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Posttranslational modifications are increasingly recognized as key strategies used by bacterial and
viral pathogens to modulate host factors critical for infection. A number of recent studies illustrate
how pathogens use these posttranslational modifications to target central signaling pathways in
the host cell, such as the NF-kB andMAPkinase pathways, which are essential for pathogens’ repli-
cation, propagation, and evasion from host immune responses. These discoveries open new
avenues for investigating the fundamental mechanisms of pathogen infection and the development
of new therapeutics.
Posttranslational modifications (PTMs) of proteins provide highly

versatile tools and tricks used by both prokaryotic and eukary-

otic cells to regulate the activity of key proteins. PTMs include

the addition of simple chemical groups, such as a phosphate,

acetyl, methyl, or hydroxyl groups; more complex groups,

such as AMP, ADP-ribose, sugars, or lipids; and small polypep-

tides, such as ubiquitin or ubiquitin-like proteins. They also

include modifications of specific amino acid side chains (e.g.,

deamidation of glutamine residues) and the cleavage of a peptide

bond (i.e., proteolysis).

PTMs represent efficient strategies to modify activities, half-

lives, or the intracellular localization of host proteins that are

critical for infection. The first report that a pathogen could

mediate a PTM occurred 40 years ago with the discovery that

diphtheria toxin, produced by Corynebacterium diphtheriae,

ADP-ribosylates and thus inhibits the host Elongation Factor-2

(EF-2) (Collier and Cole, 1969). This modification blocks transla-

tion in the intoxicated cells and thereby leads to cell death.

Since then, a considerable number of host PTMs mediated,

induced, or counteracted by different pathogen-encoded virulence

factors have been reported (for reviews, see Ribet and Cossart,

2010; Randow and Lehner, 2009). In this Review, we discuss new

discoveries in the modulation of PTMs by pathogens. In the first

part, we focus on ubiquitin and ubiquitin-like proteins, which have

emerged as central regulating modules targeted by both viral and

bacterial pathogens. We then discuss two recently identified

PTMs catalyzed by bacterial pathogens, AMPylation and eliminyla-

tion. In the third part, we describe how pathogens hijack certain

PTMs to preferentially target specific host pathways to promote

their replication,propagation, andescape fromthe immunesystem.

Ubiquitin and Ubiquitin-like Modifications Targeted
by Pathogens
Ubiquitination

Ubiquitination is the covalent attachment of ubiquitin, a small

polypeptide of 76 amino acids, to a target protein. Ubiquitin is
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generally linked to the lysine residue of the target protein;

however, a cysteine, serine, threonine, or N-terminal amino

group of a protein can also be modified. This conjugation

requires the successive activities of an E1-activating enzyme,

an E2-conjugating enzyme, and then an E3 ligase. Ubiquitination

is a fundamental PTM involved in many different cellular func-

tions, including the trafficking of membrane proteins, endocy-

tosis, signal transduction, DNA repair, and transcription regula-

tion. Ubiquitin itself contains seven lysines, K6, K11, K27, K29,

K33, K48, and K63. Therefore, chains of ubiquitin can be formed

by attaching additional ubiquitin molecules to a lysine residue of

the previously attached ubiquitin.

K48-linked polyubiquitin chains play a fundamental role in

protein degradation by targeting proteins to the proteasome. In

contrast, K63-linked polyubiquitin chains are involved in nonpro-

teolytic processes, such as DNA repair and vesicular trafficking.

In addition to these ‘‘homotypic’’ K48- or K63-linked chains, in

which only one type of ubiquitin linkage is involved, mixed

K11/K63-linked chains have also recently been described

(Boname et al., 2010). The discovery of these ‘‘mixed’’ chains

highlights that ubiquitin chains are probably more diverse and

complex than appreciated until now.

Ubiquitination is reversible because eukaryotic cells encode

proteases that are specific for ubiquitin. These proteases, called

deubiquitinases (DUBs), remove ubiquitin from their targets or

cleave the bond between two linked ubiquitins.

Ubiquitination constitutes an attractive target for a wide range

of pathogens because it regulates many pathways in eukaryotic

cells. Indeed, viruses and pathogenic bacteria can modulate the

ubiquitination level of host proteins by inducing their monoubi-

quitination, their polyubiquitination with K48-linked chains

(which then triggers their degradation), their polyubiquitination

with other types of ubiquitin chains, or their deubiquitination (re-

viewed in Ribet and Cossart, 2010; Randow and Lehner, 2009).

