
The evaluation of the range of wrist motion is related to 
the evaluation of wrist function.1) There are several ways 
to assess wrist motions including electrogoniometry,2,3) 
three-dimensional (3D) motion capture system,4,5) recon-

struction with computed tomography (CT) or magnetic 
resonance imaging (MRI) data,6-13) measurement with 
light-reflective or light-emitting markers,14,15) and magnet-
ic tracking devices.16) Of these, the motion capture system 
is most commonly used; however, it requires expensive 
special infrared cameras, special programs, and sufficient 
space. Recently, the Wiimote (Nintendo, Kyoto, Japan) 
has been applied in the research of human body move-
ments such as tremors, respiration tracking, and head 
postures.17-19) The purpose of this study was to analyze and 
compare four selected wrist motions three-dimensionally 
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using the Wiimote.

METHODS

Eighteen participants (15 males and three females) with-
out a history of wrist trauma or disease were recruited. We 
conducted this study in compliance with the principles of 
the Declaration of Helsinki. The protocol of this study was 
reviewed and approved by the Institutional Review Board 
of Inje University Sanggye Paik Hospital (IRB No. SGPAIK 
2014-08-002). Written informed consents were obtained. 
The average age of the participants was 35 years (range, 27 
to 44 years) and all were right-handed.

The light-emitting diode (LED) trackers, composed 
of four 950 nm infrared LEDs, were taped onto the dorsal 
aspects of the third metacarpal shaft and on the dorsum 
of Lister’s tubercle, not crossing the wrist crease. Infrared 
signals were detected using optical tracking devices with 
two Wiimotes and were transformed into data in real-time 

using a program developed by Microsoft Visual Studio 
2005 (Microsoft, Seattle, WA, USA), which performed 
the coordinate calculation. Two-dimensional coordinate 
information of infrared signals from the calibration box 
(Withrobot, Seoul, Korea) was converted into 3D coordi-
nate information using a stereo-matching method to make 
the virtual 3D space reflect the actual experimental envi-
ronment.

We selected four tasks that could reflect the func-
tional status of the wrist joint: (1) dart throwing, (2) ham-
mering, (3) circumduction, and (4) winding thread on a 
reel (Fig. 1). Dart throwing, composed of radial extension 
and ulnar flexion, is a representative task that utilizes the 
wrist joint efficiently. Each subject threw a dart 15 times. 
Hammering motion was performed 15 times by each pa-
tient with a mallet to help subjects simulate the motion 
more comfortably. Range of motion (ROM) in dart throw-
ing and hammering was also measured with a goniometer. 
In circumduction, the participants rotated their right 

A B

C D

Fig. 1. Four selective tasks of the wrist motion. (A) Dart throwing. (B) Hammering. (C) Circumduction. (D) Winding thread on a reel. 
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wrists clockwise and their left wrists counterclockwise 
15 times as much as possible at a comfortable speed. For 
thread winding, the participants were instructed to wind 
the thread 20 turns using the one hand on a reel held by 
the other hand as fast as they could, while the forearm was 
fixed, and the wrist motion and time spent were measured.

The Z-axis was established along the longitudinal 
axis of the forearm using the forearm marker. The location 
of the virtual origin of the coordinate system of the wrist 
motion was marked on the Z-axis. The X-axis (radial [–] 
and ulnar [+] deviation) was defined perpendicular to the 
Z-axis in the same plane made by the forearm marker, and 
the Y-axis (flexion [–] and extension [+]) was defined by 
the Z-axis and X-axis. The relative differences of the hand’s 
local coordinate to the forearm’s coordinate were calcu-
lated to reveal the real-time wrist position. As the Z-axis 
(supination and pronation) was considered to be fixed, the 
hand’s coordinate in this coordinate system described by 
the X-axis (radial and ulnar deviation) and Y-axis (flexion 
and extension) was sufficient to evaluate the wrist motion. 
The hand’s location was described by the angles between 
the position vector of the hand marker in this coordinate 
system and the X-axis and between the vector and the Y-
axis. 

The averages of total ROM and the offsets in flex-
ion-extension (FE) and radioulnar deviation (RUD) were 
calculated. The offsets are the deviation from the kinetic 
motion path centroid to the FE and RUD axis,4) which can 
correspond to the medians of ROM. The parameters be-
tween similar tasks, such as dart throwing and hammering, 
or circumduction and thread winding, were compared. As 
dart throwing and hammering might have a curved kine-
matic motion path, the principal axis of the motion curve 
was modeled using the linear-fitting method, and coupling 
between FE and RUD was calculated as the angle between 

the principal axis and the X-axis (Fig. 2A).4) On circum-
duction and thread winding, the circumduction curve 
was drawn using the curve- and circle-fitting method. The 
orientation of the oblique circumduction plane was cal-
culated as the angle between the long axis of the elliptical 
curve or the oblique plane of the circumduction curve and 
the X-axis, and the area under the circumduction curve 
was calculated to describe the two-dimensional maximal 
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Table 1.  Comparison of ROM Measured with Our New Motion 
Analysis System and a Goniometer in Dart Throwing and 
Hammering

