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Introduction
The zoonotic SARS-CoV-2 virus that likely originated in the 
city of Wuhan of Central China has spread more rapidly across 
the globe than other SARS-like β-coronavirus strains.1 As of 
April 15, 2020 (time of data download of our study), the 
COVID-19 disease was present in at least 211 countries 
around the globe killing ~143 000 people and infecting ~2 mil-
lion. Six months later, there were ~30 million confirmed cases 
and a million deaths worldwide, illustrating the massive world-
wide spread of the disease. Compared to other pandemics, 
including H1N1 in 2009, COVID-19 seems to spread at faster 
speeds.2 Interestingly, the viral nucleic acid shedding pattern of 
patients infected with COVID-19 resembles that of influenza 
patients, suggesting that transmission of COVID-19 may 
occur during the first few days after the onset of symptoms.1 
Therefore, it is assumed that viral transmission occurs at illness 
onset and even with mild or no symptoms. However, the pat-
tern of transmission observed in COVID-19 is distinctive 
from that of SARS-CoV and indicates that spread may not be 

effectively controlled by isolating the patient after the onset of 
the disease.1

Genome analyses help mitigate viral spread and facilitate 
treatment.1 The CoV genome has been shown to contain a 
variable number (6-11) of open reading frames (ORFs)3 where 
two thirds of the viral RNA, located mainly in the first ORF 
(ORF1a/b), translates into 2 polyproteins, pp1a and pp1ab, and 
encodes 16 non-structural proteins (NSP), while the remaining 
ORFs encode structural and accessory proteins.4 These pro-
teins include the essential spike glycoprotein (S), the small 
envelope protein (E), the matrix protein (M), and the nucle-
ocapsid protein (N)5 and various accessory proteins that inter-
fere with the host’s innate immune response. A group of 
researchers6 performed deep meta-transcriptomic sequencing 
on the Wuhan-Hu-1 coronavirus (WHCV), revealing it 
exhibits some genomic and phylogenetic similarity to SARS-
CoV, particularly in the glycoprotein S gene and its receptor 
binding domain (RBD), and indicating the capacity for direct 
human transmission. In turn, screening for β-coronavirus 
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receptors showed that human cells expressing ACE2, but not 
dipeptidyl peptidase-4 (DPP4) or aminopeptidase N (APN), 
increased SARS-CoV-2 entry.7 At the protein level, an initial 
comparative analysis of the first 3 SARS-CoV-1 genomes to 
SARS-like coronaviruses showed significant differences in the 
length and amino acid makeup of their proteins but showed no 
substitutions in NSP7, NSP13, envelope, matrix or accessory 
proteins 6 and 8b.8 Other recent research suggested that muta-
tions in NSP2 and NSP3 play a role in the infectious capacity 
and differentiation mechanism of SARS-CoV-2.9 An analysis 
of the genotypes of COVID-19 in different patients from vari-
ous provinces found that SARS-CoV-2 had been mutating in 
different patients in China.10 While the degree of diversifica-
tion of SARS-CoV-2 appears less than that of the H7N9 avian 
influenza11, a population genetic analysis of 103 genomes 
revealed 2 prevalent evolutionary types of SARS-CoV-2: type 
L (70%) and type S (30%), where the strains in type L were 
more aggressive and contagious than those of type S.12 A recent 
worldwide entropy study of diversification of 15 342 genomes 
during the early start of the pandemic that was conducted in 
parallel with the present study revealed 27 high-entropy mutant 
genotypes spreading through continents.13

The pathophysiology of SARS-CoV-2 infection is very 
similar to that of SARS-CoV infection, with aggressive inflam-
matory responses strongly implicated in airway damage.14 The 
severity of the disease in patients is not only due to viral infec-
tion but is also dependent on the host response.15 The pattern 
of increasing severity with age is also broadly consistent with 
the epidemiology of SARS-CoV and MERS-CoV.16,17 The 
acute respiratory distress syndrome (ARDS) observed in 
COVID-19 is characterized by shortness of breath and low 
blood oxygen levels.18 ARDS can directly lead to respiratory 
failure, which is the cause of death in 70% of fatal cases of 
COVID-19,18 often linked to the large release of cytokines by 
the immune system in response to a viral infection. A cytokine 
storm and sepsis symptoms are the cause of death in 28% of 
fatal cases of COVID-19.18 In these cases, uncontrolled inflam-
mation is capable of producing damage to multiple organs 
leading to organ failure, especially of the heart, liver, and kidney 
systems. It should also be noted that the majority of patients 
with SARS-CoV infection that progressed to kidney failure 
eventually died.19