Some pathogen-encoded effectors display E3 ubiquitin ligase

activities. An important fraction of these viral or bacterial E3
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Figure 1. Posttranslational Modification of

Host Proteins during Infection
Yersinia (blue) is an extracellular pathogen that
injects effectors into the host cell’s cytoplasm
using a specialized type III secretion system
(T3SS). Salmonella (red) triggers its own entry
into host cells and replicates in a remodeled
vacuole. It also secretes T3SS-dependent effec-
tors. After cell invasion, Listeria (green) escapes
from vacuoles and resides free in the cytoplasm,
where it replicates and starts moving using the
host cell’s actin. Interactions with host factors
are mediated by bacterial surface or secreted
proteins. Effectors from all three of these bacteria
(blue for Yersinia effectors, red for Salmonella
effectors, and green for Listeria effectors) alter
posttranslational modifications of host proteins
(purple) to facilitate pathogens’ replication, propa-
gation, and evasion from host immune responses .
ligases shares structural homologies with eukaryotic E3 ligases,

which are classically divided into HECT and RING E3s depend-

ing on their structures and mechanistic properties (reviewed in

Kerscher et al., 2006). HECT E3 ligases transiently bind ubiquitin

before transferring it to the target protein. In contrast, RING E3

ligases do not link ubiquitin directly but rather facilitate ubiquiti-

nation by binding simultaneously to the charged E2 enzyme and

the protein target.

Recent studies have identified a new family of bacterial E3

ligases with a structural domain completely distinct from the

eukaryotic RING and HECT domains (Hicks and Galán, 2010).

Studies have also identified viral E3 ligases structurally distinct

from eukaryotic ones (Randow and Lehner, 2009). Whether

these new E3 ligases also exist in eukaryotes is still unknown.

Whereas pathogens may have acquired eukaryotic-like E3

ligases by horizontal transfer from diverse eukaryotic sources,

the noneukaryotic E3 ligases may represent novel structures

evolved by pathogens to mimic the function of these essential

enzymes of the host cell.

In addition to encoding their own E3 ligases, some pathogens

may encode adaptor proteins that bind host E3 enzymes and

redirect them to specific targets. For example, two decades

ago, a study found that this strategy is used by some human

papillomaviruses (HPVs), which are associated with the develop-

ment of uterine cervix cancer. The E6 oncoproteins of HPV sero-

type 16 and 18 recruit a host E3 ligase to induce the degradation

of the p53 tumor suppressor, thereby facilitating transformation

of the infected cells (Scheffner et al., 1990).

In addition to E3 ubiquitin ligases, pathogens also encode

DUB-like proteins. A few viral DUBs have been identified, but

their roles in vivo, as well as their host targets, are unknown.

In contrast, several DUB-like proteins have been characterized

in pathogenic bacteria. Salmonella enterica serovar Typhimu-
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rium (S. Typhimurium) is an invasive path-

ogen of the small intestine that, in mice,

causes a disease similar to human

typhoid fever. SseL, an effector secreted

by this bacterium, displays deubiquitinat-

ing activity in vitro. It suppresses ubiquiti-

nation and degradation of IkBa, a central
regulator of the NF-kB pathway (see below) (Figure 1) (Le Ne-

grate et al., 2008). Infection with a strain of S. Typhimurium lack-

ing sseL leads to the accumulation of ubiquitinated proteins at

the site of replicating intracellular bacteria (Rytkönen

et al., 2007). Strikingly, the decoration of intracytosolic bacteria

with polyubiquitinated proteins has recently been proposed as

a signal used by host cells to sense intracellular invaders

(Figure 1). This signal triggers cytosolic defense pathways,

such as autophagy, although the nature of ubiquitinated proteins

is unknown (Perrin et al., 2004; Thurston et al., 2009). Bacterial

DUBs may decrease this accumulation of polyubiquitinated

proteins and thus might represent a strategy developed by intra-

cellular bacteria to escape these specific host defense systems.

Interestingly, pathogen-encoded proteins can also be directly

ubiquitinated by the host cell machinery. A striking example in

which PTMs by the host cell strongly alter the behavior of bacte-

rial effectors is the Salmonella SopE and SptP proteins. These

two effectors contribute to the transient remodeling of the host

cell’s cytoskeleton during bacterial entry into the cell. SopE

acts as a GEF (guanine nucleotide exchange factor) and

activates host Rho-GTPases, resulting in actin cytoskeleton

rearrangement, membrane ruffling, and subsequent bacterial

uptake. In contrast, SptP acts as a GAP (GTPase-activating

protein) to deactivate Rho-GTPases and allow the recovery of

the actin cytoskeleton’s normal architecture a few hours after

infection. Although SopE and SptP are codelivered by Salmo-

nella, they exhibit different half-lives. SopE is rapidly polyubiqui-

tinated and degraded by the host proteasome, whereas SptP

exhibits much slower degradation kinetics (Kubori and Galán,

2003). Recent studies found that Salmonella also hijacks the

ubiquitination machinery to control one of its effectors, SopB,

which displays two different activities depending on whether

the protein is ubiquitinated or not (Patel et al., 2009; Knodler
ovember 24, 2010 ª2010 Elsevier Inc. 695



et al., 2009). Thus, by actively co-opting the ubiquitination

machinery of the host cell, Salmonella regulates the half-lives

and activities of some of its key virulence factors.

