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The vitamin K antagonist is a commonly prescribed effective oral anticoagulant with a
narrow therapeutic range, and the dose requirements for different patients varied greatly.
In recent years, studies on human intestinal microbiome have provided many valuable
insights into disease development and drug reactions. A lot of studies indicated the
potential relationship between microbiome and the vitamin K antagonist. Vitamin K is
absorbed by the gut, and the intestinal bacteria are a major source of vitamin K in
human body. A combined use of the vitamin K antagonist and antibiotics may result in
an increase in INR, thus elevating the risk of bleeding, while vitamin K supplementation
can improve stability of anticoagulation for oral vitamin K antagonist treatment. Recently,
how intestinal bacteria affect the response of the vitamin K antagonist remains unclear.
In this review, we reviewed the research, focusing on the physiology of vitamin K in the
anticoagulation treatment, and investigated the potential pathways of intestinal bacteria
affecting the reaction of the vitamin K antagonist.

Keywords: vitamin K, intestinal bacteria, butyrate, vitamin K antagonist, lithocholic acid

INTRODUCTION

Vitamin K antagonist (VKA) has been found as one of the most extensively used first-line oral
anticoagulants (1). Since VKA has a narrow therapeutic range, the international normalized ratio
(INR) should be monitored when VKA is used, and the dose should be regulated in time to avoid
adverse reactions (e.g., bleeding and embolism). However, VKA still has a high risk of adverse
reactions. Statistics suggest that warfarin (the most commonly used VKA) has led to the largest
number of emergency department visits for adverse drug events in the United States (2).

The individual dose difference of VKA has been considered the major contributors to the
adverse reactions. Existing studies have found that VKA dose requirements are dependent on
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genetics and clinical factors (3–6). Based on the above factors,
researchers have established the pharmacogenomics-guided
dosing algorithms for VKA, whereas the clinical value of the
above algorithms has been controversial (7–9). Retrospective
studies have found that the pharmacogenomics-guided dosing
algorithm has a higher VKA stable dose predictive power than
the fixed-dose approach and the clinical algorithm (4), while
the prospective study results have not yet been satisfying (10–
14). The dissatisfactory clinical effect of VKA dosing algorithm
primarily arises from the insufficient contribution of the factors
included in the algorithm, thus leading to the low prediction
accuracy of the algorithm. Therefore, the potential mechanism of
VKA dose change should be studied in depth.

Over the past two decades, researchers have primarily
identified the possible factors of VKA response at the genetic
level, while the effect arising from other levels is ignored.
However, except for polymorphisms in CYP2C9, VKORC1,
CYP4F2, and GGCX, few genetic factors can be included in the
dosing algorithm (15). To find more factors and further optimize
the VKA dosing algorithm, more attention should be paid to
the non-genetic level. As reported by numerous studies, VKA
reactions are significantly correlated with gut microbiota. The
major effect of VKA is to antagonize vitamin K (VK), which is
absorbed by the intestine. Moreover, menaquinone, a vital type
of VK for the human body, is mainly synthesized by intestinal
bacteria. A combined use of VKA and antibiotics may result
in an increase in INR, thus elevating the risk of bleeding (16–
20). Accordingly, there may be a potential correlation between
intestinal microbiome and VKA response. Through the research
on pharmacomicrobiomics of VKA, a new thought may be
provided to clarify the mechanism of individual variability of
VKA response. In this review, the research focusing on the
physiology of VK in the anticoagulation treatment was reviewed,
and the potential pathways of intestinal bacteria affecting the
reaction of VKA were investigated. Thus, this review is expected
to lay a new scientific basis for improving the individualized
medication of VKA.

METHODS

In this narrative review, the focus was placed on the
available in vivo and in vitro studies, as well as reviews.
Medical subject headings (MeSH), text word, and Boolean
calculation search were conducted on the Pubmed database. The
retrieval type applied in the database consisted of [(“vitamin
K” OR “phylloquinone” OR “menaquinone”) AND (“VKA”
OR “warfarin” OR “acenocoumarol” OR “phenprocoumon”
OR “INR”)] OR [(“vitamin K” OR “phylloquinone” OR
“menaquinone”) AND (“intestin∗” OR “gut”) AND (“bacteria”
OR “flora” OR “microbiome” OR “microbiota”)] OR [(“VKA”
OR “warfarin” OR “acenocoumarol” OR “phenprocoumon”
OR “INR”) AND (“intestin∗” OR “gut”) AND (“bacteria”
OR “flora” OR “microbiome” OR “microbiota”)]. Furthermore,
related publications in the reference of the eligible publications
and the mechanism research of intestinal bacteria were
included as well.

