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OBJECTIVE

Debate continues regarding the influence of dietary fats and sugars on the risk of
developing metabolic diseases, including insulin resistance and nonalcoholic fatty
liver disease (NAFLD). We investigated the effect of two eucaloric diets, one
enrichedwith saturated fat (SFA) and the other enriched with free sugars (SUGAR),
on intrahepatic triacylglycerol (IHTAG) content, hepatic de novo lipogenesis (DNL),
and whole-body postprandial metabolism in overweight males.

RESEARCH DESIGN AND METHODS

Sixteen overweight males were randomized to consume the SFA or SUGAR diet for
4 weeks before consuming the alternate diet after a 7-week washout period. The
metabolic effects of the respective diets on IHTAG content, hepatic DNL, andwhole-
bodymetabolismwere investigatedusing imagingtechniquesandmetabolic substrates
labeled with stable-isotope tracers.

RESULTS

Consumption of the SFA diet significantly increased IHTAG by mean6 SEM 39.06
10.0%, while after the SUGAR diet IHTAGwas virtually unchanged. Consumption of
the SFA diet induced an exaggerated postprandial glucose and insulin response to a
standardized test meal compared with SUGAR. Although whole-body fat oxidation,
lipolysis, and DNLwere similar following the two diets, consumption of the SUGAR
diet resulted in significant (P < 0.05) decreases in plasma total, HDL, and non-HDL
cholesterol and fasting b-hydroxybutyrate plasma concentrations.

CONCLUSIONS

Consumption of an SFA diet had a potent effect, increasing IHTAG together with
exaggerating postprandial glycemia. The SUGAR diet did not influence IHTAG and
inducedminormetabolic changes.Ourfindings indicate that adiet enriched in SFA is
more harmful to metabolic health than a diet enriched in free sugars.

Nonalcoholic fatty liver disease (NAFLD) represents a spectrum of liver-related
conditions, ranging from steatosis (characterized by an accumulation of intrahepatic
triacylglycerol [IHTAG]) to nonalcoholic steatohepatitis, cirrhosis, and hepatocellular
carcinoma, and is the most prevalent liver disease worldwide (1). There appears to
exist a bidirectional relationship betweenNAFLD andmetabolic disease; the presence
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of NAFLD predicts the development of
themetabolic syndrome/type 2 diabetes
(T2D) and vice versa (2). Furthermore,
the presence of NAFLD may exacerbate
the metabolic abnormalities that occur
with T2D (3). Obesity is a principal risk
factor for NAFLD (1), and it is suggested
that increased hepatic de novo lipogen-
esis (DNL) is an underlying cause in the
development of NAFLD and/or insulin re-
sistance (4,5). As excess nonlipid precursors
(e.g., sugars and protein) can exacer-
bate hepatic DNL, dietary composition
maybean importantmediator ofNAFLD
development.
Observational studies report that diets

high in fat and/or free sugars are asso-
ciated with NAFLD, and a consistent
finding from interventional studies is
that hypercaloric diets enriched in fat
or sugars increased IHTAG (6). Recently,
Luukkonen et al. (7), reported that con-
suming 1,000 excess kcal/day as satu-
rated fat (SFA) increased IHTAG content
to a greater extent (55% relative in-
crease) than consuming excess calories
as unsaturated fatty acids (FA) (15% in-
crease) or free sugars (33% increase); this
effect was independent of changes in
body weight. Others have reported that
IHTAG increased to a greater extent with
overfeeding of SFA compared with diets
overfeeding either fructose (8) or n-6
polyunsaturated fat (9).
Of the limited number of studies that

have investigated the influence of mac-
ronutrient composition in eucaloric di-
ets, findings for the effects on IHTAG
are inconsistent, with some demonstrat-
ing that diets enriched in fat/SFA (10)
or sugars (11) increase IHTAG content,
whereas others show no effect (12,13).
To date, no study has directly compared
eucaloric diets enriched in SFA or free
sugars on IHTAG,and few studies assess
the effect specific diets have on post-
prandial metabolism and intrahepatic
FA synthesis and partitioning. Therefore,
the aim of this study was to compare the
effects of two eucaloric dietsdone en-
riched in carbohydrate, specifically, free
sugars, and the other enriched in fat,
specifically, SFAdon IHTAG content, he-
patic DNL, and hepatic and whole-body
postprandial metabolism in overweight
males. Based on the available evidence,
we hypothesized that diets enriched in
SFA or free sugars would differentially
influence whole-body and hepatic FA
metabolism, with an SFA-enriched diet

increasing IHTAG to a greater extent
thana sugar-enricheddiet, and thiswould
be driven by an increase in adipose tissue
lipolysis, while a sugar-enriched diet
would increase hepatic DNL.

