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Abstract

metabolism in a time-dependent manner.
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Background: It was previously demonstrated that alanine aminotransferase (ALAT, EC 2.6.1.2) participates in
maintaining the alanine-proline cycle between flight muscles and fat body during Aedes aegypti flight. ALAT is also
actively involved in the metabolism of ammonia in A. aegypti. Here, we investigated the survival and behavioral
costs of ALAT inhibition in A. aegypti females to better understand the role of ALAT in blood-fed mosquitoes.

Methods: We analyzed how A. aegypti female mosquitoes respond to blood meals supplemented with 0, 2.5, 5
and 10 mM L-cycloserine, a well-known inhibitor of ALAT in animals. Mosquitoes were also exposed to blood meals
supplemented with L-cycloserine and different concentrations of glucose (0, 10 and 100 mM). Additionally, the
effects of ALAT inhibitor and glucose in mosquitoes starved for 24 or 48 h were investigated. Survival and
behavioral phenotypes were analyzed during a time course (1, 2, 4, 6, 12, 24, 48 and 72 h after feeding).

Results: L-cycloserine at 10 mM resulted in high mortality relative to control, with an acute effect during the first
6 h after treatment. A significant decrease in the number of active mosquitoes coinciding with an increase in futile
wing fanning during the first 24 h was observed at all inhibitor concentrations. A high occurrence of knockdown
phenotype was also recorded at this time for both 5 and 10 mM L-cycloserine. The supplementation of glucose in
the blood meal amplified the effects of the ALAT inhibitor. In particular, we observed a higher mortality rate
concomitant with an increase in the knockdown phenotype. Starvation prior to blood feeding also increased the
effects of L-cycloserine with a rapid increase in mortality.

Conclusions: Our results provide evidence that exposure of high doses of L-cycloserine during A. aegypti blood
feeding affects mosquito survival and motor activity, suggesting an interference with carbohydrate and ammonia
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Background

Alanine aminotransferase (ALAT), also called glutamic-
pyruvic transaminase (EC 2.6.1.2), is responsible for a bi-
molecular ping-pong reaction, where the a-amino group
of alanine is transferred to o-ketoglutarate, leaving be-
hind pyruvate and glutamate. This reversible reaction
synthesizes alanine from pyruvate as well [1]. The enzyme
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contains the prosthetic group pyridoxal phosphate, which
acts as a coenzyme in catalytic reactions.

In vertebrates, ALAT activity has been described in sev-
eral different organisms such as fishes [2], amphibians [3],
birds [4], and mammals [5-8]. ALAT is localized to both
the cytosol and mitochondria [8,9] and is widely distrib-
uted in several organs, with high levels in the liver and
kidney [10-12]. In particular, ALAT is expressed in gluco-
neogenic tissues [8,13]. In muscle, the enzyme synthesizes
alanine from pyruvate, which is produced by glycolysis.
Alanine is shuttled to the liver, where it is converted back
to pyruvate and used for gluconeogenesis. The glucose
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produced is then delivered to the muscle to continue the
cycle [13]. Moreover, ALAT plays an important role in the
brain contributing to its energy supply [14].

In invertebrates, ALAT activity has been observed in
crustacea [15], mollusks [16], and several insects, includ-
ing locusts, tsetse flies, cockroaches, bees, moths [17],
and mosquitoes [18]. In some insects, ALAT participates
in the metabolism of proline during flight [18-21], and is
involved in the metabolism of ammonia [22-24]. In
addition, ALAT activity is present in the nervous system
of some insects, such as bees [25,26], waterbugs, cock-
roaches [27] and fruit flies [28], and provides energy to
the nerve cells. For example, in the bee’s retina, glycogen
accumulated in the glia is transferred to the neurons as
pyruvate and alanine [25,26].

Over the last few decades, a growing interest has de-
veloped in the effects of ALAT inhibition, in both verte-
brates and invertebrates. Several potential inhibitors
[2,6,11,29] have been tested including -chloro-L-alanine
[30-32] and L-cycloserine (LCS), an L-isomer of 4-amino-
3-isoxazolidinone [33]. LCS is one of the ALAT inhibitors
most commonly used both in vivo [30,34] and in vitro
[7,11,16,29,30,35].