SUMOylation

In addition to ubiquitin, other polypeptides can be covalently

linked to cellular proteins to modify their fate and functions.

These polypeptides, which belong to the ubiquitin-like protein

family, share high structural homology with ubiquitin, ranging

from �15% to 50% sequence similarity with it. SUMO (small

ubiquitin-like modifier) belongs to the ubiquitin-like protein family

and is ubiquitous in the eukaryotic kingdom. The human genome

encodes three functional SUMO isoforms that can be linked to

hundreds of different targets. Similar to the ubiquitin system,

the conjugation of SUMO onto the lysine of a target protein

requires an E1, an E2, and an E3 SUMO enzyme. In parallel,

deSUMOylases regulate the SUMOylation level of cellular

proteins by removing SUMO from its targets.

SUMOylation is a fundamental PTM involved in transcription

regulation, intracellular transport, stress responses, the mainte-

nance of genome integrity, andmany other biological processes.

Although SUMOylation was first thought not to play a role in

protein degradation, recent findings show that SUMOcan trigger

the recruitment of ubiquitin E3 ligases, such as RNF4 (RING

finger protein 4), leading to the ubiquitination and proteasomal

degradation of some SUMOylated proteins (Lallemand-Breiten-

bach et al., 2008; Tatham et al., 2008).

As with the ubiquitin system, several bacterial and viral factors

target or mimic components of the SUMOylation machinery,

thereby increasing or decreasing the SUMOylation level of host

proteins (reviewed in Boggio and Chiocca, 2006; Ribet and

Cossart, 2010). For example, KSHV (Kaposi’s sarcoma-associ-

ated herpes virus), a herpes virus responsible for Kaposi’s

sarcoma development, encodes an enzyme, K-bZip, which

displays E3 SUMO ligase activity. This protein directly partici-

pates in catalyzing SUMO conjugation to host targets, such as

p53 and Retinoblastoma (Rb) protein (Chang et al., 2010). These

modifications are proposed to play a role in modulating host

genes expression in the early stage of viral infection (Chang

et al., 2010).

VP35, a protein encoded by Ebola virus, does not display

E3-like activity, but it binds to the host E3 SUMO enzyme

PIAS1 (protein inhibitor of activated STAT 1) and increases the

SUMOylation level of IRF7 (interferon regulatory factor 7) (Chang

et al., 2009). This SUMOylation of IRF7 downregulates interferon

transcription and may contribute to the dampening of the anti-

viral response induced upon infection of Ebola virus (Chang

et al., 2009).

Gam1, a protein encoded by an avian adenovirus, has an

opposite effect on SUMOylation; it targets the host E1 SUMO

enzyme to proteasomal degradation, thereby inhibiting the

SUMOylation machinery and altering host transcription (Boggio

et al., 2004). Degradation of the SUMOylation machinery is

a strategy also used by Listeria monocytogenes, a food-borne

bacterial pathogen responsible for listeriosis. Indeed, infection

by L. monocytogenes leads to the degradation of Ubc9, the

human E2 SUMO enzyme (Ribet et al., 2010). Listeriolysin O is

a pore-forming toxin secreted by this bacterium, which plays

a fundamental role in bacterial virulence (Figure 1). Listeriolysin
696 Cell 143, November 24, 2010 ª2010 Elsevier Inc.
O triggers the degradation of Ubc9, as well as the degradation

of some SUMOylated host proteins (Ribet et al., 2010). In

contrast to the ubiquitin system, which includes dozens of E2

enzymes in humans, the SUMO system has only one E2 enzyme.

Therefore, this degradation of Ubc9 leads to a blockade of the

SUMOylation machinery and to a global decrease in the level

of SUMO-conjugated host proteins in infected cells. Thus, by

decreasing SUMOylation in infected cells, Listeria may alter the

activities of host factors critical for infection (Ribet et al., 2010).

Pathogen-encodeddeSUMOylasescanalsocauseadecrease

in the SUMOylation level of host proteins. Indeed, this is the case

for XopD, a protein injected by the plant pathogen Xanthomonas

campestris into the cytoplasm of plant cells. This protein is

a SUMO-specific protease, which induces deSUMOylation of

several host factors when it is expressed in plant cells (Hotson

et al., 2003). XopD is known to alter host transcription, to promote

pathogen multiplication, and to delay the onset of leaf chlorosis

and necrosis. However, the exact roles of deSUMOylation in

XopD’s effects are unknown (Kim et al., 2008).

In addition to the induction or inhibition of SUMOylation of host

proteins, viral proteins can be SUMOylated themselves.