Since worldwide reports reveal that the level of COVID-19 
contagion and infectivity appears higher in certain regions19 
and taking into consideration all the similarities with influenza 
infection, we sought to investigate if COVID-19 infection is 
seasonal. We hypothesize that COVID-19 epidemiology and 
genetic makeup will be affected by this seasonality phenome-
non. There are good grounds for the premise. For example, 
high temperatures and humidity affect the half-life of the 
SARS-CoV-2 virus in fomite transmission environments.20 
Similarly, high temperature and humidity significantly affect 
COVID-19 daily new cases and deaths using a log-linear gen-
eralized additive model.21 To test our hypothesis, we explored 

how spring temperature, a highly correlated parameter of sea-
sonality,22,23 and geographic coordinates are impacting 
COVID-19 epidemiology, including disease incidence and 
mortality, patient recovery, and country preparedness, as well as 
viral genomic makeup.

Materials and Methods
Epidemiological data collection

All the epidemiological data of COVID-19, including inci-
dence, mortality, recovery rate, number of active cases, testing 
rate and hospitalization rate, were collected from the 
Worldometer reference website24 on April 15, 2020, a date that 
represents the middle of the Spring season and brackets maxi-
mal temperature variation among regions of the world.22 
Incidence was defined as the number of cases reported, mortal-
ity was defined as the number of deaths, recovery rate repre-
sented the number of patients that recovered from the infection, 
active cases were patients that were positive for the virus by the 
time of sampling, testing rates represented the number of tests 
being performed, and hospitalization rate was defined as the 
number of hospitalizations reported. Epidemiological data 
were normalized to account for differences in the populations 
of World countries and US states by dividing data entries by 
total populations and expressing values as percentages. 
Supplemental Table S1 provides separate spreadsheets with 
data for countries and states. Total populations as of December 
2019 were retrieved from several databases listed in 
Supplemental Table S1. For example, the incidence of the dis-
ease in the US was 641 299 total cases and the population 
331 002 651 people. Normalized incidence was therefore 0.194 
(ie, [641 299/331 002 651] × 100). In order to measure the 
effect of temperature on incidence, mortality, recovery rate, 
number of active cases, testing rate and hospitalization rate, 
average spring temperatures of every country and state of the 
US were collected from internet resources listed in Supplemental 
Table S1. Spring temperatures were used because it had been 
shown that after April 15 change in zonal-mean surface tem-
perature anomaly decreases at all latitudes of Earth.22 We also 
collected average latitudes and longitudes of countries’ capitals 
and states of the US from resources listed in Supplemental 
Table S1. Population, temperature and coordinate data were 
retrieved from different sources because data in databases were 
not all-encompassing.

Risk index quantif ication

In order to contextualize the health risk imposed by the pan-
demic in different countries, we defined a “risk index” of 
country preparedness and morbidity associated with the viral 
disease. This index aims to provide key public health infor-
mation related to the pandemic. Using available data from the 
World Health Organization (WHO),25 we generated an 
indicator of risk that merges both health indicators as well as 
available infrastructure in the analyzed country. We collected 
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the country preparedness index from the International Health 
Regulations (IHR) core capacity index; this index provides an 
estimator about how equipped a country is, in terms of health 
infrastructure. We then subtracted from IHR, expressed on a 
scale of 1 to 100, the probability of dying by health factors 
that are linked to higher probability of death. This other fac-
tor is the probability of death from cardiovascular disease, 
cancer, diabetes, or chronic respiratory disease between ages 
30 and 70.

For the 2 indicators, the most updated information was 
retrieved from the WHO web page.25 After using the available 
information, we searched for relationships between the risk 
index and the total number of cases, active cases, deaths, and 
recoveries for each of the analyzed countries. Finally, we calcu-
lated correlation coefficients between the variables.

