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Abstract
: Non-alcoholic fatty liver disease (NAFLD) is a global healthBackground

issue. Dietary methyl donor restriction is used to induce a NAFLD/non-alcoholic
steatohepatitis (NASH) phenotype in rodents, however the extent to which this
model reflects human NAFLD remains incompletely understood. To address
this, we undertook hepatic transcriptional profiling of methyl donor restricted
rodents and compared these to published human NAFLD datasets.             

: Adult C57BL/6J mice were maintained on control, choline deficientMethods
(CDD) or methionine/choline deficient (MCDD) diets for four weeks; the effects
on methyl donor and lipid biology were investigated by bioinformatic analysis of
hepatic gene expression profiles followed by a cross-species comparison with
human expression data of all stages of NAFLD.

: Compared to controls, expression of the very low density lipoproteinResults
(VLDL) packaging carboxylesterases ( ,  ,  ) and the NAFLDCes1d Ces1f Ces3b
risk allele   were suppressed in MCDD; with   and the liverPnpla3 Pnpla3
predominant   isoform,  , also suppressed in CDD. With respect toCes Ces3b
1-carbon metabolism, down-regulation of  ,  ,  ,   and Chka Chkb Pcty1a Gnmt Ahcy
with concurrent upregulation of   suggests a drive to maintainMat2a
S-adenosylmethionine levels. There was minimal similarity between global
gene expression patterns in either dietary intervention and any stage of human
NAFLD, however some common transcriptomic changes in inflammatory,
fibrotic and proliferative mediators were identified in MCDD, NASH and HCC.

: This study suggests suppression of VLDL assembly machineryConclusions
may contribute to hepatic lipid accumulation in these models, but that CDD and
MCDD rodent diets are minimally representative of human NAFLD at the
transcriptional level.
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Introduction
Non-alcoholic fatty liver disease (NAFLD) is the predominant  
cause of chronic liver disease in the developed world, with an 
estimated prevalence of between 20–68%1. The accumulation of  
hepatic fat in the form of triglycerides and other lipid species in 
NAFLD has two major clinical consequences. Firstly, a subgroup 
of patients with hepatic steatosis will progress to an inflammatory 
hepatitis, hepatic cirrhosis and in some cases hepatocellular car-
cinoma (HCC)2. Secondly, almost all patients with NAFLD also 
exhibit hepatic insulin resistance, which can be associated with 
impaired glucose uptake, increased gluconeogenesis and type  
2 diabetes, possibly as a direct consequence of the increased  
hepatic lipid load1,3,4. Together, these conditions are responsible 
for significant morbidity and mortality and represent a substantial  
burden for health resources5.

The molecular mechanisms underpinning NAFLD pathology are 
incompletely understood, and as such there is a need for accu-
rately representative rodent models in which to investigate this  
common disease and to trial novel therapeutics. Given the  
association of NAFLD with human obesity, the use of high fat diet 
feeding in rodents remains a popular model in which to investi-
gate mechanisms. However whilst high fat feeding generates a 
NAFLD-like picture, the disadvantages with this model include the 
protracted time required to induce even mild non-alcoholic stea-
tohepatitis (NASH), the lack of malignant transformation to HCC 
even with prolonged exposure, and the variation in the histological 
and transcriptional changes due to the behavioural characteristics 
of mice in social groups6–8. Thus, a number of alternative models 
have been employed. In rodents, dietary restriction of the methyl 
donors methionine and/or choline rapidly and reliably induces a 
spectrum of liver injury histologically similar to human NAFLD, 
within weeks of instigation9,10. Although the precise biological 
mechanisms responsible for the predictable phenotypic changes 
are poorly understood, the histological similarity to human stea-
tosis (choline deficient diets; CDD) and NASH (methionine and 
choline deficient diets; MCDD) means that these models have 
been used in mechanistic and therapeutic studies for a number of  
years11–13. Since impaired metabolism of the key methyl donor 
S-adenosylmethionine (SAMe) is a well documented feature of 
chronic liver disease regardless of aetiology14–16, there may be 
common molecular mechanisms which may present an opportu-
nity for therapeutic intervention. Although a number of transcrip-
tional changes have been reported during the progression of human 
NAFLD, no detailed transcriptional comparisons have been per-
formed to identify similarities or differences between human dis-
ease and the CDD and MCDD models of NAFLD, despite their 
widespread use. In this study, we set out firstly to dissect poten-
tial mechanisms underpinning the development of liver pathology 
in CDD and MCDD models by mapping pathways of lipid and 
one-carbon metabolism, and secondly to evaluate their potential  
usefulness as models of human disease. To address these aims, we 
have examined in detail the transcriptional profiles in liver from 
mice maintained on CDD and MCDD, and compared these with 
published human NAFLD transcriptome data series. 