In the present study, we evaluated the potential effects
of ALAT inhibition in A. aegypti, a widely distributed
species of mosquito and a primary vector of viral dis-
eases such as dengue, yellow and chikungunya fever
[36]. We investigated how A. aegypti females respond to
different concentrations of LCS throughout a period of
three days post blood meal, considering behavioral end-
points and mortality as indices of metabolic alterations.
We also analyzed the effects of LCS and glucose in non-
starved and starved A. aegypti females. The results pre-
sented in this manuscript demonstrate that high doses
of LCS interfere with A. aegypti blood metabolism caus-
ing an impairment of important behavioral phenotypes
and a high mortality.

Methods

Chemicals

L-cycloserine (LCS), D-glucose (Glc) and sucrose were pur-
chased from Sigma-Aldrich (St. Louis, MO). Bovine blood
was obtained from Pel-Freez Biologicals (Rogers, AR).

Insects

Aedes aegypti (NIH Rockefeller strain, [37]) mosquitoes
were reared at standard conditions as previously described
[38]. Newly-eclosed mosquitoes were randomly assigned
to different containers. Female mosquitoes were fed
on 3% sucrose ad libitum until blood feeding or starved
24 or 48 h with access to water prior to a blood meal
(BM). Mosquitoes were kept in a Caron 6015 Insect
Growth Chamber, connected to a Caron CRSY 102 con-
densate recirculating System (Caron Products & Services,

Page 2 of 9

Inc., Marietta, OH) at 28°C, 75% relative humidity and a
light: dark cycle of 16 h: 8 h until the end of the

experiments.

LCS treatments
Four-day-old female mosquitoes of the same size were
allowed to feed for 15 min on blood meals (see below
Treatment 1, 2 and 3) through an artificial blood feeder
connected to a 37°C water bath [38]. Large groups of fe-
male mosquitoes were fed at the same time. After feed-
ing, each female was carefully inspected and only fully
engorged mosquitoes were individually transferred to
20 ml polyethylene vials (one female per vial). Each vial
was covered with nylon mesh and secured with a rubber
band. Mosquitoes were provided water ad libitum through-
out the study period and maintained in an Insect Growth
Chamber, as described above.

Mosquitoes underwent different experimental treatments:

Treatment 1: BM supplemented with LCS (0, 2.5, 5,

10 mM). The experiment was replicated five times with
five separate cohorts of mosquitoes, with a total sample
size of 250 for each concentration.

Treatment 2: BM supplemented with LCS (0, 10 mM)
and Glc (0, 10, 100 mM). All the combinations of LCS
and Glc were tested. The experiment was replicated
three times with three separate cohorts of mosquitoes,
with a total sample size of 75 for each concentration.
Treatment 3: mosquitoes were starved for 24 or 48 h
prior to the BM supplemented with LCS (0, 10 mM)
and Glc (0, 100 mM). All the combinations of

LCS and Glc were tested. The experiments were
replicated three times with three separate cohorts

of mosquitoes, with a total sample size of 75 for
each concentration.

Mortality and behavioral phenotypes
During a 15 sec window, mortality rate and behavioral obser-
vations were recorded at 1, 2, 4, 6, 12 (only in Treatment 1),
24, 48 and 72 h post blood meal (PBM).

Presence or absence of the following behavioral end-
points was individually scored:

— Active: mosquito shows normal behavior such as
proper coordination and the ability to stand, walk,
and fly.

— Wing fanning: mosquito shows a persistent wing
fanning behavior in a futile attempt to fly. Wing
fanning was previously described in other insects
(reviewed in Haynes, 1988 [39]). It can be
accompanied by loss of coordination.

— Knockdown: mosquito shows inability to stand, walk
or fly, according to the ethological profile described
in mosquitoes [40,41].
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In this manuscript the terms wing fanning and knock-
down refer to impaired motor activity.

Statistical analysis

Survival analysis was performed using Log-rank and Tarone-
Ware tests. Bonferroni correction was applied when mul-
tiple comparisons were performed. The analysis was
carried out using GraphPad Prism version 6.0 for Mac
OS X (GraphPad Software, San Diego, CA). Behavior was
categorized into three levels (active, wing fanning and
knockdown). Generalized estimating equation (GEE) re-
gression methods were used to examine the impact of
treatment, and any interaction with time, on behavior. Be-
havioral data were analyzed using PROC GENMOD, SAS
version 9.3 (SAS Institute Inc., Cary, NC) with a cumula-
tive logit link and an independent correlation structure. A
p-value less than 0.05 was considered significant. Data are
presented as mean * standard error (SE).