We used the risk index to classify countries into 6 different 
categories. Category 1 countries have risk indices below zero; 
they hold the highest epidemiological risk due to limitations in 
health and infrastructure. Category 2, 3, 4, and 5 countries have 
risk indices ranging from 0 to 50, 50 to 70, 70 to 80, and 80 to 
90, respectively. Finally, Category 6 countries have risk indices 
higher than 90 and hold high preparedness indices and low 
death probabilities.

Genomic data collection and processing

GISAID,26 a repository of viral data was used for this analysis. 
A multiple sequence alignment (MSA) of 70 832 viral 
sequences was downloaded on August 5, 2020. A metadata file 
containing information pertinent to sequences such as their 
strain, country, length, etc. was downloaded on September 5, 
2020. The “gisaid_epi_isl” field was chosen as the key for each 
sequence in the metadata.

We processed our genomic data as follows. Sequences from 
non-human host samples were eliminated as were sequences 
from countries that were not analyzed in our epidemiological 
work. We only looked at sequences in the MSA which had a 
corresponding gisaid_epi_isl field in the metadata file. Those 
sequences for which the “date” field consisted only of a year 
were removed from consideration. For sequences whose “date” 
field only consisted of a month and a year, we assumed that the 
sequence had a day value of 15. We only analyzed sequences 
whose date field was at most until the end of April 2020. In all, 
we selected 55 455 sequences. Our chosen reference sequence 
EPI_ISL_402125, and the sequence EPI_ISL_406798, with 
the same value for the “date” field as the reference, were removed 
from the analysis to take care of division by zero errors. We 
compiled the genomic coordinates of the SARS-CoV-2 genes 
encoding the orf1a polyprotein (pp1a), NSP2, RBD, and spike 
protein S1 and S2 domains (spike_s1 and spike_s2) from the 
UCSC genome browser.

The genomic change of every sequence with respect to the 
reference was quantified using the multiple alignment. 
Specifically, genomic change of a sequence was defined as the 

number of base positions where it differed from the reference. 
The availability of date field values for each sequence enabled 
us to quantify its genomic change per time. We also computed 
the genomic change and genomic change per unit time for the 
genes and domains listed above. Our end goal was to check if 
there was an association between genomic change or genomic 
change per unit time and temperature and geographic coordi-
nates of latitude and longitude of the country to which the 
sequences belonged.

Statistical analysis

Epidemiological data were normalized based on total popula-
tion as reported by December 2019. The ROUT test from the 
GraphPad Prism software (https://www.graphpad.com)was 
used to identify epidemiological outliers. In the worldwide 
analysis of epidemiological data, 2 outliers (UAE and Morocco) 
were identified and removed. No significant outliers were iden-
tified in the US nationwide analysis. In order to determine the 
interaction between epidemiological data and factors such as 
temperature, geographic coordinates and preparedness varia-
bles, Pearson’s correlation coefficients (r) and P-values were 
computed using an online calculator (https://www.answer-
miner.com/calculators/correlation-test/). To explore if there 
was a relationship between genomic change and temperature 
and geographic coordinates, we performed a Pearson correla-
tion test using the Python’s scipy package27 and checked sig-
nificance using 2-tailed P-values. In all cases, P < .05 was 
considered statistically significant. We chose to perform a 
Pearson correlation analysis because epidemiological data rep-
resented continuous random variables that were not normally 
distributed. Normality was tested using the D’Agostino’s 
K-squared test, Cramer-von Mises criterion, the Anderson-
Darling test, and the Shapiro-Francia test.

Results
It has been informally suggested that high environmental 
temperature decreases the impact of COVID-19 without 
enough evidence to support the “seasonal” hypothesis. In order 
to establish a direct relationship between environmental tem-
peratures and epidemiological variables of the early stages of 
the pandemic (epidemiological data downloaded April 15, 
2020) we used bivariate Pearson correlation analyses to test if 
average temperatures during the spring season and geographic 
coordinates of latitude and longitude were associated with 
population-normalized data of incidence, mortality, recovery 
of patients, active cases and testing rate in every country that 
showed at least one case of COVID-19, a total of 211 coun-
tries (Figure 1; Supplemental Figure S1, Supplemental Table 
S1). We chose the Pearson correlation because the method is 
independent of making assumptions of normality either in the 
marginal distributions or in the bivariate surface with reason-
able sample sizes of N > 20, especially because a number of 
statistical tests rejected the null hypothesis that the data were 

