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Introduction

Automating experimental procedures in life science is 
important for stabilizing quality, saving cost, and improving 
efficiency. For instance, thermal cyclers were invented to 
automate the complicated PCR procedures that had previ-
ously required manual transfer of labware between water 
baths.1 Recent advances in mechanical engineering and 
robotics have enabled the automation of more advanced and 
complex experimental procedures in the life sciences 
through the development of specialized instruments for 
large-scale genome editing,2 library preparation for next-
generation sequencing (NGS),3 cell culture,4–6 omics mea-
surements,7,8 and high-throughput assays.9–12 Automating 
these kinds of advanced experimental procedures reduces 
the cost of training human operators, dependency on 
experts, and the burden of repeating procedures. On the 
other hand, multipurpose instruments (e.g., liquid handling 
workstations and dual-arm humanoid robots) have also 
been actively developed because they offer the flexibility to 
carry out various kinds of experiments.13–16 However, 
despite the development of these laboratory automation 
instruments, one generally needs to use several different 
types of instruments to execute even one procedure 
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Abstract
In automated laboratories consisting of multiple different types of instruments, scheduling algorithms are useful for 
determining the optimal allocations of instruments to minimize the time required to complete experimental procedures. 
However, previous studies on scheduling algorithms for laboratory automation have not emphasized the time constraints 
by mutual boundaries (TCMBs) among operations, which is important in procedures involving live cells or unstable 
biomolecules. Here, we define the “scheduling for laboratory automation in biology” (S-LAB) problem as a scheduling 
problem for automated laboratories in which operations with TCMBs are performed by multiple different instruments. 
We formulate an S-LAB problem as a mixed-integer programming (MIP) problem and propose a scheduling method using 
the branch-and-bound algorithm. Simulations show that our method can find the optimal schedules of S-LAB problems that 
minimize overall execution time while satisfying the TCMBs. Furthermore, we propose the use of our scheduling method 
for the simulation-based design of job definitions and laboratory configurations.
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composed of multiple steps17,18 because a single instrument 
is rarely capable of performing all the steps in the 
procedure.

When coordinating multiple types of instruments to exe-
cute procedures, it is often essential to reduce the execution 
time required to complete the procedures while avoiding 
resource conflicts. We can formulate this as a scheduling 
problem, such as the job shop problem19,20 and its variants. In 
scheduling problems for automated laboratories, the proce-
dure is divided into operations that are processed by multiple 
instruments in a given order.21 The objective of the schedul-
ing problem is to find a schedule that allocates instruments to 
each operation so that all procedures are completed in a short 
execution time without resource conflicts. Several schedul-
ing approaches have been proposed for laboratory automa-
tion in, for example, image-based cellular assays,22 clinical 
blood tests,23 bacterial engineering,24 protein crystalliza-
tion,25 high-throughput screening,26 and materials research.27 
Most of these scheduling algorithms fall into two categories: 
rule-based algorithms and mathematical optimization algo-
rithms. Rule-based algorithms are specifically designed for 
specific scheduling problems and are easy to understand for 
users.23,24,27 For instance, Delaney et al. developed a dynamic 
scheduling method that selects the operation with the earliest 
prescribed time among the uncompleted operations as the 
next operation for execution.24 Likewise, Burger et al. sched-
uled tasks so that the robot starts the oldest queued job on 
instruments in parallel.27 In contrast, mathematical optimiza-
tion algorithms aim to find an optimal schedule for minimiz-
ing the entire execution time. In particular, metaheuristic 
algorithms, a group of stochastic search algorithms that bal-
ance intensification and diversification strategies,28 have 
been widely applied to scheduling problems in laboratory 
automation.25,26,29 For example, Cabrera et al. applied simu-
lated annealing to scheduling plate imaging of protein crys-
tallization.25 Recently, genetic algorithms have been used for 
scheduling complex life science workflows in laboratory 
infrastructure composed of distributed automation systems 
connected by robot transporters and human operators.26,29 
However, these scheduling methods do not guarantee the 
global optimality of the solution because they are based on 
metaheuristic algorithms,25,26,29 partly due to the computa-
tional burden of exact algorithms for mathematical optimiza-
tion problems, that are guaranteed to find the global optimal 
solution.