RESEARCH DESIGN AND METHODS

Participants
Participants were recruited from the Ox-
ford BioBank (www.oxfordbiobank.org.uk)
(14) (Supplementary Fig. 1). All volunteers
were free from metabolic disease, had a
BMI between 25 and 30 kg/m2, were not
taking medication known to affect lipid
orglucosemetabolism,werenonsmokers,
and consumed alcohol within recommen-
ded limits (1). The study was approved by
the North West - Lancaster Research
Ethics Committee (16/NW/0751), and
all participants gave written informed
consent.

Experimental Design
In a randomized crossover design, par-
ticipants completed two 4-week dietary
interventionsseparatedbya7-weekwash-
out period where they returned to their
habitual diet. Participants also followed a
1-week standardization diet, based on the
U.K. Eatwell plate, prior to starting the
respective dietary interventions (i.e., be-
fore fasting study days). The two dietary
interventionswere1) a relatively high-fat
diet enriched in SFA (referred to as SFA),
and2) a relatively high-carbohydrate diet
enriched with free sugars (referred to as
SUGAR). Participants were randomized
to the order in which they undertook
each intervention diet (e.g., SFA then
SUGAR or SUGAR then SFA) prior to the
first study day through use of a random
number generator by a statistician not
involved in the running of the trial in
order to avoid any effects of dietary
sequence. Participants completed 3-day
diet diaries during all standardized and
experimental diet periods. Before be-
ginning each dietary intervention, par-
ticipants underwent a fasting study day,
and upon completion of the interven-
tiondiet, participants underwent a post-
prandial studyday thatused stable-isotope
tracers to investigate postprandial metab-
olism (Fig. 1).

Anthropometricmeasures, IHTAG con-
tent, and fasting plasma biochemistry
and lipidomics were assessed across
each of the respective interventions
(prediet vs. postdiet), while others, includ-
ing postprandial plasma biochemistry,

isotopic analysis, bile acid species, and
indirect calorimetry, were compared be-
tween diets at the end of the respective
dietary phase (postdiet vs. postdiet).

Fasting Study Day
Immediately before each dietary interven-
tion, IHTAG was measured after an over-
night fast by proton MRS (1H-MRS) using
a 3 Tesla MRI scanner (Siemens Healthi-
neers, Erlangen, Germany). A single voxel
(203 20 3 20 mm3) was positioned in
the posterior part of the left liver lobe, and
both water-suppressed and non–water-
suppressed stimulated acquisition mode
(STEAM) measurements were performed
(15). Sequence parameters were as fol-
lows: echo time 10ms, mixing time 7ms,
and repetition time at least 2,000 ms
for water-suppressed scans and at least
4,000 ms for non–water-suppressed scans
with acquisitions synchronized to elec-
trocardiogram. At the analysis stage,
these two acquisitions were combined
and the proportion of triacylglycerol
(TAG) in the liver tissue was determined
using the OXSA toolbox (16). Following
the MRI scan, blood samples were col-
lected from an antecubital vein, body
weight and waist circumference meas-
urements were made, and a DEXA scan
was performed to assess body composi-
tion. Participants then had a consultation
with the studydietitian,whoprovideddiet
sheets containing written and pictorial
information about how to follow the re-
spective experimental diets, including
suggestions for suitable foods to be con-
sumed. Participants were also provided
with key foods to be consumed during
experimental diets.

Experimental Diets
The SUGAR diet was composed of 20%
total energy (TE) fat, 65% TE carbohy-
drate, and 15% TE protein and was en-
riched in freesugars (20%TE). Participants
were advised to adopt a low-fat, high–
glycemic index diet and were supplied
with candy and sugar-sweetened bever-
ages providing ;100 g free sugars daily.
The SFA dietwas composed of 45% TE fat,
40% TE carbohydrate, and 15% TE protein
andwas enriched in SFA (20% TE). On this
diet, participants were advised to include
redmeat andmeat products, full-fat dairy
products, and typical fast food items (e.g.,
hamburgers,pizzaetc.)andwereprovided
with foods (such as cheese/all-butter bis-
cuits and milk chocolate) that provided
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;15 g SFA daily. Participants were in-
structed to maintain their usual body
weight, physical activity levels, and alco-
hol intakes and were contacted weekly
by a member of the research team to
support adherence.