Variable
FEROM RUDROM

Average (°) p-value Average (°) p-value

Dart throwing (Rt) 0.267 0.199

   New system 34.0 22.1

   Goniometer 34.8 22.6

Dart throwing (Lt) 0.070 0.107

   New system 34.0 20.3

   Goniometer 34.7 20.8

Hammering (Rt) 0.177 0.248

   New system 49.9 37.2

   Goniometer 50.4 38.1

Hammering (Lt) 0.711 0.446

   New system 46.8 29.6

   Goniometer 46.9 30.3

ROM: range of motion, FE: flexion-extension, RUD: radioulnar deviation, 
Rt: right, Lt: left.
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motion range of circumduction (Fig. 2B).3)

The averages of the parameters of the participants 
were compared statistically using a nonparametric statisti-
cal test such as the Wilcoxon rank-sum test and Wilcoxon 
signed-rank test because the paired data were 18 sets from 

18 subjects.

RESULTS

The ROM values measured with our motion analysis 
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system in dart throwing and hammering were not signifi-
cantly different from those measured with a goniometer 
(Table 1). On dart throwing and hammering, their linear-
fitting axes were from radial extension to ulnar flexion (Fig. 
3A and B). The average of coupling in dart throwing was 
63.0° in the right wrist and 58.6° in the left wrist (Table 
2). On dart throwing, the average ROM was 34.0° in both 
sides in FE and 22.1° in the right wrist and 20.3° in the left 
wrist in RUD. The averages of offset were located on the 
dorsoulnar side, with the right offset was located more to-
ward the ulnar side.

 The average of coupling in hammering was 65.2° 
in the right side and 60.7° in the left side. On hammering, 
the average ROM of FE was 49.9° in the right wrist and 
46.8° in the left wrist, showing no statistical difference 
between both wrists, but the average ROM of RUD of the 
right wrist was 37.2°, which was larger than 29.6° of the 
left wrist (p = 0.005). The right offset in hammering was 
located more in extension (p = 0.003) and more towards 
the ulnar side (p = 0.001).

 Circumduction and thread winding were similar 
ellipsoid motions (Fig. 3C and D). On circumduction, the 
average orientation of the oblique circumduction plane 
was 21.8° in the right wrist and 27.6° in the left wrist. The 
averages of ROM and offset were not significantly differ-
ent between both wrists (p > 0.05).

 On thread winding, the average orientation of the 
oblique plane was 22.7° in the right wrist and 27.2° in the 
left wrist, showing significant difference (p = 0.005). The 
averages of ROM and offset were not significantly differ-
ent between both wrists (p > 0.05).

 The circumduction curve for circumduction and 
thread winding was elliptical. For circumduction, the area 
under the curve of the right was greater than that of the 
left, which revealed that the right wrist executed exercises 
in a wider range (Table 3). However, for thread winding, 
the area of the right was smaller than that of the left. The 

average time for thread winding for 20 turns in the right 
wrist (19.0 seconds) was shorter than that of the left (19.6 
seconds, p = 0.01). The ratio of the length of the long axis 
to that of the short axis was smaller in the right wrist than 
in the left wrist.

 On comparison of dart throwing and hammering, 
coupling was not significantly different in the right (p = 
0.948) and in the left (p = 0.647) (Table 4). The ROM val-
ues of FE and RUD for hammering were larger than those 
for dart throwing, but offsets were not significantly differ-
ent in each side of the wrist. 

 For circumduction and thread winding, the orien-
tations of the oblique plane were not significantly differ-
ent between the two motions. The ROM values of FE and 
RUD in circumduction were larger than those in thread 
winding. Offsets were not significantly different in both 
wrists.

DISCUSSION

We used the technique of acquiring 3D-location informa-
tion using infrared sensors of the Wiimote and calculated 
the wrist motion parameters in four selective tasks. 

 There have been some studies presenting coupling 
of dart throwing (Table 5). Goto et al.20) evaluated the 
scaphoid and lunate motion using a volume-based regis-
tration model from MRI and presented that dart-throwing 
plane was deviated 22.9° ± 8.8° ulnarly, which correspond-
ed to 67.1° ± 8.8° by coupling as in our study. Moritomo 
et al.12) reported that coupling of dart throwing was 59° ± 
9°. Garg et al.4) analyzed various wrist motions including 
dart throwing and hammering with 10 right-handed men 
using a 3D motion capture system and presented coupling 
of dart throwing was 64° ± 9°. Coupling of our study was 
considerably similar to that of previous studies. On dart 
throwing, the results of our study were considerably simi-
lar to those of the study by Garg et al.,4) except that our FE 
range was smaller (Table 5).