Results

LCS impairs motor activity and survival

To better understand the role of ALAT in blood-fed
A. aegypti metabolism, we experimentally assessed the
survival costs of LCS-dependent inhibition in A. aegypti
females and analyzed their behavioral phenotypes during
3 days post treatment. This was done by comparing out-
comes between mosquitoes that were fed a BM (control
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group) and mosquitoes fed BM’s with LCS at varying con-
centrations (Treatment 1).

As shown in Figure 1, only 5 (2% + 1) of the individ-
uals fed with blood alone (BM) died during the 72 h of
observation, while mosquitoes exposed to 10 mM LCS
(BM + 10 mM LCS) had a significantly higher mortality
(35% + 6) [Log-Rank, ng =259.2, p=0.0001] than the
other three groups (BM =2%+1; BM +2.5 mM LCS =
04% +0.4; BM+5 mM LCS=2%+1). Moreover, at
10 mM LCS most mortality occurred within the first
hours PBM, reaching 24% by 6 h, while only 11% of the
mosquitoes died between day 1 and day 3. No difference
in mortality was observed among the other groups of
this treatment [Log-Rank, x*, = 3.55, p = 0.17].

When we examined behavioral phenotypes (Figure 1;
Additional file 1: Video S1) of all four groups, motor ac-
tivity was impaired in a time-dependent manner by LCS
administration [GEE, Time, x*;=507.24, p=0.0001],
resulting in a greater occurrence of wing fanning and
knockdown behavior relative to control. The LCS effect
was dose-dependent, where the number of active mosqui-
toes decreased with the increase of LCS concentration ac-
companied by a higher probability of knockdown
response [GEE, Dose, x*1 = 273.54, p = 0.0001]. Wing fan-
ning was observed at all LCS concentrations, while knock-
down was almost absent at 25 mM LCS (Figure 1A-D;
Additional file 2: Table S1). Impairment of motor activity
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Figure 1 Effect of LCS on the behavioral phenotypes and mortality in A. aegypti. A) BM; B) BM + 2.5 mM LCS; C) BM + 5 mM LCS; D) BM +
10 mM LCS. BM: blood meal; LCS: L-cycloserine. Female mosquitoes were fed a blood meal supplemented with different concentrations of LCS
(0, 2.5, 5 and 10 mM). Data are expressed as mean percentage + SE.
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occurred within the first hours PBM. However, a clear re-
covery was observed over time (Figure 1B-D).

LCS and Glc increase the behavioral response and
mortality

Since pyruvate required for transamination can be pro-
duced by the oxidation of Glc, we speculated that the ef-
fects of LCS on mosquitoes would be modified in the
presence of Glc. To determinate whether Glc alters the ef-
fects of LCS on mosquitoes, we investigated the survival
costs of the ALAT inhibitor in A. aegypti females after
they were provided blood meals supplemented with LCS
and Glc (Treatment 2). As with Treatment 1, we evaluated
their behavioral responses during 72 h PBM.

During the course of the experiment no mosquitoes
died in the groups exposed to BM + 10 mM Glc or BM +
100 mM Glc when compared to BM (Figure 2). When the
effect of 10 mM LCS was tested, mortality was signifi-
cantly higher than in the BM control [Log-Rank, x*3=
89.76, p < 0.0001; BM: 4% + 2; BM + 10 mM LCS: 52% = 0;
BM + 10 mM LCS + 10 mM Glc: 77% +7; BM + 10 mM
LCS + 100 mM Glc: 67% + 7] (Figure 2). In the presence
of Glc, the effect of LCS increased [Log-Rank, X%, = 12.37,
p=00021; BM+10 mM LCS; BM+10 mM LCS+
10 mM Glc; BM + 10 mM LCS + 100 mM Glc], reducing
the population by half at 4 h PBM. When BM + 10 mM
LCS + 10 mM Glc and BM + 10 mM LCS + 100 mM Glc
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were compared, no dose-dependent effect was observed
(Figure 2).

