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ABSTRACT

Conventional approaches to predict transcriptional
regulatory interactions usually rely on the definition
of a shared motif sequence on the target genes of a
transcription factor (TF). These efforts have been
frustrated by the limited availability and accuracy
of TF binding site motifs, usually represented as
position-specific scoring matrices, which may
match large numbers of sites and produce an unre-
liable list of target genes. To improve the prediction
of binding sites, we propose to additionally use the
unrelated knowledge of the genome layout. Indeed,
it has been shown that co-regulated genes tend to
be either neighbors or periodically spaced along the
whole chromosome. This study demonstrates that
respective gene positioning carries significant infor-
mation. This novel type of information is combined
with traditional sequence information by a machine
learning algorithm called PreCislon. To optimize this
combination, PreCislon builds a strong gene target
classifier by adaptively combining weak classifiers
based on either local binding sequence or global
gene position. This strategy generically paves the
way to the optimized incorporation of any future
advances in gene target prediction based on local
sequence, genome layout or on novel criteria. With
the current state of the art, PreCislon consistently
improves methods based on sequence information
only. This is shown by implementing a cross-
validation analysis of the 20 major TFs from two
phylogenetically remote model organisms. For
Bacillus subtilis and Escherichia coli, respectively,
PreCislon achieves on average an area under the
receiver operating characteristic curve of 70 and

60%, a sensitivity of 80 and 70% and a specificity
of 60 and 56%. The newly predicted gene targets
are demonstrated to be functionally consistent
with previously known targets, as assessed by
analysis of Gene Ontology enrichment or of the
relevant literature and databases.

INTRODUCTION

Transcription factors (TF) regulate gene expression
through their physical interaction with DNA at specific
regulatory eclements termed TF binding sites (TFBS).
Genome-wide TFBS identification has drawn substantial
interest in the recent years, as it represents a critical step in
delineating transcription regulatory networks. Previous
studies have used both experimental and computational
techniques to identify or to predict TFBS. However, trad-
itional experimental techniques, such as DNase I foot-
printing and gel-mobility shift assay, are time-consuming
and are not suitable for genome-scale studies. Although
current high-throughput approaches, such as ChIP-chip
and ChIP-seq, are more efficient in determining the
binding specificity at a large scale (1), they are too costly
for daily applications. Efficient computational approaches
using cheap and readily available genomic sequence data
are therefore most welcome. Such methods can be used, in
particular, to complement analysis of high-throughput
data. Indeed, binding sites detected by high-throughput
in vitro methods can be compared with predicted
binding sites to prioritize studies aimed at confirming
sites that are expected to regulate gene expression
in vivo. A number of computational methods have been
developed for predicting TFBS, given a set of known
binding sites. Commonly used methods are based on the
definition of a consensus sequence or the construction of a
position-specific weight matrix (PWM), where DNA
binding sites are represented as a sequence of letters

*To whom correspondence should be addressed. Tel: +33 169474443; Fax: +33 169474437; Email: mohamed.elati@issb.genopole.fr
Correspondence may also be addressed to Francois Kepes. Tel: +33 169474431; Fax: +33 169474437; Email: francois.kepes(@epigenomique.genopole.fr

© The Author(s) 2012. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/3.0/), which
permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com.



coming from the alphabet {4, T, C, G}. They then use
the PWM of the binding site to scan new sequences for
additional binding sites (2). As TFBSs are, in general,
relatively short and degenerate, these approaches system-
atically lead to a high rate of false positives (FPs) (1,3). In
spite of the wealth of research performed in the area of
TFBS prediction, and the many insights gained, achieving
a qualitative jump in this field would require information
of a conceptually novel type, rather than improvements of
methods, which all rely essentially on local sequence in-
formation (4). Here, we propose to additionally derive
useful information from the respective positioning of
co-regulated genes along the chromosome.

Proper genome-wide coordination of gene expression
has been shown to be linked to the spatial organization
of genes within the cell (5). In particular, transcriptional
activity is often detected in discrete foci called transcrip-
tion factories, rather than in a diffuse pattern (6,7). These
transcription factories gather RNA polymerases, TFs and
genes that can be far apart along the DNA (8). Recent
experiments have further shown that genes within a given
transcription factory share similar promoter sequences (9)
and a homogeneous TF content (10). In this respect, the
periodic organization observed for co-regulated genes (11)
or evolutionarily correlated genes (12,13) in bacteria has
been shown to be crucial for achieving chromosome con-
formations that favor the formation of these transcription
factories. This was demonstrated using a thermodynamic
model of chromosome folding where distal binding sites
can be cross-linked by bivalent TFs (14). In particular,
chromosomal proximity or periodicity were shown to
respectively favor rosette-like or solenoid-like structures,
consistent with previously published functional models
[respectively, (6,15)]. In this manner, these two families
of chromosomal conformations favor the spatial proxim-
ity of related TFBS, thus building local concentration
effects, which in turn optimize transcriptional repression
or activation (16).