Previous work on scheduling algorithms for laboratory 
automation has not focused on the time constraints by 
mutual boundaries (TCMBs) among operations. A TCMB 
is the upper limit of the time difference between the start or 
end (boundary) of an operation and the boundary of 
another.21 For example, a TCMB can be used to represent a 
situation such as where operation B must be started within 
10 min after operation A ends. These kinds of TCMBs exist 
widely in life science experiments.30–32 In particular, 

procedures involving live cells or unstable biomolecules 
(e.g., RNA or enzymes) require strict time constraints to 
avoid alteration, denaturation, or degradation of the sam-
ples. Therefore, scheduling methods for use in the life sci-
ences need to ensure that solutions satisfy the TCMBs.

In this study, we defined the “scheduling for laboratory 
automation in biology” (S-LAB) problem as a scheduling 
problem in which operations with TCMBs are performed by 
multiple different instruments. We formulated the S-LAB 
problem as an instance of the mixed-integer programming 
(MIP) problem and proposed a scheduling method using the 
branch-and-bound algorithm, an exact algorithm for MIP 
problems. By performing a scheduling simulation, we dem-
onstrated that our method can find optimal schedules of 
S-LAB problems that minimize overall execution time 
while satisfying the TCMBs. Furthermore, we also pro-
posed the use of our scheduling method for designing job 
definition and laboratory configuration.

Materials and Methods

Definition of Terms

•• Protocol: A description of how to complete a proce-
dure. A protocol is composed of multiple experimen-
tal steps.

•• Experimental step: The smallest unit in a protocol.
•• Job: The counterpart to a procedure in a scheduling 

problem. A job is composed of a series of 
operations.

•• Operation: The smallest unit for scheduling in a job. 
An operation consists of one or more experimental 
steps and is processed by an instrument.

S-LAB Problem

We formulated the S-LAB problem based on the job shop 
problem, one of many classical scheduling problems.19,20 In 
the job shop problem, there are (1) multiple types of instru-
ments and (2) jobs consisting of multiple operations pro-
cessed in a certain order. Each operation has a process time 
and a type of instrument that processes it. The objective of 
the job shop problem is to find a schedule that allocates 
instruments to each operation so that all jobs are completed 
in the minimum execution time without resource conflicts.

We formulated the S-LAB problem for an automated 
laboratory composed of multiple instruments as follows 
(Fig. 1).

Job Definition
•• There are M instruments in a laboratory, each of 

which has an instrument type Tm (1 ≤ m ≤ M, 1 ≤ 
Tm ≤ K), where K is the number of different instru-
ment types.
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Figure 1.  Overview of the S-LAB problem. Top left: Job definition. A job consists of one or more operations, the dependency 
graph among operations, and TCMBs for pairs of operations. An operation, represented by a rectangle, has an index, a compatible 
instrument type, and processing time. The operation dependency graph is a directed acyclic graph, in which each node represents 
an operation and each dotted line represents the dependency between a pair of operations, in which one must start after another 
ends. A TCMB specifies the maximum time difference between a pair of operation boundaries. Top right: Laboratory configuration. 
The laboratory is equipped with multiple types of instruments. Transporters transport samples among instruments. Bottom: The 
scheduling method reads the job definitions and the laboratory configuration to schedule the optimal allocation of the instruments 
to the operations to minimize the entire execution time while satisfying the TCMBs. The diagram shows an example of a scheduling 
result, where the horizontal axis represents the time and the vertical axis represents the instruments. A box represents the process 
time for an operation. A dotted line represents the dependency between a pair of operations. Inst., instrument.

•• There are J jobs.
•• The j-th (1 ≤ j ≤ J) job is composed of Nj operations. 

In total, there are N N jj

J
=

=∑ 1
 operations.

•• The a-th operation Oa (1 ≤ a ≤ N) has a compatible 
instrument type Ca (1 ≤ Ca ≤ K); that is, Oa needs to 
be processed by an instrument m with the instrument 
type Tm = Ca.

•• Oa has process time τa, which is intrinsically deter-
mined by the combination of the nature of the opera-
tion and the instrument type Ca to process it.