Postprandial Study Day
The evening before the postprandial
study day participants consumed deuter-
ated water (2H2O) (3 g/kg body water)
(17). On the morning of the study day,
participants arrived at the Clinical Re-
search Unit after an overnight fast where a
Teflon catheter was inserted into an ante-
cubital vein for repeated blood sampling.
A second catheter was inserted into the
contralateral arm to allow for infusion of
an isotopically labeled FA. Prior to the
start of the FA infusion, blood samples
were collected to determine fasting me-
tabolite concentrations and background
isotopic enrichment, and then the in-
fusionof [2H2]palmitate (0.04mmol/kg/
min) bound to human albumin started
and continued for the duration of the
study period. The infusionwas continued
for 30min to enable isotopic equilibrium,
after which blood and breath samples
(t0) were taken before participants
were fed a standardized test meal con-
taining 40 g carbohydrate, 40 g fat, and
200 mg [U13C]palmitic acid to trace the
fate of dietary FA. Repeated blood and
breath samples were taken 30, 60, 90,
120, 180, 240, 300, and 360 min after
meal consumption. Breath sampleswere
collected in EXETAINER tubes (Labco,
High Wycombe, U.K.) to determine
13CO2 production. Indirect calorimetry
was performed in the fasting state and
120 min after meal consumption using
a GEM calorimeter (GEMNutrition Ltd.,
Cheshire, U.K.) to determine whole-body

CO2 production, whole-body respiratory
exchange ratio, and energy expenditure.

Analytical Procedures
Whole blood was collected into heparin-
ized tubes (Sarstedt, Leicester, U.K.) and
plasma immediately separated for anal-
ysis by centrifugation. Plasma glucose,
NEFA, total and HDL cholesterol, TAG,
b-hydroxybutyrate, adiponectin, and al-
anine aminotransferasewere analyzed on
a semiautomatic analyzer (ILab 600/650
clinical chemistry;Werfen,Warrington,
U.K.). Plasma insulin levels were deter-
mined by radioimmunoassay as prev-
iously described (18). Analysis of plasma
FGF21 and fetuin-A was performed via
commercially available ELISAs (R&D Sys-
tems, Oxford, U.K.). Separation of chylo-
microns (Svedbergflotation rate [Sf].400)
and VLDL-rich fractions (Sf 20–400) was
made by sequential flotation using den-
sity gradient ultracentrifugation (17) and
the Sf20–400 fraction separated by im-
munoaffinity chromatography (18).

FA Composition and Isotopic
Enrichment
Total lipids were extracted from plasma
and lipoprotein fractions and FA methyl
esters prepared, and FA compositions
(mmol/100 mmol total FA) were deter-
mined by gas chromatography (GC) from
which palmitate concentrations were
calculated (18).

Tracer enrichment in plasma NEFA, TAG,
and lipoprotein-TAG fractions was de-
termined by GC-mass spectrometry (19).
Tracer-to-tracee ratios for [U13C]palmitate
(M116/M10) and [2H2]palmitate (M12/
M10)werecalculatedandmultipliedby the
corresponding palmitate concentration
of the fraction to give tracer concen-
trations. The tracer-to-tracee ratio of

a fasting sample obtained prior to tracer
administration was subtracted from each
sample to account for natural isotopic
abundance. Analysis of 13C enrichment in
breath CO2 samples and the relative rate of
whole-bodymeal-derived FA oxidation was
calculated (19) and corrected for leanmass.

Fasting and postprandial hepatic DNL
was assessed by determining the in-
corporation of deuterium from 2H2O in
plasma water (Finnigan GasBench II;
Thermo Fisher Scientific, Paisley, U.K.)
into VLDL-TAG palmitate using GC–mass
spectrometry with monitoring ions with
mass-to-charge ratios of 270 (M1 0) and
271 (M 1 1) (20).

Plasma Lipidomics
Plasma lipidomics was performed as
previously described (21).Quality criteria
for the identified lipid metabolites were
linearity R2 . 0.9 and coefficient of
variation ,20%.