The rationale proposed in this article is to combine
TFBS nucleic sequence information with gene positional
information to obtain an accurate and robust TFBS pre-
diction model. This combination must itself be optimized
to achieve a high classification performance. To our know-
ledge, no research exists addressing this question.

For this purpose, we model the TF-DNA binding
problem as a multi-views classification problem (17), and
we propose a variation of the AdaBoost algorithm (18) to
fuse the classifiers. A key aspect of the boosting technique
is that it forces some of the base classifiers to focus on the
boundary between positive and negative examples, thus
effectively reducing classification errors.

A preliminary outline of PreCislon has been published
in a workshop (19). In this article, we demonstrate the
power of this approach by extensive empirical studies per-
formed on a benchmark data set from two distinct
bacteria: gram-negative Escherichia coli and gram-positive
Bacillus subtilis. The PreCislon software is made available
at http://www.noraybio.com/en/gennetec.asp.

The article is organized as follows. First, the base clas-
sifiers used for TFBS prediction based on binding
sequence and on chromosomal position are described.

Nucleic Acids Research, 2013, Vol. 41, No.3 1407

Next, the classifier fusion algorithm is introduced.
Finally, results are presented and discussed.

MATERIALS AND METHODS
Outline of the method

PreCislon is a general supervised method to infer new
regulatory relationships between a known TF and all the
genes of an organism. In its current form, it requires two
types of data as inputs. First, each gene in the organism
must be characterized by some properties (views), here
two views: its promoter sequence and its chromosomal
position. Second, for each TF, a list of its known targets
genes and, if possible, of its known non-targets is needed.
Such lists can be constructed from publicly available data-
bases of experimentally characterized regulations, e.g.
RegulonDB for E. coli genes (20). PreCislon splits the
problem of regulatory network inference into many
binary classifications from disjoint views. For each view,
PreCislon trains a binary classifier to discriminate
between genes known to be regulated and non-regulated
by the TF. In this article, we introduce a new chromo-
somal position view to benefit from information pertain-
ing to spatial chromosome conformation. The final step is
to combine all individual classifiers that have been trained
on disjoint views. Once trained, the model associated with
a given TF is able to assign a class to each new gene, which
has not been used during training.

Weight matrix-based TFBS

The Sequence classifier is structurally divided in two
phases: PWM creation and TFBS Prediction. A PWM is
generally learned from a collection of aligned DNA
binding sites that are likely to bind a common TF.
Given a learned PWM, the sum of the elements that cor-
respond to a specific sequence s gives a total score for that
sequence. This allows the model to provide a binding score
BS to all possible binding sites for the protein:

K
BS(s) =) Y
[

k=1 be[A4,C,G,T]

W icIp i (5) )

where w;,x is a weight assigned to each possible base b €
[4,C,G,T] at each position k in the binding site and
Iy i(s) =1 if base b occurs at position k of sequence
s and 0 otherwise. The higher the score, the more likely
a site will be bound by the TF.

For each phase, many algorithms have been developed
(3). In our study, we use the classical packages called:
‘MotifSampler’ (21) for the first phase and ‘Patser’ (2)
for the second phase.

Gene position along the chromosome

The positional regularities of a set of TF-target genes are
assessed using the solenoidal coordinate method (22). In
this method (see Figure 1), the score at a given period
reflects the likelihood for the data set to present a
periodic pattern with this period. A high score stems
from (i) the remarkable alignment properties of periodic
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Figure 1. Principle of the Solenoidal Coordinate Method (SCM). A set
of gene positions (red dots along horizontal line, upper left corner)
derives from a perfectly P-periodic pattern (blurred red dots). Some
of the initially periodic genes are missing (false negative) or have dif-
ferent positions (noise), and random genes have been added (false
positive). Although the resulting pattern looks aperiodic, the position
of the genes in a solenoidal coordinate of period P (lower left) reveals
some alignment properties. The algorithm provides a score that is built
using a distance-based information content for the organization of the
genes on the solenoid face view (lower right), rewarding exceptionally
dense or void regions (22). This information content is computed for all
periods, which leads to a spectrum. The peaks that are abnormally high
in this spectrum then reveal the periodic tendencies. Note that high
scores at the period equal to full chromosome length reflect chromo-
somal proximity, as in this case, the solenoid is composed of only one
loop, which is the whole chromosome itself. For a given period, SCM
allocates a positional score to each gene, equal to the co-logarithm of
the likelihood for this gene to be periodically positioned in dense
regions with respect to the other genes of the data set.

