dence’’ connections are unaccounted for in the literature as direct

connections.

(PDF)

Figure S7 Dream4 Network Inference Results. (A) Network

structure predicted from the literature [39]. (B) RS-HDMR

network inference results. (C) Highly significant RS-HDMR

network inference results (ST
i w0:15). RS-HDMR connections in

neither (B) nor (C) were significantly enriched for the literature-

based connections in (A), using Fisher’s exact test. The possible

reasons are described in the main text.

(PDF)

Table S1 Test Model Coefficients. The only non-zero second-

order coefficient is given by b2,5~20:0. a9~10:0 for the model

condition with a direct connection to x9.

(PDF)

Table S2 Perturbative conditions and their associated effects.

Nine total data sets were used in the RS-HDMR analyses, each

describing the network under a different perturbative condition,

reported in more detail by Sachs et al., 2005. General stimulatory

agents (Anti-CD3/CD28) were used to activate T cells and induce

proliferation in all but two of the data sets.

(PDF)

Table S3 Previously identified network connections and cita-

tions. Network connections identified through RS-HDMR analysis

have been described in the previous literature. These interactions

Analyzing Biological Network Behavior Using HDMR

PLoS ONE | www.plosone.org 17 June 2012 | Volume 7 | Issue 6 | e37664



are indicated, as well as unmeasured intermediates through which

they might occur.

(PDF)

Text S1 Supporting Materials.

(PDF)
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