However, the role that these modifications play in virulence is

unknown in most cases (Boggio and Chiocca, 2006). Surpris-

ingly, examples of bacterial factors directly SUMOylated by

host enzymes have not been identified. It is, however, likely

that future studies will unveil the existence of suchmodifications,

as well as their role in bacterial infection or in antibacterial

defenses.

Neddylation

Neddylation is another PTM that pathogens target during infec-

tion. Nedd8, which is a member of the ubiquitin-like protein

family, can be linked to cellular proteins in a fashion similar to

ubiquitin (reviewed in Rabut and Peter, 2008). The major class

of currently known Nedd8 substrates is Cullins. Cullins act as

scaffolding proteins in the assembly of multisubunit RING E3

ubiquitin enzymes, called Cullin RING ligases (CRLs). Neddyla-

tion of Cullins controls the activity of CRLs and thereby the ubiq-

uitination and degradation kinetics of CRLs substrates. As with

ubiquitin, Nedd8 can be deconjugated from its targets by dened-

dylases.

Bacterial and viral pathogens can interfere with the neddyla-

tion of host proteins. For example, the Epstein-Barr virus

encodes a protein BPLF1, which displays deneddylase activity

(Gastaldello et al., 2010). During infection, BPLF1 deneddylates

Cullins, thereby inhibiting the activity of CRLs and stabilizing

several CRL substrates. In particular, this leads to the deregula-

tion of the cell cycle and the establishment of an S-phase-like

cellular environment, which is required for efficient replication

of virus DNA (Gastaldello et al., 2010).

A recent study also reported that Cif (cycle-inhibiting factor),

a cyclomodulin translocated into cells by enteropathogenic

and enterohemorrhagic Escherichia coli, binds to Nedd8-conju-

gated CRLs of the host. This interaction inhibits the activity of the

CRLs, leading to a deregulation of the host cell cycle (Jubelin

et al., 2010). Proteins with in vitro deneddylase activity have

also been described in Chlamydia trachomatis, an obligate intra-

cellular bacterial pathogen. However, the role these deneddy-

lases play in infection remains unknown (Misaghi et al., 2006).



ISGylation

ISG15 (interferon stimulated gene 15) is an ubiquitin-like protein

with two ubiquitin domains. The expression of ISG15 is induced

in response to type I interferons (IFN), a family of cytokines

involved in the antiviral response. Consistent with this induction

in response to IFN, a growing number of studies are now high-

lighting the roles ISG15 plays in antiviral defense against several

types of viruses (reviewed in Skaug and Chen, 2010; Jeon et al.,

2010). Conjugation of ISG15 to target proteins requires the

activity of E1, E2, and E3 enzymes, which are also induced by

IFN. In contrast to the ubiquitin system, which includes hundreds

of E3 enzymes, one unique E3 ISG15 enzyme, namely HERC5,

modifies the vast majority of ISG15 substrates in human cells.

Like with other ubiquitin-like modifications, ISGylation is revers-

ible; specific proteases, called deISGylases, remove ISG15 from

its targets.

The antiviral activity of ISG15 can be due to either the

ISGylation of host proteins critical for infection or the direct

ISGylation of viral proteins (Skaug and Chen, 2010; Jeon et al.,

2010). This latter case has been described for the NS1 protein

of influenza A virus (NS1A), which is ISGylated during infection.

This modification of NS1A was linked to an impairment of influ-

enza replication, although the precise effect of the ISG15 addi-

tion on NS1A remains to be determined (Zhao et al., 2010;

Tang et al., 2010).

Interestingly, recent studies also proposed that the ISG15

conjugation systemmaymodify broadly, and somehow nonspe-

cifically, newly synthesized proteins in a cotranslational manner

(Durfee et al., 2010). This implies that, in the context of an inter-

feron response, viral proteins, rather than cellular proteins, may

be the principal targets of ISGylation (Durfee et al., 2010).

Although only a small fraction of viral proteins might be

ISGylated, it was proposed that ISGylation of viruses’ structural

proteins, which precisely assemble into high-order structures,

might impair the production of infectious viral particles. Indeed,

this was demonstrated for the human papillomavirus HPV16.

ISGylation of a small proportion of its structural protein L1 was

sufficient to have a dominant-negative effect on virus infectivity

(Durfee et al., 2010). The authors postulated that the ISGylation

of host proteins could thus only be a side effect of the cell’s effort

to target viral proteins.

Consistent with the role of ISG15 in antiviral defense, several

viruses have evolved strategies to impair ISGylation (Skaug

and Chen, 2010; Jeon et al., 2010). In particular, studies

have identified several viral proteins that can either mimic

deISGylases or interfere with the ISGylation machinery of the

infected cell. Indeed, the papain-like protease of SARS corona-

virus and the ovarian tumor domain-containing proteases of

nairo- and arteriviruses all display ISG15-deconjugating activi-

ties (Lindner et al., 2005; Frias-Staheli et al., 2007). On the other

hand, NS1 protein of influenza B virus binds to ISG15 and inhibits

its conjugation to target proteins (Yuan and Krug, 2001). By

inhibiting ISG15 conjugation or increasing ISG15 deconjugation,

all these effector proteins were proposed to decrease the

potential antiviral effect of ISGylation.