positions when they are represented in a solenoidal coord-
inate system with the right period and (ii) the use of an
information-theoretic measure @ /a Shannon that rewards
both exceptionally dense and void regions of the solenoid
[see (22) for details]. The period equal to full chromosome
length plays a singular role in the analysis. Indeed, for this
period, the ‘solenoid’ is composed of only one loop. Thus,
the analysis does not bear on periodicity but on proximity
along the chromosome. Accordingly, scores at this
peculiar period are referred to as proximity scores. To
build the positional classifier, both chromosomal proxim-
ity and periodicity of training genes are captured to
generate a ‘spectrum’ of positional scores for all genes in
the genome as a function of the period.

An algorithm on multi-view classifier fusion

Combination of multiple classifiers is an important
research topic in the field of machine learning, and it is
widely discussed in the literature (23). Methods for classi-
fier fusion range from non-trainable combiners like the
majority vote or simple functions, to sophisticated
methods that require an additional training step. Other
methods such as boosting and bagging (24) have been
introduced to cope with the diversity in the classifier
opinions. For instance, AdaBoost (18) has been shown
to improve the prediction accuracy of weak classifiers
using an iterative weight update process. The technique
combines weak classifiers (classifiers having classification
accuracy slightly greater than chance) in a weighted vote,
resulting in an overall strong classifier.

A sequence classifier reported as a weight matrix
assumes that different positions of the motif are independ-
ent. Under this assumption, a PWM is essentially a linear
classifier when used with a cutoff value to predict binding

sites in sequences. Same remarks for position classifier.
Previous work, which only combined classifiers of a
same type using boosting strategies to accommodate
some non-linear factors in discriminating positive and
negative examples, has produced TFBSs that achieve
good accuracy in the context of building an integrated
yeast regulatory network (25).

One of the ways boosting may be used for classifier
fusion would be to run boosting separately on each
view, obtain separate ensembles for each view and take
a majority vote among the ensembles when presented
with test data. In this case, separate training of classifiers
is needed for each view, and the sampling distributions of
the data points are also disjoint. Unlike this approach, we
modify the boosting algorithm AdaBoost to train a TFBS
classifier, as an ensemble model, on different views of the
training data. We perform separate training for each view,
but the cycle of error computation and example sampling
is done using a shared distribution of example weights in a
given iteration.

Suppose we have a set G of n training examples.
Each example having two disjoint views (Sequence:
S and Position: P) such that a given training
gene g; can be represented as (g,-S’P ,¢i), where ¢; = —1.1
for correct and  mis-classification,  respectively.
Weak Classifiers #° and A" will be trained on the
training sets GP = ((gs7c1)?(g§’c2)’ e ,(g;j,cn» and
G’ = <(g{>7cl)7(gé>’c2); c 7(gn :Cn»a I’CSpCCtiVCly.

In the initialization step of Algorithm 1, all the views for
a given training gene are initialized with the same weight.
We modify the boosting algorithm by adding more initial
weights to the minority class examples such that the initial
total weights of two classes are equal.

As the sampling distribution for all views of a given
example is shared, the sampling weight of the S and P
views of example g; in iteration ¢ are given by
w (i) = wS(i) = wP(i). After a classifier &* with lowest
error rate € is selected in step 4 of Algorithm 1 and com-
bination weight « is obtained, the sampling weights for
the S and P views will be updated (step 5 of Algorithm 1).

Weights of S and P views of a training example g; are
updated based on whether the winning weak classifier /}
classifies g; correctly. As a result, the sampling distribution
of the weights remains the same for all views. This allows
the most consistent data type to dominate over time,
thereby significantly reducing sensitivity to noise. The
selected weak classifiers are then combined, using the
approach of weighted majority vote, into a unique classi-
fier. This unique non-linear classifier is strong because (1)
its components each fit well to a particular region of the
landscape and (ii) it contains classifiers that are trained to
focus on different views of the data.