Calculations and Statistics
The Ra of NEFA (Ra-NEFA) (22), the rel-
ative contribution of FA sources to VLDL-
TAG (calculated at 360 min) (18), and
HOMA-IR (23) were calculated as previ-
ously described. All data are presented as
means 6 SEM. Statistical analysis was
performed using SPSS (version 21.0) for
windows (SPSS). Paired t tests were used
to make prediet to postdiet comparisons
where appropriate (i.e., IHTAG, anthro-
pometric measures, and fasting plasma
biochemistry). Postprandial data were
compared using a two-way repeated-
measures ANOVA with time and exper-
imental diet as within-subject effects,
and Bonferroni post hoc analysis was
performed where appropriate. Statisti-
cal significance was set at P , 0.05.

RESULTS

Anthropometric and Fasting
Biochemical Measures
Sixteen males (mean6 SEM age 47.96
1.1 years and BMI 27.7 6 0.4 kg/m2)
completed the study. Body weight, BMI,
and waist circumference significantly
(P , 0.05) increased after consumption
of the SFA but not the SUGAR diet (Table
1). Neither fasting plasma glucose nor in-
sulin concentrations were altered in re-
sponse to either dietary intervention (Table
1). Plasma total, HDL, and non-HDL choles-
terol, adiponectin, and b-hydroxybutyrate
concentrations all significantly (P , 0.05)
decreased following the SUGAR diet but

Figure 1—Overview of study design.
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remained unchanged in response to the
SFA diet (Table 1). Plasma FGF21 signif-
icantly (P , 0.05) increased in response
to both diets, while fetuin-A was not
affected by either diet (Table 1).

Dietary Intakes
There was no difference in self-reported
dietary intake between the two stan-
dardized run-in periods prior to the
experimental interventions (Supplemen-
tary Table 1). Self-reported energy intake
was greater during the SFA comparedwith
the SUGAR diet (mean 6 SEM 2,697 6
126 kcal vs. 2,4056 88 kcal, respectively;
P , 0.05). During the SFA diet, partic-
ipants reported consuming 46 6 1% TE
from fat and 216 1%TE fromSFA, which
was significantly (P, 0.05) greater than
the fat and SFA consumed during the
SUGAR diet (20 6 2% total fat and 6 6
17% SFA). In contrast, the relative contri-
butions of carbohydrates (62 6 2% TE)
and free sugars (23 6 23% TE) were sig-
nificantly (P , 0.05) greater during the
SUGAR compared with the SFA diet (356
13% and 6 6 1% for carbohydrate and
free sugars, respectively) (Supplementary
Table 1). There were no differences in the
contribution of protein or alcohol between
the two diets (Supplementary Table 1).

FA Composition and Lipid Profile
The FA composition of VLDL-TAG was
analyzed as a biomarker of dietary FA
intake. The FA compositionof VLDL-TAG
was similar after the SUGAR and SFA
diets (Supplementary Table 2), except
for pentadecanoic acid (15:0), a marker
of dairy fat intake, which was greater
after the SFA comparedwith the SUGAR
diet (0.5 6 0.1% SFA vs. 0.3 6 0.1%
SUGAR; P, 0.05). We also assessed the
overall lipid profile of plasma after the
diets, and although lipidomics analy-
sis indicated lower acylcarnitines after
consumption of the SUGAR and SFA
diets, there were no overt differences
in the profile (Supplementary Figs. 2
and 3).

IHTAG Content
IHTAG significantly (P , 0.05) increased
by 39.0 6 10.0% following the SFA diet,
while it remained unchanged in response
to the SUGAR diet (Fig. 2A). Linear re-
gression indicated the increase in body
weight observed after the SFA diet ex-
plained only 17.2% (P 5 NS) of the var-
iance in IHTAG, suggesting the increase in
IHTAG following SFA occurred indepen-
dently of changes in body weight (Sup-
plementary Fig. 4).