https://www.graphpad.com
https://www.answerminer.com/calculators/correlation-test/
https://www.answerminer.com/calculators/correlation-test/
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normally distributed (Supplemental Table S2). The method 
does assume finite variances and co-variances. Since the cor-
relation method is extremely sensitive to outliers, we deleted 
extreme values to avoid skewed distributions. We note that 
traveling speed and spatiotemporal patterns of COVID-19 
spread have confounding effects on correlation analyses. 
Diminishing these effects by modeling spatiotemporal param-
eters would likely increase association strengths and signifi-
cant detection of borderline correlations in our analyses but 
would add uncertainty to data normalization. Their effects 
however are mitigated by the fact that worldwide spread of the 
disease was already substantial at the beginning of April of 
2020. Analysis of data from the COVID-19 CSSE data 
repository of John Hopkins University (https://github.com/
CSSEGISandData/COVID-19) revealed that on April 1, 
2020, the pandemic had just abandoned the lag phase of accu-
mulation with 50 344 cumulative deaths (following 952 172 
cases). At that time most countries had total border closures 
and a few had bans on high-risk regions. On April 15, 2020, 
time of data download, worldwide spread of the disease as a 
first wave was already substantial. Numbers reached 143 023 
deaths (2.081 million cases) and had already established a 
global linear accumulation pattern. Most deaths and cases 
occurred in Europe (63.6% and 46.7%, respectively), the US 
(25.3% and 33.2%) and Asia (8.4% and 16.0%).

Worldwide correlation analyses revealed that temperatures 
were negatively correlated to incidence, mortality, recovery 
and active cases with statistical significance (P = .0001-.0030 
for a 2-tailed test) and association strengths ranging from 
weak to moderate (r ranging from –0.205 to –0.332). 

In contrast, no significant correlation was observed between 
temperature and testing rate. Since distance from the Equator 
measured as latitude is a strong predictor of temperature, we 
validated temperature effects by studying correlations of geo-
graphic coordinates with epidemiological data. As expected, 
we found latitudes were positively correlated to incidence, 
mortality, recovery and active cases with statistical significance 
(P = .0001-.0216) and association strengths ranging from 
weak to moderate (r ranging from 0.169 to 0.331) (Figure 1; 
Supplemental Figure S1). Again, no significant correlation 
was observed between latitude and testing rate. As negative 
control, we used the geographic coordinate of longitude to test 
the expectation of no correlation. Indeed, longitude did not 
correlate with any of the epidemiological variables studied (r 
ranging from 0.0009 to 0.0712 with P = .337-.990) (Figure 1; 
Supplemental Figure S1).

The correlation patterns we observed resulted in a dichot-
omy of temperatures and latitudes of the 5 top countries exhib-
iting either the highest or lowest levels of epidemiological 
descriptors. For example, the temperatures of countries with 
the highest and lowest incidence, mortality, recovery of patients, 
active cases and testing rate had temperatures that ranged 48.5 
to 73.4 °F and 69 to 87 °F, 48.5 to 73.4 °F and 46 to 90 °F, 30 
to 62 °F and 66.3 to 98.5 °F, 48.5 to 73.4 °F and 32 to 87 °F, and 
30 to 66.6 °F and 67.1 to 90 °F, respectively (Supplemental 
Table S1). In all cases temperature values were higher for coun-
tries with lowest descriptors.

The US is currently the country with the most reported 
COVID-19 cases. We therefore tested if temperatures and 
geographic coordinates for US states were correlated with 

Figure 1. Effect of temperature and geographic coordinates on worldwide and nationwide epidemiological data. Heatmaps of the Pearson correlation 

coefficients (r) and associated P-values describing the relationship of spring average temperatures (T) or geographic coordinates of latitude (Lat) and 

longitude (Long) with epidemiological variables for world countries (a) or US states (b). Correlations were considered significant when P-values were less 

than .05 and association strengths had coefficients r higher than 0.1.

https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
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normalized epidemiological data, which in this case also 
included hospitalization rates. We found no significant cor-
relation between temperature and latitude with epidemio-
logical variables (Supplemental Figure S2; Supplemental 
Table S1). On the other hand, we identified a significant cor-
relation between longitude and normalized incidence, mor-
tality, active cases, and hospitalization rate with weak to 
moderate association strengths (r ranging from 0.294 to 
0.386 with P = .0085-.038) but no significant correlations 
with recovery and testing rate. These results are in sharp con-
trast with those observed worldwide. The correlation patterns 
did not result in a dichotomy of temperatures of the 5 top 
states exhibiting either the highest or lowest levels of epide-
miological descriptors (data not shown).