Independently, AdaBoost has recently been investigated
in multi-view learning with application to image analysis,
e.g. face detection (26,27). In particular, there is a close
relationship between all these variants of multi-view
Adaboost. If we have a single view then all variants
reduce to AdaBoost. The slight difference of the
abovementioned variants is how to combine the best clas-
sifiers of each view in the same iteration. In principle, there
are two approaches to combining classifiers, namely



classifier fusion and classifier selection. In classifier fusion,
the two best classifiers for each view are added to the
output hypothesis, and the weight update process is
adjusted using further parameters to express their con-
cordance. However, if the selected classifiers are com-
pletely redundant or too strong, it may converge too
rapidly, inhibiting the positive effects of boosting. In clas-
sifier selection, only the best weak classifier is added to the
output hypothesis in each iteration such that the least re-
dundancy is maintained. Importantly, (27) show that a
lower training and generalization error bound can be
achieved if a shared sampling distribution is used and a
weak classifier from the lowest error view is selected. We
support this theoretical conclusion with our empirical
studies (see the ‘Results’ section).

Algorithm 1: Pseudo-code description of the
classifier fusion algorithm
Input:

e N training examples (genes), with 2 views
(promoter sequence s and chromosome position
p) available for each gene i and hence 2 training
sets <(S1 ay1)7(527y2)> e ,(SNJ’N» and
((P1,y1)5(P2,2), -+ (pN,yN)); of which a genes have
y; = +1 (TF target) and b genes have y; = —1 (not
TF target);

e The maximum number k%,,,, of individual classifiers
to be combined;

Initialize example weights:

wi(i) = 5,3 for y; = +1, — 1, respectively.
For k = 1,...,k 4, do:

(1) Train Sequence and Position classifiers, using the
distribution ®y;

(2) Obtain the error rates €, of each classifier C:
€f = Pi w0 [Cr(g) # »i;

(3) Select the individual classifier Cj; with the lowest

error rate; e
(4) Compute the value of =1/n ::’ L
(5) Update examples’ weights: wy+1(i) = ‘”’(’)—;A,
where x = —1,1 for correct and mis-classiﬁcatlion,

respectively, and Zﬁ(*) is the normalizing factor so
that w1 = 1.

end For
Final hypothesis:

H) = sign(3; " @ C(0)

Implementation

A public version of the PreCislon tool is available at
http://www.noraybio.com/en/gennetec.asp. PreCislon is
implemented in JAVA, and the program is available
through a user friendly interface connected to a MySQL
database.
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Experimental protocol

Data preparation

As a proof of concept, the 10 TFs having the highest
number of gene targets were selected for both E. coli
and B. subtilis. The use of these particularly well-studied
model organisms ensures that the available annotations
are among the most complete. It also allows to cover a
broad range of the bacterial phylogeny, as E. coli is
gram-negative and B. subtilis is gram-positive. For each
organism, the classifiers were built on the positions
and the sequences of their transcription units (TU). One
TU expresses one mRNA. It may encode one protein or
several proteins. In the latter case, it is called an
operon and contains several cistrons, each encoding
one protein. To focus on transcriptional regulation
unhindered by the operonic organization of bacterial
chromosomes, the data set was reduced to TUs, i.e
operons plus non-operonic genes. Otherwise, the data set
would contain replicates (cistrons of the same operon) and
would thus artificially inflate the classifiers. In other
words, if cistrons within an operon are split between a
training and a test set (see the ‘Performance evaluation’
section), then the prediction is likely to be correct simply
because the classifier will predict that a test cistron with a
promoter similar to a training cistron should be in the
same class.

The list of operons in E. coli and B. subtilis was
downloaded from RegulonDB (20) and DBTBS (28),
respectively. It contains 899 (resp. 633) operons.
Non-operonic genes were added, resulting in a total of
3360 (resp. 3426) TUs from the initial 4345 (resp. 4100)
genes. For each TU, two features were associated, i.e. the
promoter sequence and the start position. The tool
‘retrieve-seq” of the ‘Regulatory Sequence Analysis
Tools [(29), http://rsat.ulb.ac.be/rsat/] was used to
retrieve upstream regulatory sequences (‘promoters’)
defined here by the DNA sequence between position
—400 and —1. Experimentally validated TF—gene regula-
tions were downloaded from RegulonDB and DBTBS
as well.