Materials and methods
Animals
All experiments were carried out under a UK Home Office Licence 
(PPL 70/7874), and with local ethical committee approval and 
adhering to the ‘Animal Research: Reporting In Vivo Experi-
ments’ (ARRIVE) guidelines. Adult C57BL/6J mice (purchased 
from Charles River, Tranent, UK) were maintained under control-
led conditions in social groups of 5 animals per cage; n=10/group. 
A 12-hour light cycle (07.00h to 19.00h) and twelve hour dark 
cycle was implemented throughout. The temperature was main-
tained at 22°C +/- 2°C. Mice were maintained on control, CDD or 
MCDD diets (Dyets, Bethlem, PA) for 4 weeks. All efforts were 
made to ameliorate any suffering of animals, in particular, since 
MCDD diets can result in weight loss, mice were weighed and 
their health status checked daily by experienced technicians for the  
4 weeks they remained on the diets. All mice remained well,  
with no concerns about health other than weight loss in the  
MCDD group. After 4 weeks mice were killed by Schedule 1  
(CO

2 
inhalation), and tissues were collected and used for histology 

or snap-frozen and stored at -80C. The diet composition can be 
found in Supplementary Table 1.

Histology staining, triglyceride and SAMe quantification
Livers were removed and sections were fixed in methacarn  
solution (methanol:chloroform:glacial acetic acid; ratio 6:3:1) 
and mounted in paraffin blocks prior to staining with haematoxy-
lin and eosin or picosirius red. Hepatic triglyceride concentration  
was determined by spectrophotometric analysis (BioVision,  
Milpitas, USA) as previously described17. Image analysis for fibro-
sis content was performed in ImageJ (http://imagej.nih.gov/ij/). 
SAMe was quantified by matrix-assisted laser desorption ionization 
mass spectrometry imaging (MALDI-MSI) using the 12T SolariX 
MALDI-FTICR-MS (Bruker Daltonics, MA, US), as previously 
described18.

Reverse transcription and qPCR
RNA was extracted from snap frozen liver tissue using the 
RNeasy kit (Qiagen, Manchester, UK). 800ng of RNA was 
DNAse treated using Promega RQ1 DNAase (Promega,  
Southampton, UK) and reverse transcribed with the High Capac-
ity cDNA Reverse Transcription Kit (Life Technologies, Paisley, 
UK). Quantitive real time PCR was performed using Roche 
Universal Probe Library assays or TaqMan qPCR assays (Life  
Technologies, Paisley, UK) (please see Supplementary Table 2 
for the primer sequences), using the Roche Lightcycler 480 and  
associated Lightcycler 480 software: release 1.5.1.62 (Roche, West 
Susssex, UK). Gene expression is displayed relative to mean of 
three housekeeping genes (Gapdh, Ppia, Ldha).

Transcript analysis
RNA labelling was performed on 500ng RNA using the Illumina 
Total Prep RNA amplification kit (Life Technologies. Paisley, UK) 
and subsequently hybridised to Illumina Mouse-ref6 expression 
bead arrays as per the manufacturer’s instructions, at the Edinburgh 
Clinical Research Facility, Western General Hospital, Edinburgh, 
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UK. Intensity data were generated using a HiScan array scanner 
(Illumina, San Diego, USA) and analysed using iScan Illumina 
software. Data analysis and generation of plots were perfomed 
in RStudio (http://www.rstudio.com), with R version 3.1.2. Data 
import, quality control, normalisation and between array adjustment 
was performed using the Lumi package, and differential expres-
sion was determined using the Limma package (Bioconductor.org). 
Unsupervised clustering was performed using Euclidean distance. 
Where multiple probes mapped to the same gene, the median result 
was used. Data have been uploaded to EBI-Array Express, acces-
sion number E-MTAB-3943.