We also studied the relationships between a risk index that 
measures country preparedness and morbidity and epidemio-
logical data worldwide (Supplemental Figure S3). The distri-
bution of the index ranged from –21 (Somalia) to 90.8 
(Norway). Countries were then split into categories according 
to their indices (Figure S4). Six countries had indices with 
negative values, 52 countries had indices from 1 to 50, 37 
countries had indices with values between 50 and 70, 20 coun-
tries had indices with values between 70 and 80, 29 countries 
had indices with values between 80 and 90, and only 9 coun-
tries had indices higher than 90 (Figure S3). No significant 
correlations were found between the risk index and total num-
ber of cases, active cases, deaths, and recoveries (Supplemental 
Figure S3).

Finally, we sought to establish a link between temperature-
latitude effects with genomic change to determine if tempera-
ture-related epidemiological effects were controlled by the 
virus in its interaction with the host. Genomic change and 
genomic change per unit time were computed from an align-
ment of 55 453 SARS-CoV-2 genome sequences to determine 
if there were significant statistical correlations with tempera-
tures and geographic coordinates of the countries from where 
genomes were collected. Mutation accumulation and rates were 
calculated for the entire genome and for specific regions known 
for significant pathways of mutational change. Statistically sig-
nificant r values computed in a Pearson correlation test were 
smaller than 0.1. Thus, we were unable to find any significant 
correlation that would indicate a positive or negative associa-
tion strength (Figure 2).

Discussion
Effect of temperature on COVID-19 epidemiology
Solar energy received by any region of the world varies with 
time of day, seasons, and latitude, a phenomenon that creates 
temperature variations. Temperature is also affected by differ-
ences in topographical surface and altitude. For example, con-
tinents are generally warmer than oceanic regions in the 
Northern hemisphere, while this reverses in the Southern 
Hemisphere tempered by the scarcity of land masses. We chose 
to collect epidemiological data during a time in which tem-
perature differences between countries continue to be maximal 
according to a latitude-calendar month profile of surface air 

Figure 2. Effect of temperature and geographic coordinates on SARS-CoV-2 genomic change worldwide. Heatmaps of the Pearson correlation coefficients 

(r) and associated 2-tailed P-values describing the relationship of spring average temperatures (T) or geographic coordinates of latitude (Lat) and longitude 

(Long) with genomic change or genomic change per unit time are shown for the entire SARS-Co-V-2 genome or selected genomic segments coding for the 

orf1a polyprotein (pp1a), nonstructural protein 2 (nsp2), receptor-binding domain (RBD), and the spike protein domains S1 and S2 (spike_s1 and spike_s2). 

A coefficients r value higher than 0.1 indicates that 2 variables are correlated. Our threshold for significance was a P-value of .05.
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temperature across the globe.22 Our worldwide analysis of epi-
demiological data collected for 211 countries (April 15, 2020) 
suggests that there is a significant negative correlation between 
environmental temperature and normalized COVID-19 epi-
demiological data, including disease incidence, mortality, 
recovery rate and the number of active cases (Figure 1). Two 
recent studies are in line with the evidence we here present. A 
recent study showed that weather affected disease incidence in 
Indonesia and might be an important factor in decreasing the 
number of COVID-19 cases in that country.28 Indeed, 
Indonesia was one of the countries with the lowest incidence 
rates in our study (Supplemental Table S1). Similarly, 
Demongeot et al.29 showed that higher temperatures decreased 
infection rates in both French administrative regions and in 21 
countries spread throughout continents. In contrast, a correla-
tion study at the onset of the pandemic when only 5768 deaths 
had been reported ( January 22-March 16, 2020) mostly in 
China, Italy and Iran revealed some strong correlations between 
epidemiological variables but no significant correlation with 
temperature.30 The inability to find a correlation with tempera-
ture may simply stem from the study being conducted during 
late winter. Instead, our study appropriately used spring tem-
peratures, acquiring the bulk of epidemiological data during 
late March and early April. We find significant correlations 
during the initial phases of the pandemic despite the limited 
temperature ranges of the spring; top countries exhibiting 
either highest or lowest levels of epidemiological descriptors 
had temperatures ranging from 30 to 98.5 °F (Supplemental 
Table S1).