Choice of negative examples

Although regulatory interactions reported in databases
such as RegulonDB can safely be taken as positive
training examples, the choice of negative examples is
more difficult for two reasons. First, few information is
published and archived regarding the fact that a given TF
is found not to regulate a given target gene. Hence, there is
no systematic source of negative examples for our
problem. A natural choice is then to consider genes not
reported to have regulatory relations in databases as
negative examples, mixing both true and false negatives.
In that case, we are confronted with the second problem,
which is that, once a classifier is trained on positive and
negative examples, it always predicts significantly negative
scores on negative examples used during training. To
overcome this difficulty, we propose the following
scheme. Let us suppose we want to predict whether
genes in a set are regulated by a given TF. All genes
known to be regulated by this TF form a class of
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positive examples, and no prediction is needed for them.
The remaining genes are split in three subsets of roughly
equal size. In turn, each subset is taken apart, and
PreCislon is trained on all the positive examples plus all
genes in the two other subsets, considered as negative
examples. PreCislon is then tested on the third subset,
which has not been used during training. Rotating three
times over the three subsets allows PreCislon to attribute a
prediction to each unlabelled gene by using an independ-
ent model. Second, the resulting number of negative se-
quences (usually in thousands) is often much larger than
the positive ones (usually <100). Without proper adjust-
ments, negative examples would overwhelm a classifier
and reduce its capability to recognize positive examples.
As a remedy, we constrain the total weight of the positive
examples to be equal to that of the negative examples. The
sum of weights within each class by default equals 0.5 so
that the overall sum is 1 (see Algorithm 1). This in effect
imposes a higher penalty for misclassifying a positive
sequence than misclassifying a negative one. In initializa-
tion step, within each of those two classes, all examples
have equal weight.

Performance evaluation and comparison

To assess the performance of PreCislon, and compare it
with other existing methods, it was tested on a benchmark
of E. coli and B. subtilis TFs. We adopt a 3-fold
cross-validation strategy, coherent with the PreCislon
protocol used to make predictions as explained in the
previous section. Given a positive set of known targets
and a negative set containing all other TUs of the
organism, we split randomly these two sets of TUs in
three parts, train PreCislon on two of these subsets and
evaluate their prediction quality on the third subset, i.e. on
both positive and negative TUs that were not used during
training. This process is repeated three times, testing
successively each subset, and the prediction qualities of
all folds are averaged and used to compute performance
measures:

TP

Sensitivity = TPIEN (2)
e TN
Specificity = TNTFP 3)

where TP, TN, FP and FN are the number of true posi-
tives, true negatives, FPs and false negatives, respectively.
The receiver operating characteristic (ROC) curve, which
is one of the most robust approach for classifier evaluation
and comparison (30), can then be drawn by plotting the
true positive rate (i.e. sensitivity) against the FP rate (i.e. 1
— specificity). The ROC curve was generated by varying
the output threshold of a classifier and plotting true
positive rate against FP rate for each threshold value,
using the ROCR package (31). The area under the ROC
curve (AUC) can be used as a reliable measure of classifier
performance (32). As the ROC plot is a unit square, the
maximum value of AUC is I, which is achieved by a
perfect classifier. Weak classifiers have AUC values
slightly >0.5.

Individual classifiers parameters

As Sequence and Position classifiers each provide an
output score for any TU, a threshold is used to discretize
the score values to obtain binary decisions (class -1 for
non-target genes and class 1 for target ones). ROC
curves can be used to select the optimal decision threshold
by maximizing any pre-selected measure of efficiency (e.g.
accuracy). In this study, we used the true rate as proposed
by (33), which is equal to the sum of the true positive rate
and the true negative rate as follows:

TP N TN
TP+FN TN+FP
The true rate is more relevant than the accuracy

whenever the ratio of positive instances versus negative
ones is large, or whenever it is small as in our case (33).

TrueRate =

4)

RESULTS

Chromosomal position carries information and PreCislon
exploits it

The 10 TFs with the highest number of gene targets were
analysed for both E. coli and B. subtilis. To assess the
relevance of chromosomal relative position of the target
genes for TFBS prediction, the TF showing the highest
Position score, Lrp, was subjected to ROC curve
analysis (Figure 2a). The more accurate a classifier is,
the closer is its ROC curve from the left and top borders
of the plot, and consequently the larger the area under
ROC curve (AUC). Although the best Sequence classifier
is rather weak for Lrp (AUC 0.56), the best Position clas-
sifier is very strong (AUC 0.74), and boosted combination
of the two views does not improve the AUC (0.73). Hence,
this is a case where chromosomal position carries highly
significant, irreplaceable information for TFBS prediction.
However, there may be cases where the Position view
alone brings little information; yet, it synergistically
combines with the Sequence view. This appears to be the
case for SigD (Figure 2b). Although the best Position clas-
sifier is ineffective (AUC 0.51), the best Sequence classifier
is effective (AUC 0.76); yet, PreCislon clearly surpasses
them (AUC 0.90). Even when both views are little inform-
ative, their optimized combination may be effective. The
case of CRP illustrates this possibility, with AUCs of 0.54
and 0.53 for Sequence and Position, respectively, and a
PreCislon AUC of 0.70 (Figure 2c).