•• There are dependencies among operations; that is, 
one operation must start after another ends. The 

operation dependency graph P is a directed acyclic 
graph, in which each node represents an operation 
and each directed edge represents the dependency 
between a pair of operations:
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•• There must be a buffer time between a pair of opera-
tions consecutively processed on the same instrument. 
The length of the buffer time β (β > 0) is determined 
by the user.
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•• Each instrument has parking positions through which 
an instrument passes samples to transporters or 
receives them from transporters. Here, we assume 
that each instrument has a sufficient number of park-
ing positions so that samples can wait if the instru-
ment is occupied by another operation.

Scheduling Solutions
•• A schedule is defined by determining the start time Sa 

and the processor Ea for each Oa.
•• Ea (1 ≤ Ea ≤ M) is the instrument that processes Oa, 

chosen from the set of compatible instruments that 
have the type Tm = Ca.

Constraints
•• When multiple instruments are allocated to multiple 

operations, one instrument can process at most one 
operation at a time.

•• The order of operations defined by P needs to be 
maintained.

•• There are I TCMBs. The i-th (1 ≤ i ≤ I) TCMB sets 
the upper limit αi of the maximum tolerable differ-
ence between the start or end time of each of a pair of 
operations Oa and Ob. If a TCMB is specified as the 
difference between the start times of two operations, 
then S Sa b i− <α .  If a TCMB is specified as the 
difference between the start time of one operation 

and the end time of another, then S Sa b b i− + <( ) .τ α  

If a TCMB is specified as the difference between the 
end time of one operation and the start time of 
another, then S Sa a b i+( ) − <τ α .  Otherwise, a 

TCMB is specified as the difference between the end 
times of two operations and ( ) ( )S Sa a b b+ − +τ τ  
<αi .

Objective
•• Based on these definitions and constraints, a schedul-

ing method attempts to find the optimal schedule that 
minimizes the entire execution time of the jobs, that 
is, the end time of the lastly processed operation

max .
a

a aS +( )τ

•• The objective of our method is to minimize this 
value, as in

minmax .
a

a aS +( )τ

Formulation as a MIP Problem

We formulate the S-LAB problem as an instance of the MIP 
problem and propose a scheduling method using the branch-
and-bound algorithm.33 The branch-and-bound algorithm is 

an exact algorithm, which is guaranteed to find a global 
optimal solution, for MIP problems. To search for the opti-
mal solution efficiently in the solution space, the branch-
and-bound algorithm recursively prunes (narrows) the 
solution space so that the algorithm can avoid performing 
an exhaustive search. For details of the problem formula-
tion as a MIP problem and the branch-and-bound algorithm, 
see Supplemental Material Sections 1 and 2.

Implementation

We implemented the proposed scheduling method for the 
S-LAB problem in the Julia language,34,35 using JuMP.jl36 and 
Cbc.jl, a Julia API for an open-source MIP solver named Cbc.37 
The code is available at https://github.com/labauto/SLab.jl.

Results

To validate the utility of the proposed method, we simulated 
the scheduling of several jobs having typical properties 
observed in real biological experiments. We formulated these 
experimental procedures as S-LAB problems and solved the 
problems using the proposed method. We set β = 1.0 min for 
all the simulations below. We conducted these simulations on 
a computer with an Intel Core i7-8700K CPU.

Scheduling Jobs with Various Time Constraints

Dealing with TCMBs is an important aspect of the S-LAB 
problem. Let us consider scheduling several jobs with 
TCMBs in a laboratory equipped with three types of instru-
ments (Suppl. Table S1). Figure 2a shows a schematic dia-
gram of case I-A, which consists of two serial operations in 
which the latter operation must start within 10 min after the 
former ends (Suppl. Tables S2–S4). Figure 2b shows a 
diagram of case I-B, which consists of three operations in 
which two operations are processed in parallel and the dif-
ference between their start times must be less than or equal 
to 1 min (Suppl. Tables S5–S7). Figure 2c shows case I-C, 
in which we set a 1 min TCMB between the end times of the 
two operations (Suppl. Tables S8–S10). Figure 2d–f shows 
the scheduling results for each case, demonstrating that the 
proposed scheduling method found the optimal schedules 
for the jobs and that the TCMBs in the job definitions are 
satisfied. The computations took 0.84, 0.81, and 0.82 s for 
cases I-A, I-B, and I-C, respectively.