As shown in Figure 2A-C, no difference in the behavioral
phenotypes was observed among the BM, BM +10 mM
Glc and BM + 100 mM Glc groups, while LCS significantly
affected mosquito activity in a time-dependent way [GEE,
Time, x*; = 40.61, p = 0.0001]. When we compared the ef-
fect of the inhibitor under Glc supplementation (0, 10 and
100 mM), Glc decreased the probability of active behavior
[GEE, Dose Glc: x22 =34.39, p =0.0001] due to an increase
of knockdown response (Figure 2). However, the effect was
independent from the Glc concentration (Additional file 3:
Table S2), and over time BM + 10 mM LCS + 100 mM Glc
group recovered, reaching a number of active mosquitoes
similar to BM + 10 mM LCS group. A slight recovery was
observed in BM + 10 mM LCS + 10 mM Glc group [GEE,
Time*Dose Glc: x*, = 14.64, p = 0.0007; Figure 2D-F].

Starvation prior to LCS-treatment severely increases the
LCS effects

It is well known that starvation mobilizes the nutritional
reserves in both vertebrates and invertebrates. To ex-
plore whether starvation impacts the phenotypes ob-
served after LCS treatment, we tested the survival costs
of the ALAT inhibitor on mosquitoes starved for 24 or
48 h (Treatment 3). We also examined their behavioral
responses during 3 days post treatment.
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Figure 2 Effect of LCS and Glc on the behavioral phenotypes and mortality in A. aegypti. A) BM; B) BM + 10 mM Glc; C) BM + 100 mM
Glc; D) BM + 10 mM LCS; E) BM + 10 mM LCS + 10 mM Glc; F) BM + 10 mM LCS + 100 mM Glc. BM: blood meal; LCS: L-cycloserine; Glc: glucose.
Female mosquitoes were fed a blood meal supplemented with different concentrations of LCS (0, 10 mM) and Glc (0, 10, 100 mM). Data are
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Starvation for 24 h significantly affected mosquito sur-
vival in the presence of LCS (BM + 10 mM LCS: 93% + 1;
BM + 10 mM LCS + 100 mM Glc: 76% + 2) relative to the
control groups (BM: 3% + 3; BM + 100 mM Glc: 3% + 3)
[Tarone-Ware, x23 =219.1, p<0.0001] (Figure 3). Al-
though a similar trend was observed in LCS-treated
groups, the rate of mortality increased faster in the pres-
ence of Glc during the first 24 h, where 50% mortality was
reached by 4 h PBM. The effect was stronger later in the
absence of Glc with a higher total mortality at 72 h PBM
(Figure 3).

As shown in Figure 3 and Additional file 4: Table S3, the
high mortality rate in LCS groups was associated with a
reduced number of active mosquitoes and a greater knock-
down response, compared to control groups (BM and BM +
100 mM Glc). Wing fanning was also observed shortly
after feeding in LCS groups. Time was not a significant
factor [GEE, Time: le =0.01, p = 0.9] with few active mos-
quitoes in the LCS groups. However, Glc supplementation
resulted in a higher probability of active behavior and
lower knockdown response associated with a greater
percentage of survival [GEE, Treatment Glc, x*; =
13.73, p=0.0002; Time*Treatment Glc, x*; =5.04, p =
0.0248; Figure 3C-D].

When mosquitoes were starved for 48 h prior to blood
feeding (Figure 4), a similar response pattern to 24 h
starvation was observed; LCS treatment resulted in sig-
nificant mortality (BM + 10 mM LCS: 96% +4; BM +
10 mM LCS +100 mM Glc: 100%) compared to the
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control groups (BM: 11% + 1; BM + 100 mM Glc: 3% + 1)
[Log-Rank, x*3 = 319.9, p < 0.0001], with a faster increase
in the mortality rate in the first 24 h PBM in the pres-
ence of Glc (median survival =2 h PBM).

The LCS-treated groups showed a low occurrence of
active behavior and a high occurrence of knockdown re-
sponse, which reached its highest level within the first
hours PBM with respect to the groups not exposed to
LCS (Figure 4 and Additional file 5: Table S4). Further-
more, the same mosquitoes showed wing fanning behav-
ior only shortly after feeding (1-2 h) (Additional file 5:
Table S4). When the effect of Glc was considered (BM +
10 mM LCS + 100 mM Glc), no recovery was observed. In
absence of Glc (BM + 10 mM LCS), LCS-survived mos-
quitoes recovered slightly over time [GEE, Treatment Glc,
X*1=17.39, p<0.0001; Time*Treatment Glc, x*; = 11.75,
p =0.0006; Figure 4C-D].