Viral disease slows down during the summer for certain 
viruses, including influenza.31 Pearson’s correlation was previ-
ously used to study global and local patterns controlling influ-
enza-like virus seasonality.32 Low temperatures in weather 
patterns showed a high negative correlation with the incidence 
of cases, a result that is relevant for COVID-19 research. This 
phenomenon is often observed with several respiratory viruses 
and is also implicated in virus survival and transmission.32 The 
spread of SARS-CoV during the 2003 epidemic has been 
shown to be temperature-dependent.33 Moreover, Wu et al.21 
saw that temperature was significantly correlated with the 
spread of SARS after adjustment for several factors, including 
the number of patients in intensive care units. However, 
explaining the cause of a temperature effect on epidemiology 
can be difficult. For example, high environmental temperatures 
may decrease both survival and infectivity of the virus. 
Unfortunately, at this time there is not enough evidence to 
conclusively support the hypothesis. Real-world viral infec-
tions can be hard to recreate in a laboratory, so studying tem-
perature effects on viral survival or infection is challenging. 
Some virus strains are more environmentally susceptible than 
others and their survival can be affected by regions, climate and 
weather. The massive global spread of COVID-19 suggests 
that SARS-CoV-2 can spread very quickly despite warm and 

humid weather. However, the effects of the environment on 
COVID-19 are still being explored. While 56°C temperatures 
kill the virus at ~10 000 viral units per 15 minutes, these envi-
ronmental conditions are not reached during this spring season 
and very few countries will reach that temperature during the 
summer.34

The WHO suggests disease incidence, mortality, recovery 
rate and number of active cases are properties related to onset 
of the infection. However, both mortality and recovery rate are 
more dependent on the organism’s immune system,35 which 
suggests that patients from regions with high temperatures are 
also more resistant to the virus. An alternative explanation of 
our data is that countries with higher temperatures have less 
environmental airflow and high humidity which are important 
factors that decrease the success of viral infections.33 In the US, 
temperature does not vary as much as in other countries of the 
World, even though the average temperature of the states was 
50◦F and normalized epidemiological variables are close to 
those of countries with the same temperatures (Table S1). This 
temperature invariance could explain why US data does not 
show correlations with epidemiological data.

Effect of geographic coordinates

Latitude is a strong predictor of temperature while longitude is 
not. Thus, geographic coordinates can be used to confirm the 
validity of temperature effects worldwide. Indeed, we find a 
significant correlation between latitude and epidemiological 
variables. Increases in latitude away from the equator were 
positively correlated with incidence, mortality, recovery rate 
and number of actives cases, but showed no correlation with 
testing rate, which is probably influenced by a number of com-
plicating factors (Figure 1). Remarkably, the latitude effect was 
not present in the US, where the latitude range of 19.74° and 
66.16° was smaller than that of the worldwide analysis. As 
expected, a worldwide correlation analysis of longitude and 
epidemiological data revealed no significant effects. In sharp 
contrast, a strong correlation between longitude and incidence, 
mortality, number of active cases and hospitalization rate was 
found in the US. Here, incidence is more related to the onset of 
the disease and mortality, the spread of the disease in both 
highly populated coasts of the US, and the differential response 
to the disease across US states. Number of active cases and hos-
pitalization rate are more related to the host immunity. A dif-
ferent perspective would suggest that recovery rate and testing 
rate are more related to how individual states manage the dis-
ease, which is limited by statewide economical and medical 
support, and their strategy to lift restrictions.

Effect of preparedness and morbidity

Several factors contribute to coronavirus-elicited ARDS, 
including obesity and cardiovascular and respiratory disease.36 
The role of such co-morbidities in hospitalization rates or 
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deaths remains understudied.37 Reports suggest obesity, diabe-
tes, and old age are highly related to the probability of hospi-
talization due to coronavirus infection.37 There is evidence that 
patients with diabetes may be more vulnerable to infection.37 
We introduced a risk index of preparedness that incorporates 
morbidities. This risk index however did not show significant 
correlations with either number of cases or deaths. The absence 
of this relationship may be explained by specific factors affect-
ing the spread of the virus and the pandemic in every country 
such as demographics and geography.38 Those factors may not 
only include morbidity variables but also response decisions to 
address the pandemic.