Postprandial Biochemical Measures
As humans spend a large proportion of
the day in the postprandial state (24), we
assessed the metabolic response to a
standardized testmeal at the end of each
dietary intervention phase. Although
there were no differences in fasting
plasma glucose or insulin concentrations
in response to the two diets, the post-
prandial excursions were greater and
more prolonged for plasma glucose
(diet 3 time interaction; P , 0.05) (Fig.
2B) andplasma insulin (maineffectofdiet,
P, 0.05, anddiet3 time interaction,P,
0.05) (Fig. 2C) after consumption of the
SFA compared with SUGAR diet. These
differences remained significant (P ,
0.05) whether comparisons were made
between the early (0–180min) postpran-
dial responsesor for theentirepostprandial
period (0–360 min). Postprandial plasma
TAG concentrations were similar following
the two diets (Fig. 2D). However, there
was a significant main effect (P, 0.05) of
diet for plasma NEFA concentrations across
the postprandial period, where concentra-
tions were greater after SUGAR compared
with SFA (Fig. 2E). There was no differ-
ence in postprandial b-hydroxybutyrate
concentrations following the diets (Fig.
2F), and there were not differences in the

Table 1—Characteristics of study participants and fasting biochemistry

SFA SUGAR

Pre Post Pre Post

Weight (kg) 89.3 6 2.6 90.8 6 2.8* 89.8 6 2.5 90.1 6 2.6

BMI (kg/m2) 27.7 6 0.6 28.1 6 0.6* 27.9 6 0.5 28.0 6 0.5

Waist (cm) 98 6 2 99 6 2* 99 6 2 99 6 2

Fasting plasma biochemical parameters
Glucose (mmol/L) 5.3 6 0.1 5.5 6 0.1 5.3 6 0.1 5.2 6 0.1
Insulin (mU/L) 10.7 6 0.9 9.2 6 1.2 10.3 6 1.4 9.3 6 1.0
HOMA-IR 2.5 6 0.3 2.2 6 0.3 2.5 6 0.3 2.2 6 0.2
NEFA (mmol/L) 429 6 56 378 6 27 396 6 42 410 6 42
Total cholesterol (mmol/L) 4.8 6 0.2 4.7 6 0.2 5.0 6 0.2 4.4 6 0.2*
HDL cholesterol (mmol/L) 1.2 6 0.1 1.2 6 0.1 1.3 6 0.1 1.0 6 0.1*
Non-HDL cholesterol (mmol/L) 3.6 6 0.2 3.5 6 0.2 3.7 6 0.2 3.4 6 0.1*
TAG (mmol/L) 1.0 6 0.1 1.0 6 0.1 1.0 6 0.1 1.1 6 0.1
3-OHB (mmol/L) 85.7 6 33.1 45.1 6 6.5 73.1 6 16.5 39.6 6 5.0*
Adiponectin (mg/mL) 8.1 6 0.9 8.8 6 1.0 9.5 6 0.9 7.2 6 0.9*
ALT (IU/L) 11 6 1 12 6 2 10 6 1 9 6 1
FGF21 (pg/mL) 138.7 6 13.6 197.3 6 24.3* 193 6 25.6 248.1 6 37.7*
Fetuin-A (mg/mL) 1,160.3 6 39.1 1,119.4 6 50.8 1,199.4 6 61.9 1,154.1 6 67.5

Indirect calorimetry measures
Fasting RQ 0.73 6 0.02 0.76 6 0.01
Postprandial RQ 0.81 6 0.03 0.82 6 0.02
Fasting REE (kcal) 1,817.5 6 81.2 1,665.0 6 56.6
Postprandial REE (kcal) 1,829.6 6 54.7 1,741.8 6 84.8

Data are means 6 SEM. ALT, alanine aminotransferase; FGF21, fibroblast growth factor 21; HOMA-IR, HOMA of insulin resistance; 3-OHB,
b-hydroxybutyrate; Pre, before consumption of SFA or SUGAR diet for 4 weeks; Post, after consumption of SFA or SUGAR diet for 4 weeks;
TAG, triacylglycerol. n 5 16. *P , 0.05 prediet vs. postdiet.
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postprandial plasma chylomicron-TAG
response (Fig. 2G). Although not signif-
icantly different, fasting plasma VLDL-
TAG concentrations were higher after
the SUGAR diet, which may in part ex-
plain the significant (P , 0.05) diet 3
time interaction for postprandial plasma
VLDL-TAG (Fig. 2H).

Ra-NEFA
Increased lipolysis of adipose tissue has
previously been observed in response to

an SFA-enriched diet (7). We therefore
investigated postprandial plasma Ra-
NEFA after SFA and SUGAR and found no
significant difference between the diets
(Fig. 3A).