On hammering, the results of three studies were var-
ious (Table 6), which might result from differences in the 
technique of hammering used in each experiment. There 
has been no gold standard method of hammering pro-
posed in academic fields. The actual behavior of driving 
a nail with a metal hammer to insert a nail and simulated 
hammering motion with a light rubber mallet might have 
different motion paths, and the simulated hammering in 
the three studies might be different. In the study of Lev-
enthal et al.,13) hammering was simulated in five targeted 
positions along the hammering path, which was not actual 
real-time motion. Garg et al.4) utilized a ball-peen hammer 

Table 3.  Measurement of the Curves of Circumduction and Thread 
Winding

Variable
Circumduction Thread winding

Right Left Right Left

Area 3,141 2,493 2,191 2,354

Long axis (°)  123  101  96  92

Short axis (°)  43  34  38  37

Ratio of long to short 
axis

2.85 2.92 2.47 2.51
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to drive nails actually, and we used a lighter rubber-plastic 
mallet only to simulate hammering motion. Comparison 
among studies on hammering motion should be further 
investigated once gold standard methods are established. 

Leventhal et al.13) performed a simulated hammer-
ing task and reconstructed a 3D bone surface model from 
CT images and reported that the motion path was 41° in 
the sagittal plane (corresponding to 49° by coupling as in 
our study) which was smaller than our result (Table 6). 
The range of hammering in our study was smaller, but the 
offset seemed similar to their results. Various factors seem 
to cause the different hammering patterns. The motion 
paths by ordinary persons and professional hammerers 
may differ. According to the condition in each experiment, 
the speed and the force applied on the stroke may cause 
variance in the coupling and ROM. However, three studies 
including our study observed similar values of coupling 
and reported that the offset of hammering was located in 
extension and ulnar deviation.4,13) Hammering also has a 
motion path from radial extension to ulnar flexion, which 
is similar to that of dart throwing, but it requires more 
force applied on the stroke. A larger ROM was expected 

in hammering than in dart throwing because dart throw-
ing is performed mainly from radial extension to a nearly 
neutral position of the wrist, where the fingers release the 
darts; whereas hammering should be performed through-
out the ulnar flexion, where the acceleration force added 
during the motion arc is essential for effective hammering. 
The results support our conjecture that the ranges of FE 
and RUD in hammering would be significantly larger than 
those in dart-throwing motion in both wrists. However, 
the offsets and coupling were not statistically different be-
tween the two motions in any side of the wrists.

 Singh et al.3) measured circumduction in both 
wrists with an electrogoniometer. The shape of the cir-
cumduction curves in our study was similar to that in 
their study. However, the angle of oblique circumduction 
plane was smaller in the dominant hand, but similar in the 
nondominant hand (Table 7). The ranges of FE and RUD, 
and the area of circumduction were smaller in our study. 
Our study was performed in Asian participants. The par-
ticipants in the study by Singh et al.3) may be Caucasian, 
as the study was performed in the Netherlands, although 
the races of the participants were not revealed. Racial dif-

Table 5. Comparison of the Findings of the Current Study and Other Previous Stuidies: Dart Throwing 

Study FEROM (°) FEoffset (°) RUDROM (°) RUDoffset (°) Coupling (°)

This study

   Right 34.0 27.4 22.1 8.0 63.0

   Left 34.0 28.7 20.3 4.2 58.6

Goto et al.20) - - - - 67.1 ± 8.8

Moritomo et al.12) - - - - 59 ± 9

Garg et al.4) 42 ± 14 33 ± 12 20 ± 7 7 ± 8 64 ± 9

Values are presented as mean ± standard deviation.
FE: flexion-extension, ROM: range of motion, RUD: radioulnar deviation. 

Table 6. Comparison of the Findings of the Current Study and Other Previous Stuidies: Hammering

Study ROM (°) FEROM (°) FEoffset (°) RUDROM (°) RUDoffset (°) Coupling (°)

This study

   Right - 49.9 29.4 37.2 8.1 65.2

   Left - 46.8 24.0 29.6 5.3 60.7

Leventhal et al.13) 70 ± 10 - 36 ± 8 - 14 ± 10 49 ± 3

Garg et al.4) - 17 ± 6 29 ± 8 10 ± 3 7 ± 8  60 ± 10

Values are presented as mean ± standard deviation.
ROM: range of motion, FE: flexion-extension, RUD: radioulnar deviation.
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ference, such as in the flexibility or stability of the carpal 
ligaments and the size of the carpal bones, might result 
in the difference in circumduction range. There were two 
females out of 18 participants in our study, whereas 14 
females out of 38 participants in the study by Singh et al.,3) 
which may explain the smaller ROM in our study; females 
generally have more flexible wrist motion. Our study used 
sets of infrared LED markers attached on the dorsum of 
the hand and distal forearm, which might be heavier and 
larger than an electrogoniometer and could have pre-
vented the participants from moving the wrist freely to the 
maximum range.