Scheduling Jobs with Branching and 
Convergence

In some life science experiments, the protocols might have 
branching dependencies in which multiple experimental 
steps depend on the same preceding step or converging 
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dependencies in which an experimental step depends on 
multiple preceding steps. For example, an instrument might 
produce two or more samples delivered to distinct instru-
ments for succeeding experimental steps. Optimizing the 
schedules for these kinds of protocols, which contain branch-
ing and converging dependencies, is more difficult than 
scheduling serial protocols without these dependencies.38

We therefore tested whether our scheduling method is 
applicable to such protocols. We formulated a protocol based 
on that used by Gu et  al.,26 which is for a high-throughput 
screening involving coordination of multiple instruments, as 
an S-LAB problem (Fig. 3a, Suppl. Tables S11–S14). This 
job includes branching dependencies at three operations as 
well as converging dependencies at three operations. We set a 
10 min TCMB for each consecutive pair of operations. Figure 
3b shows the scheduling result for this job, demonstrating that 
our scheduling method found an optimal schedule. The job 
execution time was 101.0 min. The computation took 1.6 s.

Simulation-Based Job Design

Modern biological laboratories are often equipped with 
integrated workstations capable of processing multiple 
kinds of experimental steps as well as specialized instru-
ments for particular experimental steps. In this kind of labo-
ratory, there might be multiple options for selecting which 
type of instrument to use to process each operation. For 
example, although a workstation may be able to process 
several experimental steps as a single operation, it may 

alternatively be possible to use multiple specialized instru-
ments to process the same steps as multiple separate opera-
tions. This kind of variation in job design may affect the 
execution time of a job, and it may be possible to shorten 
the execution time of a procedure by altering the job design.

To address this possibility, we simulated the scheduling of 
a procedure in two different job designs—one using only a 
single automated workstation (case III-A) (Fig. 4a) and the 
other using multiple instruments (case III-B) (Fig. 4b)— 
and compared their execution times. For the simulation, we 
formulated a protocol for automating sample preparation for 
deep sequencing using the Nextera rapid capture custom 
enrichment kit (Illumina, Inc., San Diego, CA)39,40 by the 
Freedom Evo workstation (Tecan Group, Ltd., Männedorf, 
Switzerland.) as two S-LAB problems (Suppl. Tables S15–
S22). Given that the protocol includes experimental steps 
using enzymatic reactions, we set TCMBs as 10 min for those 
operations to ensure that samples were not left for a long time.

We simulated a situation in which three instances of the 
job were executed. Figure 4c shows the scheduling results 
for case III-A. It took 851 min to complete the three jobs. 
Figure 4d shows the scheduling results for case III-B, in 
which we scheduled the three jobs simultaneously, whereas 
Figure 4e shows the results of the same case, but the three 
jobs were scheduled sequentially. When simultaneously 
scheduled, the jobs took 576 min, or 68% of the time in case 
III-A. In contrast, when sequentially scheduled, the jobs 
took 756 min, or 89% of the time in case III-A. The compu-
tation times were 1.0, 1.4 × 102, and 1.1 s for cases III-A, 

Figure 2.  Scheduling with different types of time constraints: case I. (a) Schematic diagram of case I-A, in which there is a time 
constraint between the end time of one operation and the end time of another operation. (b) Schematic diagram of case I-B, in which 
there is a time constraint between the start time of an operation and the start time of another operation. Detailed descriptions of the 
job definitions can be found in Supplemental Tables S1–S10. (c) Schematic diagram of case I-C, in which there is a time constraint 
between the end time of an operation and the end time of another operation. (d) The scheduling result of a. (e) The scheduling result 
of b. (f) The scheduling result of c. Inst., instrument.
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III-B (simultaneous), and III-B (sequential), respectively. 
These results suggest that job designs affect the throughput, 
but simultaneous scheduling of multiple jobs is important to 
fully enjoy the benefit.