Discussion

Alanine aminotransferase (ALAT) plays an important
role in maintaining the alanine-proline cycle between
flight muscles and fat body during A. aegypti flight [18].
Additionally, the ALAT enzyme responds efficiently
when A. aegypti mosquitoes face an ammonia challenge
[22-24]. Thus, any interference with ALAT activity could
compromise the efficiency of the pathways involved
in ammonia metabolism [22-24,38,42], resulting in
deleterious effects on blood-fed A. aegypti females.
In the study performed here, we treated A. aegypti
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Figure 3 Effect of LCS on the behavioral phenotypes and mortality in 24 h starved A. aegypti. A) BM; B) BM + 100 mM Glc; C) BM + 10
mM LCS; D) BM + 10 mM LCS + 100 mM Glc. BM: blood meal; LCS: L-cycloserine; Glc: glucose. Female mosquitoes were starved for 24 h prior to
the administration of a blood meal supplemented with LCS (0, 10 mM) and Glc (0, 100 mM). Data are expressed as mean percentage + SE.
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mosquitoes with L-cycloserine (LCS), a well-known
inhibitor of ALAT.

In animals, LCS is able to strongly or completely in-
hibit ALAT activity [7,11,16,29,30,34]. When increasing
concentrations of LCS (0, 2.5, 5 and 10 mM) in blood
meals were tested in A. aegypti females (Treatment 1,
Methods Section), only the highest dose affected female
survival with an acute effect during the first hours post
treatment. However, motor behavior was affected in all
the LCS-groups following a time-dependent pattern with
a clear recovery over time. All three concentrations of
LCS showed a high occurrence of wing fanning, but only
5 and 10 mM LCS were associated with a significant
number of mosquitoes exhibiting the knockdown behav-
ior. Mortality was observed only at 10 mM LCS, suggest-
ing a dose-dependent increase in the severity of the
motor disruption with death as the ultimate impairment.
Interestingly, the addition of glucose into blood meals
(Treatment 2, Methods Section) or starvation (Treat-
ment 3, Methods Section) increased the LCS effects on
mosquitoes. Our data also indicate that behavioral end-
points are a useful tool to investigate the effect of enzym-
atic inhibitors able to interfere with mosquito metabolism.
Motor activity impairment caused by the exposure to che-
micals in natural conditions could result in a compro-
mised seeking and biting behavior, and therefore affect
disease transmission [43,44].

In LCS-blood fed A. aegypti (Treatments with 10 mM
LCS), the early peak observed in both mortality and

impaired behavior suggests that LCS strongly interacts
with ALAT soon after blood feeding. Early LCS response
was also described in rats, where inhibition of ALAT ac-
tivity rapidly reached a peak merely 30—-60 minutes post
LCS injection [34]. One hour LCS-perfusion also re-
sulted in a fast decrease of ALAT in rats [45]; whereas
in mice an intra-peritoneal injection of the inhibitor af-
fected ALAT and induced a moderate impairment of
motor performance three hours after administration
[46]. The recovery observed in surviving LCS-blood fed
mosquitoes might indicate that the inhibitor acts rapidly
on tissues, but somehow it is then detoxified or removed
from the system. The underlying mechanisms of mos-
quito recovery are unknown at the present. However, it
is possible that the surviving mosquitoes use alternative
pathways to deal with ALAT inhibition, as previously re-
ported in blood-fed A. aegypti females when glutamine
synthetase was silenced by specific inhibitors [22-24].
The phenotypes described here in A. aegypti mosqui-
toes treated with high doses of LCS could be associated
with an alteration of ammonia metabolic pathways. In
A. aegypti, inhibition of enzymes involved in fixation
and assimilation phases of ammonia metabolism [22-24]
resulted in a high mortality, preceded by the suppression
of locomotor activity [24]. In mammals, an excess of am-
monia in the brain affected the activity of neurotransmitters
involved in the regulation of motor activity such as acetyl-
choline [47], glutamate and its product y-aminobutyric acid
[48-50]. High levels of ammonia in neuronal and other
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tissues have been associated with deleterious effects and
death in several animal species [48,51-53] owing to an
increase in oxidative stress, energy deficiency, and alter-
ation of neurotransmission systems in a concentration
and time-dependent manner [48,51,54]. Recently, Beuster
et al., [30] found that ALAT inhibition with LCS corre-
lates with several alterations in mammalian cancer cells,
such as energy deficiency, increased respiration rates, and
mitochondrial production of reactive oxygen species.
Moreover, inhibition of ALAT by LCS was associated with
a decrease in glucose uptake, and thus a suppression of
the overall glucose metabolism in rodent cell lines [30]. In
A. aegypti mosquitoes, sugar feeding plays an important
role in the metabolism of amino acids and energy supply
[55]. In Treatment 2, all the LCS-groups showed a similar
time-dependent pattern associated with recovery over
time, although lower in the presence of glucose. The se-
verity of LCS effects after glucose supplementation ob-
served here correlates closely with a disruption of glucose
and amino acid metabolism in A. aegypti females. It could
be interesting to explore whether any of these cellular ef-
fects caused by LCS in vertebrates can be also correlated
to the behavioral alterations observed in mosquitoes
treated with the higher doses of LCS.