FA Oxidation
Theappearanceof 13C (frommeal [U13C]-
palmitate) in expired CO2 was similar
after consumption of both diets (Fig.
3B), as was the recovery of tracer given
(6.36 0.8% SFA vs. 6.06 0.6% SUGAR),

indicating no difference in whole-body
meal-derived FA oxidation. Similarly,
there were no differences in fasting or
postprandial respiratory quotient (RQ)
or resting energy expenditure (REE) be-
tween the two diets (Table 1). We also
calculated net substrate oxidation rates
and found no significant difference in
fasting or postprandial net carbohydrate
or FA oxidation rate between the two
diets (data not shown).

Intrahepatic DNL and FA Partitioning
We assessed the contribution of differ-
ent FA sources in VLDL-TAG, as it has
previously been suggested to reflect the
contribution of different FA sources to
IHTAG (25). Although previous studies
have reported that diets enriched in car-
bohydrate increase hepatic DNL (26), we
found no difference in fasting or post-
prandial hepatic DNL between SFA and
SUGAR (Fig. 3C). There was also no dif-
ference in the relative contribution of
systemic NEFA (from adipose tissue),
meal-derived FA, and splanchnic FA
(i.e., FA derived from visceral adipose
tissue and stored hepatic TAG) to VLDL-
TAG between SFA and SUGAR (Fig. 3D).

Systemic Bile Acids
There was no difference in total systemic
bile acids, the concentration of specific
bile acids, or their relative contribution
to total concentration between the SFA
and SUGAR diets (Supplementary Fig. 5).

CONCLUSIONS

Macronutrient composition may play a
role in NAFLD development with in-
creased consumption of SFA and/or free
sugars being associated with NAFLD (6).
A large proportion of experimental ev-
idence is derived from overfeeding stud-
ies, and although they suggest that
increased SFA intakes exaggerate IHTAG
accumulation compared with unsatu-
rated fat and dietary sugars (7–9), it is
challenging to disentangle the effects of
excess energy from those of the macro-
nutrients per se. By using a combina-
tion of methodologies, we investigated
the effect of two dietsdone enriched
in carbohydrate, specifically, free sugars,
and the other enriched in fat, specifically,
SFAdon IHTAG content, hepatic DNL,
and hepatic and whole-body postpran-
dial metabolism in overweight males. We
found consumption of an SFA diet in-
creased IHTAG, whereas consumption of

Figure 2—A: IHTAGpercentagebefore (pre) and after (post) consumptionof SFAor SUGARdiet for
4 weeks. Systemic plasma glucose (B), insulin (C), TAG (D), NEFA (E), b-hydroxybutyrate (3-OHB)
(F), chylomicron-TAG (G), and VLDL-TAG (H) following a standardized test meal conducted after
consumption of SFA or SUGAR diet for 4 weeks. Data are presented aremeans6 SEM. n5 16 (A–
G); n 5 13 (H). *P , 0.05 prediet to postdiet. Dotted lines indicate consumption of test meal.
Shading on B and C refers to additional statistical analysis performed due to the dynamic glucose
and insulin response known to occur during the first 180 min of the postprandial period.
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the SUGAR diet did not. Despite no
changes in fasting plasma glucose and
insulin concentrations, we found con-
sumption of the SFA diet resulted in ex-
aggerated postprandial plasma glucose
and insulin excursions compared with
consumption of the SUGAR diet.

Effect of SFA and Free Sugars on
Glycemic Control
Dietary composition has previously been
reported to influence markers of glyce-
mic control/whole-body insulin sensitiv-
ity, with SFA-induced impairments being
reported by some (7,27) but not all (9,28).
Although we found that consumption of
SFA or SUGAR for 4 weeks had a negli-
gible effect on fasting plasma glucose
and insulin concentrations, by feeding
of a standardized test meal at the end of
the respective interventions we are able
to demonstrate that consumption of the
SFA compared with SUGAR diet led to
exaggerated postprandial glucose and
insulin excursions. The increased post-
prandial insulin concentrations follow-
ing SFA may in part be explained by
a reduced hepatic or peripheral insulin
sensitivity resulting in increased en-
dogenous glucose production/reduced
peripheral glucose uptake and a compen-
satory increase in insulin secretion (29).