The above three diverse cases illustrate the power of
using chromosomal gene position for TFBS prediction.
The two last cases further emphasize the crucial import-
ance of building a view on several weak classifiers rather
than on only the best one of them, and the value of fusing
Sequence and Position views. In this way, the Boosting
algorithm is able to draw great benefit from minute
Sequence and/or Position informations.

To evaluate how general this prediction improvement is,
all 20 TFs with highest number of gene targets were sep-
arately subjected to ROC analysis. The averaged results
are shown in Figure 2d. Overall, the Position classifiers are
weaker than the Sequence ones, but their combination
with PreCislon significantly exceeds both. The most
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Figure 2. ROC curves on a test set for Position classifier, Sequence classifier and PreCislon. The curves shown here are the individual curves of three TFs:
Lrp, SigD and CRP (panels a—c); the average of all the individual ROC curves obtained for each single TF, using the ‘threshold averaging’ method (32).
The standard deviation bars indicate the variation around the average curve (panel d). The gray diagonal denotes the ROC curve of a random classifier.

effective position classifiers were observed to capture gene
periodicity rather than proximity (not shown). These 20
TFs were also studied one by one (Table 1). For four TFs
only (SigA, SigE, SigG, CcpA), the combined AUC is
slightly decreased over Sequence view alone. In such
cases, because PreCislon allows the most consistent data
type to dominate over time (‘Methods’ section), it yields
results based solely on sequence information. An import-
ant limitation of classical sequence-based TFBS predic-
tion is the high proportion of false predicted targets
(FPs). The most significant contribution of PreCislon to
this problem is to consistently reduce the number of FPs
while loosing very few or no true positives. Moreover, true

positives may even be sometimes retrieved from false
negatives, as demonstrated by the Fur case (Table 1).
Beyond the universal increase in specificity, Fur also
displays an increase in sensitivity from 0.71 for Sequence
alone to 0.86 for PreCislon. Accordingly, an analysis of
the 45 Fur gene targets indicates that PreCislon identifies
seven true targets that were classified as negative by
Sequence alone.

Overall, the Sequence classifier achieved on average an
AUC of 56 and 68%, a sensitivity of 87 and 92% and a
specificity of 15 and 30%, for E. coli and B. subtilis, re-
spectively. Importantly, a weak classifier can be built using
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Table 1. Prediction performance

TF NG Sequence classifier Position classifier PreCislon
AUC Sn Sp AUC Sn Sp AUC Sn Sp

Escherichia coli
CRP 293 0.54 0.83 0.17 0.53 0.47 0.59 0.70 0.74 0.64
FNR 132 0.56 0.86 0.12 0.50 0.49 0.50 0.68 0.53 0.51
IHF 107 0.55 0.83 0.21 0.48 0.38 0.61 0.56 0.75 0.43
Fis 86 0.60 0.85 0.08 0.53 0.21 0.76 0.59 0.73 0.52
ArcA 80 0.49 1.00 0.13 0.54 0.41 0.62 0.53 0.60 0.48
H-NS 75 0.59 0.84 0.11 0.48 0.16 0.75 0.58 0.68 0.43
Fur 45 0.66 0.71 0.15 0.54 0.35 0.8 0.64 0.86 0.43
Lrp 41 0.56 0.89 0.13 0.74 0.56 0.82 0.73 0.71 0.65
CpxR 36 0.56 0.69 0.23 0.46 0.05 0.85 0.56 0.55 0.59
NarL 36 0.55 0.58 0.33 0.57 0.14 0.87 0.65 0.58 0.62

Bacillus subtilis
SigA 277 0.55 1.00 0.12 0.47 0.57 0.40 0.51 0.52 0.60
SigE 65 0.60 0.98 0.07 0.54 0.57 0.65 0.50 0.78 0.38
SigB 63 0.65 0.98 0.14 0.51 0.27 0.72 0.68 0.79 0.30
SigG 52 0.65 0.98 0.07 0.51 0.27 0.72 0.60 0.62 0.49
SigK 46 0.69 0.81 0.19 0.45 0.26 0.77 0.71 0.71 0.51
Ccpa 38 0.72 0.92 0.30 0.50 0.16 0.81 0.68 0.92 0.52
LexA 33 0.79 0.97 0.44 0.54 0.18 0.88 0.82 0.81 0.76
AbrB 33 0.64 0.78 0.49 0.52 0.27 0.80 0.68 0.51 0.70
SigW 32 0.64 0.80 0.32 0.51 0.20 0.79 0.75 0.76 0.66
SigD 29 0.76 0.74 0.38 0.51 0.12 0.84 0.90 0.73 0.70

Area under ROC curve (AUC), sensitivity (Sn) and Specificity (Sp) of

cross-validation). NG: Number of target Genes.

only Position information. This classifier achieved an
AUC of 54 and 51%, a sensitivity of 38 and 25% and a
specificity of 78 and 80%, for E. coli and B. subtilis, re-
spectively. By combining Position and Sequence views,
PreCislon gave rise to the highest performance by
achieving on average an AUC of 60 and 70%, a sensitivity
of 70 and 80% and a specificity of 56 and 60%, for E. coli
and B. subtilis, respectively (Table 1).