TYPES AND SOURCES OF VITAMIN K

Vitamin K refers to a group of liposoluble vitamin with a wide
variety of biology activities, which include playing a certain
role in several coagulation factor syntheses, participation in
osteocalcin carboxylation, promoting the transition of osteoblasts
to osteocytes, limiting osteoclastogenesis and preventing vascular
calcifications (21, 22). Naturally occurring VK primarily has
two forms, including phylloquinone and menaquinone. All types
of VK have a 2-methyl-1,4-naphthoquinone structure, which
is termed menadione. Phylloquinone contains a phytyl side
chain, consisting of 4 prenyl units, while menaquinone covers
an isoprenoid structure side chain with different lengths and
degrees of saturation at the 3-position (23). Phylloquinone of
humans is largely derived from the diet (24). In accordance
with the number of isoprenoid units, menaquinone is termed
menaquinone-n, and 12 types of menaquinone-n (MK-4 to
MK-15) have been generally reported (25). MK-4 has been
found as the most common menaquinone in humans, as
well as the only menaquinone converted by phylloquinone
(26). The other menaquinone is synthesized by some obligate
and facultative anaerobic bacteria (27). Except for MK-4,
the other menaquinone in humans is mostly synthesized by
intestinal bacteria.

The concentration of VK in plasma and feces has been
generally evaluated to indicate the status of vitamin K in humans.
In plasma, the concentrations of phylloquinone, MK-4, and MK-
7 have been frequently quantified, while the other menaquinone
isoforms have been rarely investigated due to the low plasma
concentration (28). In feces, almost all types of VK can be
quantified, and the concentration level is significantly higher
than that in plasma. In humans, there are significant population
and individual differences of VK concentration levels. The mean
plasma concentrations of phylloquinone have been reported to
range from.22 to 8.88 nmol/L. In most studies, the concentrations
were lower than 2 nmol/L (29). Diet and medication have a
significant effect on the in vivo levels of VK.

VITAMIN K AND ANTICOAGULANT
THERAPY

Vitamin K is of critical significance to VK-dependent clotting
factors, which include prohemorrhagic factors (II, VII, IX,
and X) and antithrombotic factors (protein C and protein S)
that work together to clot the blood (30). VKA is capable of
inhibiting the activity of vitamin K epoxide reductase (VKOR)
and hindering the production of VKH2 (an active form of
VK) (31, 32). Under a normal condition of the VK cycle, the
gamma-glutamyl carboxylase converts glutamate residues into
γ-carboxyglutamate residues through the cofactor VKH2, while
facilitating the activation of VK-dependent proteins (26). During
the carboxylation reaction, VKH2 is oxidized into vitamin K 2,3-
epoxide (an inactive form of VK). Subsequently, the inactive VK
is reduced to VKH2 by VKOR to complete the cycle (Figure 1).
Impacted by the lower half-life of proteins C and S compared
with factors II, VII, IX, and X, the patient is placed in a
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FIGURE 1 | The source of vitamin K and the pharmacodynamic pathway of vitamin K antagonist. MKn, menaquinone, n is the number of isoprenoid units; GGCX,
the gamma-glutamyl carboxylase enzyme; VKOR, vitamin K epoxide reductase. The figure was drawing by Microsoft PowerPoint 2016, and the materials were
provided by Figdraw (www.figdraw.com).

pro-thrombotic state and then converted into an anticoagulant
state when receiving VKA therapy (30).