The role of ISG15 in bacterial infections remains completely

unknown. According to the study by Durfee et al. (2010), the

participation of ISG15 in antibacterial defenses, if any, will prob-
ably rely on the ISGylation of cellular proteins rather than bacte-

rial proteins because the latter are not translated by the host cell

machinery. Nevertheless, investigating the role of ISG15 in infec-

tions by bacterial pathogens will undoubtedly provide exciting

insights into the field of host-pathogens interactions.

AMPylation and Eliminylation, New PTMs Mediated
by Bacteria
AMPylation

AMPylation is the addition of an adenosine monophosphate

(AMP) group onto a threonine, tyrosine, or, possibly, serine

residue of a protein. The AMPylation of host proteins by bacterial

pathogens was recently detected in cells during an infection with

Vibrio parahaemolyticus, a human pathogen causing acute

gastroenteritis, and Histophilus somni, a pathogen responsible

for respiratory diseases and septicemia in cattle. Two virulence

factors produced by these extracellular bacteria, namely VopS

and IbpA, are able to reach the cytoplasm of host cells during

infection, where they use ATP to transfer an AMP moiety to

host Rho-GTPases (Figure 2) (Yarbrough et al., 2009; Worby

et al., 2009). This AMPylation alters the activity of Rho-GTPases,

which regulate the dynamics of the cell cytoskeleton.

The catalytic domain responsible for AMPylation was mapped

to the Fic domain (filamention induced by cAMP) of VopS and

IbpA. Fic domains are defined by a core sequence of nine amino

acids containing an invariant histidine residue that is essential for

the AMPylation (Yarbrough et al., 2009). Interestingly, proteins

containing Fic domains are found not only in prokaryotes but

also in eukaryotes, and the existence of eukaryotic proteins

able to catalyze AMPylation has been proposed (Worby et al.,

2009; Kinch et al., 2009). Thus, AMPylation might represent

a new and important posttranslational modification in eukaryotic

cells.

Legionella pneumophila is a human pathogen of the respira-

tory tract responsible for a severe form of pneumonia, called

Legionnaire’s disease. L. pneumophila encodes a factor, DrrA,

which AMPylates the host protein Rab1b, a small GTPase

involved in intracellular vesicular transport (Muller et al., 2010).

AMPylation of Rab1b leads to its constitutive activation, which

not only alters vesicular transport in infected cells but also

contributes to the formation of Legionella intracellular vacuoles

and aids bacterial replication.

Interestingly, the catalytic domain of DrrA is distinct from the

Fic domains observed in VopS and IbpA (Muller et al., 2010).

Thus, a wide diversity of both prokaryotic and eukaryotic

enzymesmay catalyze AMPylation, a posttranslational modifica-

tion that might represent an unsuspected way of regulating

various signaling pathways in the cell.

Eliminylation

Phosphorylation was the first covalent protein modification

described. Since its discovery in the late 1950s, phosphorylation

has emerged as a common and fundamental PTM. Phosphory-

lation involves the reversible attachment of a phosphate group

to target proteins by forming a phosphoester bond. This addition

generally occurs on hydroxyl groups of serine, threonine, or tyro-

sine residues. Phosphorylation is reversible; phosphatases can

hydrolyze the phosphoester bond to release the phosphate

group and restore the amino acid in its unphosphorylated form.
Cell 143, November 24, 2010 ª2010 Elsevier Inc. 697



Figure 2. Pathogen-Mediated PTMs Target

the Cytoskeleton and Immunoreceptors
Bacteria effector proteins (green) control the
dynamics of the host cell’s actin cytoskeleton by
posttranslationally modifying Rho-GTPases (left).
Viral effector proteins (blue) regulate posttransla-
tional modification of immunoreceptors, such as
the major histocompatibility complex class I
(MHC I) and the CD4 (cluster of differentiation 4)
molecules (right), thereby decreasing their expres-
sion at the cell surface and dampening immune
responses.
Interestingly, a previously unknown enzymatic activity, called

phosphothreonine lyase, was recently identified in three different

bacterial factors (Li et al., 2007; Mazurkiewicz et al., 2008; Zhang

et al., 2007). These enzymes remove the phosphate group from

a threonine residue but, in contrast to classical phosphatases,

do not regenerate the hydroxyl group. Instead, this reaction,

nicknamed eliminylation, modifies threonine into dehydrobutyr-

ine, a residue that can no longer be phosphorylated (Brennan

and Barford, 2009).