The case of Nepal suggests that government preparedness 
and response had a crucial role in the development of the pan-
demic.39 The role of infrastructure in preparedness is not only 
limited to health infrastructure but, also, to communications 
and transportation, among others.38 We note that for future 
reference, it is recommended to validate the relationships pro-
posed in this study with the risk index using post-pandemic 
data. This kind of longitudinal study would allow us to test the 
strength of the proposed index and would help understand how 
the factors considered in the risk index affect mortality rates 
and the spread of the virus. This tool can also be used in the 
future for the prioritization of health resources.

Effect of genomic change

A recent parallel study of 15 342 indexed virus genome 
sequences revealed novel pathways of mutational change dur-
ing the early stages of the COVID-19 pandemic.38 The analy-
sis predicted an ongoing mutational shift from the spike and 
replication proteins to other regions of the proteome, especially 
those known to represent major β-interferon antagonists that 
subvert the immune response, including the nucleocapsid pro-
tein and the viroporin 3a protein. To test if these and other 
mutational pathways were responsible for the temperature and 
latitude effects we here report, we explored if there were sig-
nificant statistical correlations of genomic change or genomic 
change per time with temperatures and geographic coordinates 
of the countries from where genomes were collected (Figure 2). 
However, r coefficients computed in a Pearson correlation test 
falsified the hypothesis. Apportioning genomic change to 
selected regions of the genome that encode for a protein of 
significance, such as the replication complex encoded by 
ORF1a/b, the domains of the spike protein, and the NSP2 pro-
tease regulator, did not show significant correlations either. 
Thus, mutational changes in the virus genomic makeup appear 
unrelated to the temperature modulation of the COVID-19 
disease, prompting to consider that the effects seen in the epi-
demiological data are directly, but not exclusively, dependent 
on the environment and the host immune system.

Previous studies with influenza have shown that ambient 
temperature and nutritional status can control the virus-specific 
adaptive immune response.40 This mechanism might be 

modulated by type I IFN, which under warm temperatures, can 
restrict viral replication.41 Research on mice suggests that 
exposure to high levels of heat severely impaired adaptive 
immune responses following respiratory influenza virus infec-
tion, which also affects virus clearance.40 Even though the 
relationship between environmental temperatures and immune 
system regulation is still unclear, some studies have planted 
the idea of high environmental temperatures and host nutri-
tional status regulating the generation of virus-specific CD4+ 
and CD8+ T cells and antibody responses following respira-
tory viral infection. These specific CD8+ T cells require 
IL-1R signaling in lung dendritic cells (DCs)42 and under 
high environmental temperatures, the levels of autophagy in 
the lung increase. Since autophagy and mitophagy restrict 
inflammasome-dependent cytokine release by regulating the 
amounts of pro–IL-1β and damaged mitochondria, respec-
tively,43 it is possible that elevated levels of autophagy in high 
heat-exposed patients suppresses IL-1β secretion in the lung 
following viral infection.43 This provides a better understand-
ing of how environmental temperatures affect epidemiological 
variables by suggesting the importance of IFNs and virus-
specific T cells.

Other biological factors can also be relevant. Low-temperature 
seasons are often associated with vitamin D deficiency because 
of seasonal reductions in exposure to ultra-violet (UV) radia-
tion.44 Low levels of vitamin D have been shown to impair the 
body’s antimicrobial peptide system, which is responsible for 
regulating the immune response.45,46 Seasonal changes in length 
of day can interfere with an individual’s circadian rhythm, which 
is regulated by the release of the hormone melatonin. This inter-
ference can weaken the immune system and increase the risk of 
infection.44 Changes in photoperiod and sunlight exposure have 
been used to explain the observed latitudinal migration of influ-
enza activity during the winter season.45 As observed with influ-
enza infection latitudinal belts, lower temperatures are associated 
with increases in morbidity and mortality. Thus, the interaction 
of the environment with COVID-19 epidemiological data is 
important and merits further study.
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