Alternatively, the elevated insulin concen-
trationsmay be due to impaired hepatic
insulin extraction, which has previously
been associated with increased IHTAG
and peripheral insulin resistance (30,31).
Proposed mechanisms underpinning
SFA-induced reductions in insulin sensi-
tivity include increased ceramide pro-
duction (32) and/or induction of
metabolic endotoxemia and associated
inflammation (7).

IHTAGandDietary SFAandFreeSugars
We found IHTAG content increased by
;37% after consumption of the SFA diet,
while IHTAG was not significantly alter-
ed in response to the SUGAR diet. The
negligible change in IHTAG in response to
the SUGAR diet is in line with results of
others who have fed sugar-enriched eu-
caloric diets for 4–10 weeks (13,33). In
contrast, hypercaloric sugar-enriched di-
ets, which result in weight gain, are
associated with increased IHTAG (6).
Although participants were instructed
to maintain body weight during the
dietary interventions, this was not
achieved during the SFA diet, where
on average participants gained ;1.5
kg; linear regression indicated that the
change in body weight in response to the
SFA diet was not associated with IHTAG

accumulation. This is in agreement with
observations from hypercaloric studies,
which found a notably greater increase
in IHTAG after overfeeding of SFA com-
pared with overfeeding free sugars and
unsaturated fats after matching for
increases in body weight (7,9,10). Taken
together, these data indicate that
diets enriched in SFA increase IHTAG
independent of weight gain. Why SFA
has a profound effect on IHTAG accumu-
lation remains to be elucidated, but it
has been hypothesized that the change is
due to an increased endogenous NEFA
flux to the liver and/or increased ceram-
ide synthesis, which has been suggested
to induce hepatic insulin resistance (7,9).

The negligible change in IHTAG in re-
sponse to SUGAR is notable, as it has
previously been suggested that a diet
enriched in sugars would increase IHTAG
content as a result of increased hepatic
DNL (5). Hypercaloric feeding of carbo-
hydrate/sugar enriched diets for 4 days
up to 3weeks upregulates DNL (7,34,35).
In contrast, findings from isocaloric in-
terventions are inconsistent, with one
study suggesting a fourfold increase in
fasting DNL after a high-sugar compared
with low-sugar diet (36), while others
have observed no significant difference
between individuals with and without
NAFLD in response to a 12-week eu-
caloric diet enriched in free sugars (26%
TE) (11). We observed a nonsignificant
increase in both fasting and postprandial
hepatic DNL after SUGAR compared with
SFA, despite increasing the intake of
free sugars to a level equivalent to the
90th percentile of intake in theU.K. adult
population (37). It is possible the lack of
difference in hepatic DNL between the
two diets is attributable to an adaptive
response whereby differences may have
been apparent earlier in the interven-
tion period. Moreover, it is plausible
that under conditions of energy balance
other disposal pathways (e.g., storage
as glycogen, oxidative glucose disposal,
etc.) are sufficient.

Hepatic FA Input and Disposal
By using stable-isotope methodologies
in combination with a standardized test
meal, we were able to investigate intra-
hepatic FA partitioning across the post-
prandial period. As dietary composition
has been suggested to influence adipose
tissue TAG hydrolysis, we assessed Ra-NEFA
and found no difference between the

Figure 3—Plasma NEFA Ra (A), expired
13CO2 (B), hepatic DNL (C), and the relative contribution of

FA derived from systemic NEFA, diet, and splanchnic sources (i.e., from visceral adipose tissue and
the intrahepatic pool) to VLDL-TAG (calculated at 360 min) (D) following a standardized test meal
conducted after consumption of an SFA SUGAR diet for 4 weeks. Data are presented aremeans6
SEM. n 5 16. Dotted lines indicate consumption of test meal. FM, fat mass.
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dietary interventions, suggesting a sim-
ilar level of exposure of the liver to endog-
enous systemic NEFA. Within the liver,
FA can be broadly partitioned into either
oxidation or esterification pathways. We
assessed FA oxidation in two ways: 1) via
plasma b-hydroxybutyrate concentra-
tions as a marker of hepatic FA oxida-
tion and 2) the appearance of 13C (from
the standardized test meal) in expired
CO2 as a marker of whole-body FA ox-
idation, and found no difference for
either between diets. Although there
was no difference in the incorporation
of either adipose tissue–derived ormeal-
derived FA into VLDL-TAG, there was a
significant diet 3 time interaction for
plasma VLDL-TAG concentrations, which
may in part be explained by fasting
VLDL-TAG concentrations being nonsig-
nificantly higher at the end of the SUGAR
compared with SFA diet.
While there were no significant dif-