Simulation-Based Laboratory  
Configuration Design

The execution time of procedures can also be reduced by 
modifying the laboratory configuration, including the types 
and numbers of instruments. For example, it is reasonable to 
expect that jobs can be executed in less time if there are more 
instruments. However, the trade-off between the cost and 
benefits of adding new instruments needs to be evaluated in 
advance based on the expected throughput improvement of 
adding more instruments. Therefore, we next consider the 
use of scheduling simulations to evaluate the throughput 
improvement of different laboratory configurations.

To test this possibility, we scheduled the same jobs using 
different laboratory configurations by changing the number of 
instruments. We prepared a job definition composed of five 
operations, each of which is processed by different types of 
instruments A, B, C, D, and E (Fig. 5a). In the job definition, 

there is a bottleneck operation that takes two-thirds (60 min) 
of the entire execution time (Suppl. Tables S23–S26). We 
computed the schedule for three instances of this job in four 
different laboratory configurations, each of which has one, 
two, three, or four units of Instrument C to process the bottle-
neck operation. In case IV-A, which has only one unit of 
Instrument C, it took 122 min to finish three jobs (Fig. 5b). In 
case IV-B, which has two units of Instrument C, it took 91 
min, or 75% of the time in case IV-A (Fig. 5c). When the 
number of Instrument C units was increased to three in case 
IV-C, the execution time further decreased to 82 min, or 67% 
of the time in case IV-A (Fig. 5d). However, the improvement 
gained by adding an instrument was smaller than the differ-
ence between cases IV-A and IV-B. There was no further 
reduction in execution time by the addition of more than three 
units of Instrument C (case IV-D, 82 min) (Fig. 5e). The 
scheduling method took 6.0, 5.4, 2.0, and 2.1 s for computa-
tion in cases IV-A, IV-B, IV-C, and IV-D, respectively. These 
results imply that one can improve the throughput of proce-
dures by increasing the number of instruments for a bottle-
neck operation, but the effect of adding a single type of 
instrument reaches saturation at some point, possibly because 
other operations become bottlenecks.

Figure 3.  Scheduling of S-LAB problem with branched operation dependencies: case II. (a) Schematic diagram of the scheduling 
problem of case II. A detailed description can be found in Supplemental Tables S11–S14. A gray box represents a transportation 
operation processed by a transporter. (b) Scheduling result of case II. Moto., motoman.
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Discussion

In this study, we formulated the S-LAB problem as an instance 
of the MIP problem. S-LAB problems are scheduling problems 
for life science experiments using multiple types of instruments 
with TCMBs among operations. We proposed a scheduling 
method for determining optimal schedules for S-LAB prob-
lems based on the branch-and-bound algorithm (Fig. 1). Taking 

TCMBs into account is essential in life science experiments, 
particularly in those handling living cells or unstable biomole-
cules,30–32 because simply optimizing schedules for throughput 
could lead to faster but poorer results. To evaluate the proposed 
method, we conducted scheduling simulations using both sim-
ple (Fig. 2) and complex (Fig. 3) job definitions, which have 
the typical characteristics of real-life science experiments. 
Through these simulations, we demonstrated that our method 

Figure 4.  Simulation-based job design through scheduling: case III. (a,b) Schematic diagrams of the scheduling problems of case III-A 
(a) and case III-B (b). A detailed description can be found in Supplemental Tables S15–S22. (c) Scheduling result of case III-A, 
in which the three jobs are scheduled simultaneously. Instruments with unused instrument types are omitted from the y axis. (d) 
Scheduling result of case III-B, in which the three jobs are scheduled simultaneously. (e) Scheduling result of case III-B, in which the 
three jobs are scheduled sequentially. AutoWS, automated workstation; Evap., evaporator; TC, thermal cycler; Trans., transporter.
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was able to determine an optimal schedule that can carry out the 
entire procedure in the minimum execution time while satisfy-
ing TCMBs. The computational cost of the algorithm is also 
small enough for use in the real world.