The change of VK levels has a significant effect on the
anticoagulant effect of VKA. A clinical study in Japanese
population reported that the plasma MK-4 concentration showed
a negative correlation with the warfarin sensitivity index (the
ration of INR and the plasma-unbound concentration of
each warfarin enantiomer) (33). Another study in European
population found that the plasma phylloquinone concentration
in the group with a high dose of warfarin was significantly
higher than that in the group with a low dose of warfarin
(34). In addition, daily VK intake has an effect on the VKA
response. Low daily VK intake increases the risk of unstable
anticoagulation control in patients treated with VKA, while
daily VK supplementation improves anticoagulation control (35–
42). Sconce et al. found that, compared with patients with
a stable control of anticoagulation, patients with an unstable
control had a poor dietary intake of VK (43), and patients
receiving 150-µg phylloquinone one time daily had a better
anticoagulation control than those patients treated with placebo
(38). Menaquinone supplementation has also been considered a
way to improve the anticoagulant management for VKA. MK-
7 has been the most widely studied menaquinone isoform in
clinical practice (39, 44). MK-7 has much more stable serum
levels than phylloquinone because of its long elimination half-
life (44). Low-dose supplements of MK-7 could also improve

the anticoagulant management in patients (39). However, not
all patients benefit from VK supplementation, and the dose
supplementation of VK improves the stability of VKA therapy in
patients with unstable INR only (45).

Besides the dose of VK intake, the stability of VK intake
is another vital factor in anticoagulation stability (46). Sudden
changes of VK intake may elevate the risk of potential bleeding
and thromboembolic complications during VKA therapy (46).
Two case reports described that changes in the dietary intake of
VK would lead to diffuse bruising or thrombosis, and even result
in myocardial infarction (47, 48). Thus, clinicians have generally
advised patients who need long-term anticoagulation therapy to
control the intake of food rich in VK to ensure the anticoagulant
stability of VKA.

VITAMIN K BIOSYNTHESIS IN THE
INTESTINAL BACTERIA

There are two ways for intestinal bacteria to synthesize VK,
including the Men pathway and the Mqn pathway. In the
Men pathway, 2-demethylmenaquinone serves as a precursor for
menaquinone synthesis, while the Mqn pathway is completed
through futalosine (49–51). Nine types of enzymes (MenA-MenI)
are involved in the Men pathway, while the Mqn pathway has
five (MqnA-MqnE). In the Human Microbiome Project, 254
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genomes of intestinal bacteria have been sequenced. About 24
genomes of Firmicutes and Proteobacteria have a complete Men
pathway (with all MenA-MenI encoded genes), and 10 genomes
of Firmicutes, Proteobacteria, and Bacteroidetes have a complete
Mqn pathway (52).

In mammals, different intestinal bacteria have genes encoding
different enzymes, thus producing different menaquinone
isoforms. For instance, Eubacterium lentum synthesizes MK-
6, Veillonella primarily produces MK-7, the Escherichia coli
mainly produces MK-8, while MK-10 and MK-11 are the
major isoforms in Bacteroides (53–56). As a result, different
compositions of intestinal microbiome produce menaquinone
isoforms at different concentrations. According to a recent
shotgun metagenomic sequencing study, McCann et al. found
that the elderly individuals could be assigned into 4 clusters
in accordance with a similar presence and prevalence of
menaquinone biosynthesis genes (57). Significant differences
in menaquinone isoforms concentration in fecal were found
among 4 clusters, except for MK-4, MK-6, and MK-7 (57).
It is noteworthy that different menaquinone isoforms may
exhibit different biological functions. The total concentrations of
menaquinone do not covary with cognition in elderly individuals,
whereas certain menaquinone isoforms (e.g., MK-12 and MK-13)
are positively correlated with cognition (57).

INTESTINAL BACTERIA AND
ANTICOAGULANT RESPONSE OF THE
VITAMIN K ANTAGONIST

A considerable number of bacteria live in human intestines,
especially in the colon (58, 59). Gut microbiome participates in
various biological processes in the human body, which cover
the development of immune system, the regulation of nervous
system, and the biosynthesis of vitamins (vitamins K and B)
(60–62). Moreover, the gut microbiome has been confirmed to
interact with liver via the intestine-liver axis, and it is reported to
be correlated with cirrhosis, liver’s antitumor immune function,
etc. (63–65). The above results indicated a potential correlation
between microbiome and liver function. Since VKA is mainly
metabolized and has the VK antagonistic effect in liver, the
intestinal bacteria may also have an effect on the anticoagulant
response of VKA.