The first factor identified with such activity is OspF, a protein

produced by Shigella flexneri, the causative agent of bacillary

dysentery in humans (Li et al., 2007). During infection, bacteria

directly secrete OspF into the host cell cytoplasm, where OspF

helps to dampen the host immune responses by irreversibly

dephosphorylating host MAP (mitogen-activated protein)

kinases (Figure 3) (Li et al., 2007; Arbibe et al., 2007). Phospho-

threonine lyases have beendescribed only inS. flexneri,S.Typhi-

murium, and the plant pathogen Pseudomonas syringae, and

MAP kinases are the only known targets of this PTM. However,

we can expect that, as with AMPylation, some eukaryotic

enzymes may also display this activity and that eliminylation

might regulate numerous signaling pathways in eukaryotic cells.

Signaling Pathways Preferentially Targeted by
Pathogens by Alteration of Host PTMs
Some pathogens produce several effectors that modulate the

activity of host cell proteins by stimulating or counteracting their
698 Cell 143, November 24, 2010 ª2010 Elsevier Inc.
PTMs. In this section, we will focus on

several key cellular pathways that are

preferentially targeted by pathogens

through these PTMs.

Regulation of the Cytoskeleton

Dynamics by PTMs

The niches occupied by pathogens within

their hosts are quite diverse. Whereas

some bacterial pathogens remain strictly

extracellular, other bacteria, as well as

viruses, invade host cells and replicate

therein. For viruses, entry into host cell

is strictly required for the synthesis of viral

proteins and the production of new infec-

tious viral particles. Bacteria take refuge

inside host cells to escape humoral

immune response and to replicate in

a well-protected environment. To enter
the cell and create such niches requires extensive remodeling

of the host cell cytoskeleton, a multiprotein assembly of struc-

tural and regulatory elements. Indeed, many pathogen-induced

PTMs target structural or regulatory components of the host

cell’s cytoskeleton.

Listeria monocytogenes is a bacterium that can induce its own

entry into a wide range of cells that are normally nonphagocytic.

This internalization requires interactions between surface

proteins of Listeria and host receptors. After successive PTMs,

these interactions trigger the recruitment of host factors and

the remodeling of host cell cytoskeleton required for internaliza-

tion of the bacteria (Figure 1). For example, the interaction

between the Listeria surface protein InlA and its cellular receptor

E-cadherin promotes Listeria’s invasion into epithelial cells of the

intestine. Activation of E-cadherin by InlA leads to phosphoryla-

tion and ubiquitination of E-cadherin by the Src kinase and

the Hakai E3 ligase, respectively. These PTMs trigger the recruit-

ment of the host’s clathrin-mediated endocytic machinery

followed by rearrangements of the actin cytoskeleton and inter-

nalization of the bacteria (Bonazzi et al., 2008).

In contrast, entry of Listeria into cells that do not express

E-cadherin is mediated by another surface protein, InlB, which

interacts with and activates Met, the hepatocyte growth factor

(HGF) receptor (Figure 1). Similar to HGF activation, Met activa-

tion by InlB induces its autophosphorylation and subsequent

monoubiquitination by the host E3 ligase Cbl. This leads to

the recruitment of the host’s clathrin-dependent endocytic



Figure 3. Pathogen-Mediated PTMs Target

the MAP Kinase and NF-kB Signaling

Pathways
The MAP kinase (left) and NF-kB (right) signaling
cascades trigger immune responses in the host
cell during infections. Both bacterial (green) and
viral (blue) effectors weaken these immune
responses by inducing or counteracting post-
translational modifications of key components in
these critical pathways.
machinery, actin rearrangements, and ultimately, the internaliza-

tion of the bacteria (Veiga and Cossart, 2005; Veiga et al., 2007).

To avoid being killed, pathogens can also actively inhibit their

engulfment by professional phagocytes. The mechanisms

involved in this processmay also require various pathogen effec-

tors to regulate the PTMs of host proteins (Figure 1). Pathogenic

Yersinia species are involved in human diseases, ranging from

enteric disorders to the plague. One virulence factor secreted

by Yersinia, YopH, displays potent phosphatase activity. It

decreases phosphorylation levels of host proteins involved in

focal adhesion complexes and impairs the cytoskeleton rear-

rangements required for bacterial uptake. Another factor of

Yersinia, YopT, is a protease that cleaves the membrane-

anchoring domain of host Rho-GTPases, leading to their irre-

versible detachment from the plasma membrane and their inac-

tivation (Figure 2 and Figure 1) (Shao et al., 2002). Thus, YopT

contributes to the inhibition of bacterial phagocytosis by pre-

venting rearrangements of the actin cytoskeleton.