We further applied this method to evaluate the effect on 
the throughput of different job designs of a procedure (Fig. 
4) or increasing the number of instruments to parallel bot-
tleneck operations (Fig. 5). Until now, studies on schedul-
ing methods for laboratory automation have only 
investigated scheduling problems with fixed job definitions 
in a fixed laboratory configuration and have not discussed 
alternative designs for job definitions or laboratory configu-
rations.25,26,29 However, these kinds of design have been 
increasingly more important to improve the throughput of 
automated laboratories coordinating multiple types of 
instruments. For example, recent studies have discussed 
integrated laboratory automation systems in which various 
instruments are connected to each other by transport-
ers.26,27,29 Therefore, our proposed approach to use schedul-
ing simulations for designing job definitions and laboratory 
configurations would become more essential in the future.

Previous studies have employed metaheuristic algo-
rithms for scheduling,25,26,29 partly due to the lower compu-
tational cost compared with exact algorithms. We showed 
that the branch-and-bound algorithm, an exact algorithm 
for MIP problems, was able to determine an optimal sched-
ule for the S-LAB problems at a reasonably low computa-
tional cost. However, because we did not exhaustively 
evaluate various kinds of S-LAB problems, it might be pos-
sible that our method cannot determine an optimal solution 
for other S-LAB problems with a small computational time, 
which is particularly important for simulating multiple job 
designs and laboratory configurations. In such a case, the 
calculation might need to be stopped in the middle to obtain 
a tentative solution.

There are several possible directions for improving the 
proposed method. The first is support for more flexible time 
constraints. For example, in Autoprotocol, a descriptive 
language for experimental protocols, one can specify not 
only a lower and upper bound, but also a flexible cost func-
tion on the time difference between two operations.41 
Although allowing this kind of flexible constraint makes 
the optimization problem more difficult, it may decrease the 
number of cases in which S-LAB problems have no feasible 
solutions. The second is support for different optimization 
criteria. In this study, we used the throughput as the only 
optimization criterion for scheduling, but there can be dif-
ferent criteria, like quality of results or cost of experiments. 
In the future, it would be useful to incorporate such differ-
ent multiple criteria in S-LAB scheduling. The third is 
dynamic scheduling. Instrument malfunctions and human 
errors can interrupt procedures or limit the availability of 
resources, forcing the reallocation of instruments to pend-
ing operations. A dynamic scheduling method has been 

Figure 5.  Laboratory configuration design by simulation: case 
IV. (a) Schematic diagram of case IV. A detailed description can 
be found in Supplemental Tables S23–S26. (b–e) Scheduling 
results for lab facilities equipped with different numbers of 
instrument C: (b) one, (c) two, (d) three, and (e) four. Inst., 
instrument.
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proposed to deal with this kind of situation42 and might be 
integrated with our method. Fourth, there is the problem of 
deciding which type of instrument to use to process an oper-
ation. In this study, the compatible instrument type for each 
operation was predetermined in the job definition. However, 
there are cases in which the same operation can be pro-
cessed by different types of instruments. In the future, it 
would be useful to automatically determine which type of 
instrument to use for each operation by considering the 
availability of resources and the performance of each instru-
ment type. Fifth, the method for evaluating the effect on the 
throughput of increasing the number of instruments can be 
improved. In this study, we evaluated the execution time of 
a fixed amount of jobs and showed that the effect saturates 
at some point (Fig. 5). However, it is important to evaluate 
the amount of jobs processed per unit time in the future 
because, when more instruments are available, more jobs 
can generally be executed by exploiting the increased 
resources. We note that this corresponds to the contrast 
between Amdahl’s law43 and Gustafson’s law44 in parallel 
computing: when evaluating the throughput improvement 
by multiple processors, the former uses the execution time 
of a fixed amount of workload and the latter uses the amount 
of workload processed per unit time.

By using the proposed scheduling method considering 
TCMBs, automated laboratories can improve the efficiencies 
of a wider range of life science experiments involving the use 
of multiple different types of instruments. Likewise, the idea 
of simulation-based evaluation using the scheduling method 
is expected to contribute to the design of job definitions and 
laboratory configurations in the future. In conclusion, this 
study could help the realization of laboratory automation in 
the life sciences by enabling sophisticated coordination of 
multiple different types of automation instruments.
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