In A. aegypti, starvation strongly impacts energy supply
and results in low flight potential [56]. Moreover, when A.
aegypti are sugar-starved for 24 h prior to feeding on a
protein meal, proline and alanine levels are significantly in-
creased relative to the level of non-starved mosquitoes
[57]. In rodents, 48 h starvation induces an increase in ala-
nine production, while alanine release is decreased by LCS
perfusion [58]. These findings could support how starva-
tion can result in the greater mortality and behavioral al-
terations observed in A. aegypti mosquitoes exposed to
ALAT inhibitor. The LCS administration induced a rapid
increase in mortality in A. aegypti females starved for 24 h.
The effect was amplified in females starved for 48 h. In
addition, the supplementation of glucose resulted in a fas-
ter increase in the mortality, but only in the first 4 h post
treatment. Finally, a slight recovery and reduced number
of knockdown phenotype occurred in the presence of glu-
cose in mosquito females starved for 24 h, while no recov-
ery was observed in females starved for 48 h.

Despite high specificity of LCS for ALAT, it is known
that LCS can interact with other transaminases in animals
[11,34,46]. Therefore, we cannot exclude the possible side
effects of the LCS treatment on additional targets in mos-
quitoes. To overcome this problem, we are currently in-
vestigating the effects of silencing ALAT in A. aegypti
females through RNA interference.

Conclusion
This study demonstrates that exposure to high LCS
doses incurs survival costs and behavioral alterations in
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A. aegypti females. The LCS effects were amplified when
mosquito blood meals were supplemented with glucose
or when females were starved prior to blood feeding.
Taken together, our data suggest that LCS interferes with
carbohydrate and ammonia metabolism in a time-dependent
manner in blood-fed A. aegypti females.

Additional files

Additional file 1: Video S1. Effect of LCS on wing fanning behavior in
an A. aegypti female. Mosquito behavior was video recorded in an A. aegypti
female exposed to a blood meal supplemented with LCS (10 mM). The
observation was recorded at 4 h post blood meal.

Additional file 2: Table S1. Comparison of behavioral phenotypes in
A. aegypti exposed to LCS (0, 2.5, 5 and 10 mM) (Treatment 1, Methods
Section). Data are expressed as mean percentage (+SE) calculated from
the surviving mosquitoes.

Additional file 3: Table S2. Comparison of behavioral phenotypes in

A. aegypti exposed to LCS (0, 10 mM) and Glc (0, 10, 100 mM) (Treatment 2,
Methods Section). Data are expressed as mean percentage (+SE) calculated
from the surviving mosquitoes.

Additional file 4: Table S3. Comparison of behavioral phenotypes in
A. aegypti starved for 24 h and exposed to LCS (0, 10 mM) and Glc

(0, 100 mM) (Treatment 3, Methods Section). Data are expressed as mean
percentage (+SE) calculated from the surviving mosquitoes.

Additional file 5: Table S4. Comparison of behavioral phenotypes in
A. aegypti starved for 48 h and exposed to LCS (0, 10 mM) and Glc (0,

100 mM) (Treatment 3, Methods Section). Data are expressed as mean
percentage (+SE) calculated from the surviving mosquitoes.
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