Finally, some bacterial pathogens, such as Clostridium diffi-

cile, secrete several toxins that posttranslationally modify host

Rho-GTPases, leading to their constitutive activation, inactiva-

tion, or degradation (Figure 2). This alteration of Rho-GTPases

is widespread and allows bacteria to regulate the host cell’s

cytoskeleton in numerous ways, as well as gene transcription
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and cytokine expression (reviewed in Ak-

tories and Barbieri, 2005).

Inhibition of the NF-kB Pathway

The NF-kB pathway is an example of

a pathway tightly regulated by ubiquitina-

tion (Figure 3). The NF-kB pathway plays

a central role in inflammation and in the

establishment of both innate and immune

responses. Specific signals, such as

cytokines or microbial signatures, acti-

vate this pathway by switching on the

IkB kinase (IKK) complex. This leads to

the phosphorylation of IkBa, an inhibitor

protein that sequesters transcription

factors of the NF-kB family in the cyto-

plasm. Phosphorylated IkBa is then

recognized by specific ubiquitin E3

ligases, polyubiquitinated with K48-

linked chains, and targeted to the protea-

some for degradation. Destroying IkBa

leads to the release of NF-kB transcrip-

tion factors, allowing them to translocate

into the nucleus and initiate transcription

of various genes involved in host immune responses. Because

the NF-kB pathway plays a central role in immune responses,

there is a strong evolutionary pressure on pathogens to prevent

activation of this pathway during infection.

One possibility for dampening this pathway is to block the

ubiquitination of IkBa, thereby inhibiting its proteasomal degra-

dation and the translocation of NF-kB factors into the nucleus

(Figure 3). In numerous cases, factors achieve this goal by inter-

fering with the host ubiquitination machinery. For example,

S. flexneri secretes the effector OspG into the host cell’s

cytoplasm, where it binds to and inhibits UbcH5, a host E2

ubiquitin enzyme involved in IkBa ubiquitination (Kim et al.,

2005). The accessory protein Vpu (viral protein U) of HIV1 also

interferes with IkBa ubiquitination by inhibiting the E3 ubiquitin

ligase involved in IkBa’s modification (Bour et al., 2001). The

DUB-like SseL factor produced by S. Typhimurium inhibits

IkBa ubiquitination in response to the TNF-a cytokine, suggest-

ing that SseL acts directly by removing the K48-linked chains of

IkBa (Le Negrate et al., 2008).

Numerous factors also target the IKK complex directly

(Figure 3). For example, in addition to producing OspG, S. flex-

neri also secretes IpaH9.8, an effector with E3 ubiquitin ligase

activity. IpaH9.8 polyubiquitinates the NEMO/IKKg protein of

the IKK complex and targets it to the proteasome, thereby
ovember 24, 2010 ª2010 Elsevier Inc. 699



impairing the phosphorylation and subsequent degradation of

IkBa (Rohde et al., 2007; Ashida et al., 2010). L. monocytogenes

intracellularly secretes InlC, which directly interacts with the

IKKa protein to block the phosphorylation of IkBa (Gouin et al.,

2010). Similarly, YopJ/P, an effector produced by pathogenic

Yersinia species, mediates the acetylation of the IKKa and

b proteins, which prevents their activation and subsequent

IkBa phosphorylation (Mittal et al., 2006).

Interestingly, commensal bacteria of the human intestine can

also act on the NF-kB pathway. Indeed, some bacterial fermen-

tation products, such as butyrate or other short-chained fatty

acids, can stimulate the local production of reactive oxygen

species in intestinal epithelial cells. This leads to the inactivation

of some redox-sensitive enzymes, such as E2 Nedd8 enzyme,

and therefore a decrease in the neddylation level of host

proteins. In this context, reduced neddylation levels, in particular

the decrease in Cullin-1 neddylation, have been associated with

a downregulation of the NF-kB pathway and hypothesized to

contribute to the inflammatory tolerance of the intestinal epithe-

lium toward commensal bacteria (Kumar et al., 2009).

Targeting of MAP Kinase Pathway

Similar to the NF-kB pathway, the MAP kinase pathway is

another central signaling cascade that is essential for the activa-

tion of host innate immune responses. Therefore, not surpris-

ingly, pathogens often target the MAP kinase pathway in order

to facilitate their infection (Figure 3). One effector protein

secreted intracellularly by Shigella is OspF, which possesses

phosphothreonine lyase activity. OspF irreversibly dephosphor-

ylates host MAP kinases and, therefore, was proposed to partic-

ipate in the dampening of host immune responses (Li et al., 2007;

Arbibe et al., 2007). Interestingly, other bacterial virulence

factors, such as SpvC from S. Typhimurium or HopAI1 from

the plant pathogen P. syringae, possess the same phospho-

threonine lyase activity as OspF and also target MAP kinases

of their hosts (Mazurkiewicz et al., 2008; Zhang et al., 2007). In

addition to these factors, the Yersinia YopJ/P effector can inac-

tivate host MAP kinases by catalyzing their acetylation (Mittal

et al., 2006; Mukherjee et al., 2006). Finally, the anthrax lethal

factor, a subunit of the Anthrax toxin encoded byBacillus anthra-

cis, cleaves host MAP kinases, leading to their irreversible inac-

tivation (reviewed in Turk, 2007).