Fusion using boosting approach outperforms other types of
combined classifiers

To compare the boosting approach adopted here to other
classifier fusion methods, PreCislon was compared
with other approaches ranging from simple non-trainable
methods, e.g. linear combination, to more sophisticated
ones based on an additional training step, e.g. Stacked
generalization (34). Stacked generalization applies a
learning algorithm, e.g. a ‘Naive Bayes’ classifier, to
learn how to combine the predictions of the base-level
classifiers. The resulting meta-level classifier is then
used to obtain the final prediction. An ROC analysis
shows that PreCislon is more efficient than the two
other combination methods (Figure 3a). Importantly,
the enhanced predictive quality of PreCislon is not only
due to the boosting procedure as proposed by (25).
It definitely results from combining both Sequence and
Position views, as each view separately subjected to
the boosting procedure is less accurate as shown in
Figure 3b.

PreCislon predicted gene targets are functionally relevant

As new TFBSs were predicted purely by computational
methods, additional evidences were sought to support

all the tested TFs from E. coli and B. subtilis on test set (3-fold

the functionality of the new regulatory links obtained
for the E. coli TFs. These lines of evidence were based
on available functional genomics information.

Functional analysis of predicted gene targets of

global TFs

A Gene Ontology (GO) enrichment analysis was used to
characterize the biological functions of newly predicted
targets of global regulators. We next compared these
results against those coming from the set of known
curated targets. For each of the five TFs with the
highest number of targets in RegulonDB (CRP, FNR,
IHF, FIS and ArcA), the analysis was carried out using
UniProt GO annotations from the European
Bioinformatics Institute at http://www.ebi.ac.uk/GOA/
proteomes.html and the GO enrichment analysis
software DAVID (35). In Table 2 is listed for each TF
the top-ranked GO category among its predicted targets
along with the enrichment P-value, as well as the P-value
for the same category among the known targets. It
appears that for CRP, ArcA and IHF, the top ranked
GO category based on the predicted targets is also signifi-
cant for the known targets. These results support the
assignments made by PreCislon and indicate that the
newly predicted targets for most TFs can be used to cor-
rectly extend our understanding of the function of these
TFs. The FNR case is complicated by its numerous func-
tional categories, but ‘metal ion transport’ is indeed a
major one among them (36). By contrast, the newly pre-
dicted FIS targets are functionally biased with respect to
its known targets. Interestingly, this bias is towards the
main functional category of CRP: carbohydrate catabolic
process. This suggests a partial overlap of the functions of
these two TFs, which turns out to be corroborated by the
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Figure 3. Methods combining Sequence and Position classifiers. (a) ROC analysis comparing three classifier fusion algorithms: PreCislon (classifier
fusion using boosting), linear combination based on average and Stacked generalization based on Naive Bayes learning; (b) ROC analysis of the
boosted contributions of the individual Sequence or Position view, and of their combination into PreCislon.

Table 2. Functional validation of predicted gene targets against GO

TF Top GO category py PT py KT

CRP carbohydrate catabolic process 3x 1077 6x1077
FNR metal ion transport 4x107° 9% 107!
IHF nitrogen biosynthetic process 2% 107! 6x107°
FIS carbohydrate catabolic process 6x 107" 5% 1072
ArcA cellular biosynthetic process 2% 1077 1x1078

This table shows the most significant GO categories for newly predicted gene targets for E. coli TFs obtained by applying PreCislon to the most
curated known targets (KTs) from RegulonDB. The table compares the enrichment P-value (p,) of this category for the newly predicted targets (PTs)
and known targets. The reported uncorrected P-values are based on the ‘EASE Score’ (35), a modified Fisher test, for gene-enrichment analysis.

literature. Indeed, FIS indirectly regulates expression of
several operons involved in catabolism of sugars and
nucleic acids, which are also under the direct control of
CRP (37). FIS also affects CRP expression (38).