Some studies have reported the indirect correlation
between intestinal bacteria and the anticoagulant response
of VKA. Numerous antibiotics (e.g., ciprofloxacin, levofloxacin,
metronidazole, and fluconazole) have been found to significantly
affect the anticoagulant effect of VKA (16, 19, 66, 67). As
compared with patients that do not use antibiotics, the patients
using antibiotics during warfarin therapy have a significantly
higher risk of hemorrhage (16–19). Furthermore, small intestine
bacterial overgrowth (SIBO) affects the anticoagulant therapy of
warfarin (68). Giuliano et al. reported that patients with SIBO
would require a higher warfarin dose compared with patients
without SIBO, whereas Emidio et al. achieved the opposite results
(34, 69). In human gut, some bacteria are correlated with the
synthesis of menaquinone, some bacteria would cause chronic

damage of the small bowel mucosa, and some bacteria would
impair the absorption of bile acids and VK (69). Accordingly,
different research results may be dependent on the types of
bacteria abnormal overgrowth in small intestines.

At present, only two studies reported the direct correlation
between intestinal bacteria and the anticoagulant response of
VKA. In an in vitro study, the researchers tested the relationship
between 76 intestinal bacteria and 271 drugs, and they found
that nearly 2/3 of the 271 drugs could be metabolized by one
or more bacteria (70). According to the results, warfarin was
found to be metabolized by Bacteroides vulgatus, Collinsella
aerofaciens, Anaerotruncus colihominis, Edwardsiell atarda, and
Bacteroides fragilis in vitro. In another study, an association
analysis was conducted between intestinal bacteria and warfarin
response in patients with heart valve replacement. They found
that, compared with the group with a low dose of warfarin, the
relative abundance of genus Escherichia-Shigella was significantly
higher in the group with a high dose of warfarin, while the genus
Enterococcus was enriched in the low dose group (71). Further
analysis indicated that the amount of menaquinone synthesized
by intestinal bacteria in the group with a high dose of warfarin
was significantly higher than that in the low dose group.

Besides directly affecting the anticoagulant effect of VKA
by participating in the coagulation pathway, menaquinone can
indirectly affect the efficacy of VKA through pregnane X receptor
(PXR). PXR is a nuclear receptor highly expressed in liver and
intestines. in vitro studies have confirmed that menaquinone
could activate PXR (72–75). PXR activation would upregulate
the expression of cholesterol transporter Niemann-Pick C1-Like
1 (NPC1L1) in intestinal (76). CD36 refers to a known PXR
target gene. Deficiency of PXR decreases CD36 expression in
mice, while PXR activation upregulates CD36 expression (77–
79). Another in vitro study reported that PXR activation could
downregulate the expression of SR-BI (80). All of the above
three proteins play vital roles in VK absorption in intestines (81,
82). However, since PXR activation has different effects on the
above three proteins, how menaquinone affects the absorption
of VK in vivo should be further investigated. Besides, activation
of PXR could upregulate the expression of CYP2C9 in liver
(83, 84). CYP2C9 refers to the main metabolic enzyme of
VKA, so the concentration of menaquinone in the liver may
affect the metabolism of VKA, thus having an influence on the
anticoagulant effect.

In general, intestinal bacteria may affect the VKA response by
metabolizing the drug in intestinal or regulating the synthesis
of menaquinone. Nevertheless, due to the high bioavailability
of VKA (nearly 100%), the metabolism of VKA in intestines is
negligible (85, 86).

INTESTINAL BACTERIA METABOLITES
AND ANTICOAGULANT THERAPY

Another possible approach to intestinal bacteria affecting the
VKA response may be through short-chain fatty acids (SCFAs).
SCFAs have been reported as the major type of intestinal bacteria
metabolites and derived primarily from intestinal bacteria
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fermentation of dietary fibers. SCFAs play pivotal roles in many
biological processes, consisting of host energy metabolism, cell
proliferation, and immune system regulation (87, 88). The main
three types of SCFAs produced by intestinal bacteria include
butyrate, propionic, and acetic acids, and butyrate has been the
most extensively studied SCFAs type.