ferences in hepatic DNL, evidence from
animal studies has suggested that newly
synthesized FA are preferentially parti-
tioned toward secretory pathways, which
would lead to an increase in VLDL-TAG
production and secretion. Others have
found that a diet enriched in sugars in-
creases IHTAG and upregulates VLDL-TAG
secretion in overweight men and in those
with NAFLD, and this occurs alongside a
concomitant reduction in the fractional
catabolic rate of plasma VLDL-TAG (11).
We did not measure hepatic VLDL-TAG
production or clearance, and differences
betweendiets could bedue todifferences
in either of these processes.

Adherence and Biomarkers
Food diaries completed during the inter-
vention periods indicate that participants
closely adhered to the experimental di-
etary interventions. We investigated
a number of biomarkers that have been
suggested to reflect changes in dietary
intake and/or metabolism. We found a
greater relative abundance of pentade-
canoic acid (15:0), a marker of dairy fat
intake, in VLDL-TAG after the SFA com-
pared with SUGAR diet. There is
currently no universally accepted bio-
marker for dietary sugar, although the
hepatokine FGF21 has been shown to
increase in response to sucrose con-
sumption (38).We observed an increase
in fasting plasma FGF21 concentrations in
response to SUGAR; however, we also
found an increase in fasting plasma FGF21

in response to SFA, with the latter corre-
sponding with reports that IHTAG is the
strongest predictor of FGF21 production
(39). We found no difference in fetuin-A,
which has previously been associated with
hepatic steatosis (40) after either dietary
intervention.

Limitations
Our study has a number of limitations.
We did not provide all food to partic-
ipants as others have done (28). Rather,
we educated participants on how to
meet the targeted dietary intakes for
the interventions, allowing us to inves-
tigate participants in a real-world setting.
However, this resulted in participants
gaining weight during the SFA diet, likely
explained by participants being encour-
aged to increase their consumption of
energy-dense (i.e., high-fat) foods. For
logistical reasons, we did not undertake
postprandial study days at the start of
the respective dietary interventions, and
it would be of interest to compare post-
prandial responses across the interven-
tions (prediet vs. postdiet).Weonly studied
overweight males, who were representa-
tive of the U.K. adult population and con-
sidered to be at increased risk of NAFLD
relative to females (41). As sexual dimor-
phism exists in the development of NAFLD,
T2D, and intrahepatic FAmetabolism (41,42),
it is plausible that findings in females may
differ from what we report here.

Conclusions
There has been much controversy about
the roleof SFAand free sugars inmetabolic
disease, and recently, low-carbohydrate,
high-fat diets have been promoted for
weight loss and for the management of
T2D (43). The evidence suggests that these
diets are safe and effective over the short-
term but are not superior to other die-
tary strategies (43). However, in all studies
conducted to date, hypocaloric diets spe-
cifically designed to induce weight loss
were studied, and there is little evidence
for eucaloric diets that are high in SFA.
Our findings suggest that consumption of
an SFA-enriched diet, in the absence of
weight loss, had adverse metabolic effects
(including increased IHTAG and exagger-
ated postprandial plasma glucose and in-
sulin responses) compared with a diet
enriched in free sugars; this may have
implications for those who are not aiming
for weight loss but choose to adopt a
relatively high-fat diet. Moreover, despite

careful monitoring and support, small
weight gain was noted with the SFA as
opposed to the SUGAR diet, suggesting
that weight maintenance is challenging
with diets high in SFA. The lack of sub-
stantial metabolic changes after con-
sumption of the SUGAR diet for 4 weeks
may be, in part, explained by participants
being metabolically healthy, remaining
weight stable, and maintaining energy
balance over the course of the SUGAR
diet. Others have reported an increase in
IHTAG when a hypercaloric diet, high in
sugar, is consumed (7), suggesting that
the proposed unfavorable metabolic ef-
fects of a high-sugar diet are mediated
through excess energy intake. Taken to-
gether, our findings indicate that a diet
enriched in SFA is more harmful to met-
abolic health than a diet enriched in free
sugars.
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