Validation against functional genomics data

The significativity of PreCislon improvements can be
tested by comparing its predicted TFBSs with those
determined by genome-wide condition-specific assays
such as ChIP-chip and ChIP-seq. The three E. coli TFs
Lrp, FNR and CRP were chosen because (i) they are in
the top five with the most significant periodical distribu-
tions of their gene targets (not shown) and (ii) they have a
large number of known targets that can be used for
training. The list of targets identified by ChIP-chip was
taken from (39) for Lrp and from (40) for FNR and
CRP. These targets were assumed to form, to a first ap-
proximation, the complete set of TFBS. For both
Sequence classifier and PreCislon, the approximate

number of FPs was determined by subtracting the
number of predictions that matched experimentally
defined TF targets from the total number of predicted
targets (Table 3). Compared with the Sequence classifier
alone, PreCislon generated a much reduced proportion of
FPs, under 15%, whereas the overall number of hits was
much less reduced to 21%. Altogether, it appears that
PreCislon strongly boosts the specificity of TF gene
target prediction, and that newly predicted targets are
functionally and experimentally consistent with prior
knowledge about their TFs.

DISCUSSION

Inference of TFBSs is a difficult bioinformatics problem
because it relies on short and degenerate DNA binding
sequences and because for most TFs, the small number
of their characterized gene targets impedes the learning
procedure. An ability to better predict TFBSs from
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Table 3. Validation against ChIP-chip data

TF TG P Sequence classifier PreCislon

AUC FP AUC PT FP
CRP 293 19015 0.54 1862 1698 0.70 428 264
FNR 132 107899 0.56 1068 937 0.68 162 82
Lrp 41 149 666 0.56 986 838 0.73 259 171

This table shows the number of documented target genes (TG) and the identified periods in the data (P) for the TFs CRP, FNR and Lrp. It also shows
for both Sequence classifier and PreCislon the area under the ROC curve (AUC), the number of predicted targets (PT) genes and the number of FPs

using ChIP-chip data as references.

small training data sets would therefore advance our
understanding of TF-DNA binding specificity, regulation
and coordination of gene expression, and ultimately gene
function. It would also contribute to fill in part the re-
maining fterra incognita of transcriptional interaction
maps, thus improving our ability to understand and ultim-
ately control regulatory disorders and disease.

All computational approaches so far have relied on
local sequence information only, in a way or another. In
this article, we show that for bacteria, respective gene pos-
itioning along the chromosome carries significant infor-
mation for TFBS prediction. This global positional
information fundamentally differs from local sequence in-
formation. As a result, they can be combined to signifi-
cantly improve genetic network inference. On this basis,
we set up a tool named PreCislon to optimize this com-
bination using a powerful machine-learning algorithm.
Validation on data sets from two phylogenetically
remote bacteria shows that indeed, PreCislon improves
the specificity of TFBS prediction. In most cases, this im-
provement goes well beyond that achieved by the best
classifier of positional information alone. It is also more
effective than the boosted classifiers of either sequence or
position view alone. This demonstrates the importance of
classifier fusion with the Boosting algorithm to greatly
benefit from even small sequence and/or position informa-
tions. Importantly, PreCislon appears to be an appropri-
ate first step in bacterial TFBS detection study. Indeed, its
specificity consistently surpasses the sequence view alone.
Furthermore, it is most often superior to either view ac-
cording to ROC analysis, and when it is not, its output
directly points to the view, which should preferentially be
used. The learning set size ranged from 293 (CRP) to 29
(SigD) known targets genes. As the performance evalu-
ation was done using a 3-fold cross-validation, these
results were computed from training sets as small as two
thirds of the initial data. Even so, the performance on
SigD with a training set of ~20 targets was good.
Indeed, PreCislon and classifier fusion techniques in
general do not require a larger training set than the indi-
vidual classifier does.

Any advance in genome description or sequence-
based TFBS prediction algorithmics can be readily
incorporated into PreCislon. Future work should focus
at (i) extending the multi-view learning algorithm to
other existing features of transcriptional control, for
instance conservation information (41), the positioning

of sites with respect of the Transcription Start Site of
the TU (42), co-expression information (43), TF
co-operativity (4,44); (ii) adapting PreCislon to eukaryotic
organisms. Indeed, we showed in 2003 that target genes
tended to be periodically positioned also in eukaryotic
yeast (45). Furthermore, recent studies have linked the
three-dimensional structuring of eukaryotic chromosomes
to their gene expression (46,47). Finally, our preliminary
results indicate potential success in applying the principle
of global gene position to TF binding site prediction in
yeast. However, they also show that a reformulation of the
algorithm will be required in the future for eukaryotes
compared with the present analysis of prokaryotes, as
gene targets are now spread over several chromosomes,
TF co-operativity is more extensive and TF translation
is uncoupled from its transcription by the nuclear
envelope.
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