Regulation of Cellular Immunoreceptors

To avoid detection by the immune system, some pathogens

restrict the surface expression of fundamental molecules of the

immune system by subverting host ubiquitination (Figure 2).

For example, KSHV encodes two E3 ubiquitin ligases, K3 and

K5, which both target the host protein’s major histocompatibility

complex class I (MHC I). An essential player of the immune

response, MHC I alerts the immune system to intracellular path-

ogens by sampling the protein repertoire of host cells and then

presenting peptides to cytotoxic T lymphocytes. K3 rapidly

mediates the polyubiquitination of MHC I molecules at the

surface of the cell with K63-linked chains, leading to their endo-

cytosis and degradation. Interestingly, K5 also mediates polyu-

biquitination of MHC I but with mixed K63 and K11 chains,

instead of homotypic chains. Indeed, these mixed chains are

required for the internalization of MHC I by K5, thus highlighting,

for the first time, the putative importance of such mixed polyubi-
700 Cell 143, November 24, 2010 ª2010 Elsevier Inc.
quitin chains in the control of immune responses (Boname

et al., 2010). Some herpesvirus E3 ubiquitin ligases downregu-

late MHC I molecules by triggering their degradation by the

ERAD (endoplasmic reticulum-associated protein degradation)

pathway (reviewed in Randow and Lehner, 2009). Some viral

proteins, such as HIV Vpu accessory protein, can act as adap-

tors of host E3 ubiquitin ligases to induce the proteasomal

degradation of other types of host immunoreceptors, such as

CD4 (cluster of differentiation 4) receptor on T cells (Schubert

et al., 1998). Finally, bacterial pathogens, such as Salmonella,

can decrease the expression of MHC class II molecules at the

cell surface by modulating their ubiquitination, which also leads

to the dampening of host immune responses (Lapaque et al.,

2009).

Conclusion
Researchers have known for decades that pathogens interfere

with the host’s PTMs. However, the current ‘‘re-emergence’’ of

this field of research reflects the importance of controlling

PTMs during infection and the complexity of these processes

in host-pathogen interactions. In this Review, we focused on

how pathogens manipulate host PTMs and how they use these

PTMs to solve their own biological needs.

It should be stressed that pathogens may also actively co-opt

or be the passive targets of the host cell’s PTM machinery. As

mentioned above, pathogen-encoded proteins can indeed be

ubiquitinated, SUMOylated, or ISGylated, and like with host

proteins, PTMs of pathogen-encoded proteins regulate these

factors’ half-lives, activities, intracellular localization, or binding

to other host- or pathogen-encoded factors. Therefore, it is

tempting to speculate that the diversity of known PTMs affecting

pathogen-encoded proteins will greatly increase in the near

future.

As the number of studies reporting crosstalk between different

PTMs increases, an emerging idea is that PTMs are more

complex than originally anticipated. For example, in the NF-kB

signaling pathway alone, phosphorylation, SUMOylation, K63-

polyubiquitination, and K48-polyubiquitination act in synergy

to regulate the activation or the inhibition of transcriptional

responses. Targeting of these pathways by pathogens, there-

fore, often requires a tightly controlled orchestration of multiple

levels of PTMs.

Studies on pathogen interference with host protein PTMs has

provided numerous insights into cell biology over the years. In

particular, some pathogen effectors serve as invaluable tools

to study particular aspects of cell biology. For example, the

C3 exoenzyme from Clostridium ADP-ribosylates and inhibits

multiple Rho-GTPases. Therefore, the C3 protein has been used

successfully to highlight the specific role of the Rho-GTPase in

stress fiber formation and to study the regulation of the actin

cytoskeleton dynamics in eukaryotic cells (Ridley and Hall,

1992; Ridley et al., 1992).

Finally, the development of new technologies, such as

improvements in mass spectrometry (especially the SILAC

[stable isotope labeling of amino acids in cell culture] technique;

Mann, 2006), will undoubtedly increase the list of currently

known PTMs and facilitate the understanding of their roles in

host-pathogen interactions. Identifying pathogen-encoded



enzymes that catalyze specific PTMs critical for infection will

provide valuable new targets for drug development. Indeed,

the selective inhibition of these enzymes may constitute a prom-

ising strategy to counter these insidious invaders.
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Note Added in Proof

It came recently to our attention that AMPylation is also called adenylylation

and was first discovered in the late sixties as regulating the glutamine synthe-

tase of E. coli by modifying a tyrosine residue (Stadtman, E.R., 2001, The story

of glutamine synthetase regulation. J. Biol. Chem. 276, 44357–44364).