On comparison of the parameters of the wrist mo-
tions between the right (dominant) and left wrists, the 
offset of dart throwing and hammering were located more 
toward the ulnar side. These two motions are used when 
the hand is aiming at the chosen target and the directions 
of the motions are similar. Garg et al.4) showed the offsets 
of RUD were located in the ulnar position for wrist mo-
tions for basketball free-throwing, football throwing, over-
hand baseball throwing, clubbing, pouring, as well as dart 
throwing and hammering. Dart throwing and hammering 
might be performed better with the wrist more in ulnar 
position, and dominant wrists might achieve the effective 
position better than nondominant wrists. 

 On hammering, the averages ROM of RUD of the 
right wrist were larger and the right offset was located 
more in extension and more towards the ulnar side. 
Hammering requires force applied on the stroke, and the 
dominant hand can perform more accelerated and more 
powerful stroke with a larger ROM. Power stroke could be 
achieved by the action of the flexor carpi ulnaris muscle 
and it might move the offset more toward the ulnar side in 
the dominant hand. An increased ROM might move the 
offset more in extension because the wrist position should 

be maintained at the moment of stroke while snapping 
in ulnar flexion and more radial extension could only be 
possible to increase the arc of motion of the wrist. How-
ever, some studies reported that the simple active ROM of 
dominant wrists without powerful stroke was smaller than 
that of nondominant wrists.21,22) Further studies are re-
quired to figure out the differences of hammering between 
dominant and nondominant wrists. 

The right wrist executed circumduction, or the 
maximum rotational movement, in a wider range than the 
left wrist, thus it seemed natural that all the right wrists 
were the dominant wrists in this study. For thread wind-
ing, the area under the curve of the right was smaller and 
the average time in the right wrist was shorter than that 
of the left. These findings imply that the right, dominant 
wrists executed winding motion more precisely and effi-
ciently.

Circumduction, the motion with the maximal range 
of the wrist, and thread winding on a reel were circular 
motions of the wrist with similar, elliptical motion paths, 
although the range of circumduction was significantly 
larger than that of thread winding. Thread winding on a 
reel was a test devised by one of the authors on an assump-
tion that this motion could not be performed well or take 
a longer time if the wrist ROM was limited or the wrist 
function was impaired. The ROM of circumduction was 
larger than that of thread winding, but the offset and ori-
entation of the oblique plane were significantly different 
between the two motions in both wrists.

There were several limitations of our study. First, 
the number of the participants was small (18 participants 
including three females), and thus the study had a low 
statistical power. Second, the sensors were attached on the 
skin and the position might have been changed during 
wrist motions, which could have impacted the accurate 

Table 7. Comparison of the Findings of the Current Study and Other Previous Stuidies: Circumduction

Study FEROM (°) FEoffset (°) RUDROM (°) RUDoffset (°) Orientation of the 
oblique plane (°)

Area of 
circumduction

This study

   Right 88.3 –15.3 43.8 3.4 21.8 3,141

   Left 84.0  –1.4 41.7 3 27.6 2,493

Singh et al.3)

   Dominant hand 101 - 66 - 28 4,842

   Nondominant hand 110 - 58 - 29 4,530

FE: flexion-extension, ROM: range of motion, RUD: radioulnar deviation.
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representation of joint motions. However, the differences 
between the motion of the bone and joint and the mo-
tions acquired from the skin would be negligible and the 
standard 3D motion capture system also used the skin 
markers. Third, we did not perform 3D motion capture 
analysis and could not compare directly our results with 
this gold standard method. We were not equipped with a 
3D motion capture system, and could help but compare 
our results with the results of the similar motions found 
in the references. Comparison of tracking accuracy with 
a more standard motion capture system and/or more ac-
curate tracking system would strengthen the power of this 
study. Fourth, in the absence of any standardized methods 
for evaluation of the four wrist motions included in our 
study, we established our own methods. Therefore, the re-
sults of our study could only be indirectly compared with 
those of other studies. Fifth, thread winding was first used 
in this study to evaluate wrist function and thus could not 
be compared with other studies.

We developed a new desktop motion analysis sys-
tem using the motion controller for a home video game 

console. The results from our experiment showed similar 
kinematic motion paths to other studies using the motion 
capture system. Our motion analysis system may be a cost-
effective and simple method for wrist motion analysis, 
which might be applied to evaluate the pathological condi-
tions and outcomes of the treatment.
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