Intestinal disorders might affect the absorption of VKA and
VK and then influence the VKA response. Butyrate serves as a
preferred fuel for colonocytes (89). The deficiency of butyrate
will lead to nutritional deficiency of colonic epithelial cells
and cause colitis (90). Moreover, butyrate protects intestinal
mucosa by upregulating the secretion of intestinal mucins
and trefoil factors (91). As a result, butyrate plays a vital
role in intestinal homeostasis maintaining, which is correlated
with the VKA response. Moreover, existing studies found that
butyrate could reduce the absorption of dietary cholesterol by
downregulating the expression of NPC1L1 in the intestines (92,
93). NPC1L1, a key protein affecting cholesterol uptake, refers
to a therapeutic target of dyslipidemia, while ezetimibe serves
as a selective inhibitor of NPC1L1. Researchers have found that
a combined use of ezetimibe could increase the anticoagulant
activity of warfarin (94). Further studies showed that NPC1L1 is a
regulatory factor of intestinal phylloquinone absorption (82, 95,
96). In vitro experiments found that overexpression of NPC1L1
significantly increased the absorption of phylloquinone in the

intestinal cell line (82). In NPC1L1 gene knockout mice, the
concentration of VK is significantly decreased in liver and plasma
(82). Moreover, butyrate refers to a well-known Peroxisome
Proliferator-Activated Receptor (PPAR) agonist, and activation
of PPARα and PPARβ will decrease the expression of NPC1L1
in intestines (92, 97–99). The above results suggest that butyrate
may affect the VKA response by regulating VK absorption.

Another metabolite that may affect VKA response is
lithocholic acid, which is a secondary bile acid produced by
intestinal bacteria (100, 101). Same as menaquinone, lithocholic
acid could activate PXR (72). Moreover, lithocholic acid is also
vitamin D receptor (VDR) agonists (102, 103). Consistent with
PXR, VDR is a drug-activated nuclear receptor, and has been
shown to mediate the transcriptional upregulation of CYP2C
genes (104). Thus, lithocholic acid can regulate CYP2C9 in liver,
and then affect the anticoagulant effect of VKA. Figure 2 shows
the possible mechanism of how intestinal microbiome affects the
anticoagulant response of VKA.

DISCUSSION

In this review, the correlations between VKA, VK and intestinal
bacteria were investigated. VK has been found as a vital
cofactor in the activation of clotting factors. Phylloquinone and

FIGURE 2 | A hypothesis diagram of intestinal microbiome affects the anticoagulant response of vitamin K antagonist VKA, vitamin K inhibitors; PPARα, the
peroxisome proliferator-activated receptor α; PPARβ, the peroxisome proliferator-activated receptor β; PXR, pregnane X receptor; VDR, vitamin D receptor; NPC1L1:
NPC1like intracellular cholesterol transporter 1; SR-BI: scavenger receptor Class B Member 1; CYP2C9, cytochrome P450 Family 2 Subfamily C Member 9. The
figure was drawing by Microsoft PowerPoint 2016, and the materials were provided by Figdraw (www.figdraw.com).
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menaquinone are found as two major types of VK. The intestinal
bacteria may have an effect on the VKA response by producing
menaquinone, affecting VK absorption, regulating liver function,
etc. Based on the above results, we speculated that there might
be significant correlations between VK, intestinal bacteria, and
the VKA response. However, the underlying mechanisms still
need to be clarified. Whether intestinal bacteria have an effect
on the pharmacokinetics and pharmacodynamics of VKA in vivo
remains unclear, so more pieces of pharmacomicrobiomics
research should be conducted.

The current research results revealed that intestinal bacteria
could potentially become a warfarin response prediction
biomarker. Integration of intestinal bacteria and genetic and
clinical factors may improve the accuracy of warfarin dose
prediction algorithm and help predict the INR stability of patients
after taking warfarin. Intervention of intestinal microbiome may
improve the stability of INR.

In this review, the only focus was placed on the correlation
between intestinal bacteria and VKA. Impacted by the
extensive role of intestinal microbiome, intestinal bacteria
may affect the efficacy of other anticoagulants by directly
metabolizing drugs, bioaccumulation drugs, or other ways (70,
105). However, the current pharmacomicrobiomics studies
of anticoagulants have been rare. To investigate the effect
arising from intestinal bacteria on anticoagulant drug response,
more research should be conducted in this field. Moreover,
although VK status in human body is significantly correlated
with VKA response, we can only detect VK concentration
in blood and feces for most patients with anticoagulant at
present; it is hard to evaluate the systemic VK status and
the pleiotropic effects of VK in the body. In the future,

novel evaluation methods for global VK status and effects
should be developed.
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