Pathway analysis
Gene Ontology and pathway enrichment was performed using 
the GOstats package (Bioconductor.org). Investigation of fat han-
dling was performed by interrogating relevant pathways of lipid 
metabolism and insulin signalling from the Kyoto encyclopedia 
for genes and genomes (KEGG) module database (http://www.
genome.jp/kegg/module.html). KEGG module sets ‘M00003 glu-
coneogenesis’, ‘M00086 beta-Oxidation, acyl-CoA synthesis’, 
‘M00083 Fatty acid biosynthesis, elongation’ and ‘mmu_M00089 
Triacylglycerol biosynthesis’, ‘mmu00071 Fatty acid degradation’, 
and KEGG pathways ‘Fat Digestion and Absorption’ and ‘Insulin 
Signalling Pathway’ and ‘Glycerolipid Metabolism’ were used. In 
addition, the family of carboxylesterase (Ces) genes were analysed 
due to their recently discovered role in triglyceride hydrolysis19–21.  
Finally, to dissect the link between lipid metabolism and one car-
bon metabolism, relevant mediators were analysed and mapped to 
known biochemical pathways. 

Cross species comparison
A comparison of transcriptional data from both CDD and  
MCDD was made with published human expression sets of nor-
mal liver, simple steatosis and NASH (GSE48452, E-MEXP-3291),  
and HCC (GSE63898)22–24. Datasets were retrieved from the 
ArrayExpress archive (http://www.ebi.ac.uk/arrayexpress/). Pre-
dicted gene orthologues were determined using homologene via 
the Hugo Gene Nomenclature Committee server (http://www.
genenames.org). For all human NASH, HCC and all mouse  
datasets, a transcriptional threshold of 1.5 with an adjusted p value 
of <0.05 was applied. For human steatosis gene sets alone, the 
fold change transcriptional threshold was reduced to 1.2 to allow 
comparison with the relatively mild transcriptional derangement 
observed. All genes found to be dysregulated at each stage of 
human NAFLD were then examined in the CDD and MCDD data-
sets to determine if expression was altered, and if so, what was the  
direction of change. Genes dysregulated in human and mouse  
models were then depicted in scatter plot analyses with linear 
regression used to compare datasets.

Statistical analysis
Animal model and qPCR statistical analysis was performed using 
Prism GraphPad software (GraphPad Software Inc.). Data were 
routinely analysed for outliers, normalisation and sphericity where 
required. Non-parametric data were either log transformed or a 
non-parametric test used as indicated.

Results
Phenotype
Mice on CDD gained significantly less weight than animals on a 
control diet, whereas MCDD fed mice lost weight from the outset, 
consistent with previous observations17,25 (Figure 1A). At the end 
of the experiment, hepatic triglyceride content was significantly 
higher in both CDD and MCDD groups compared to controls, but 
there was no significant difference between the two interventions  
(Figure 1B). MCDD liver weights were lower in MCDD fed mice 
but not CDD (Figure 1C). Histological analysis revealed severe 
hepatic steatosis in both groups (Figure 1D), with a significant 
increase in hepatic fibrosis in the MCDD group (Figure 1E).

Gene expression changes
Next we carried out analysis of the transcriptome in control,  
CCD or MCDD mouse livers, each n=4. This approach allowed 
us to interrogate ~18,000 transcripts per mouse liver and analysis 
of total datasets revealed a number of transcriptional differences 
between animals. Unsupervised clustering of the 500 most vari-
able transcripts between all animals was sufficient to cluster into 
the different dietary interventions (Figure 2A). Both interven-
tions induced a >1.5-fold differential expression in multiple tran-
scripts when corrected for multiple testing (adjusted P value <0.05,  
Benjamini-Hochberg test) (Figure 2B–D). The top 100 up- and 
down-regulated genes in each group are shown in Supplementary  
Table 3 and Supplementary Table 4. Of the 234 genes dif-
ferentially expressed in CDD, 194 (82.4%) were also dif-
ferentially expressed in MCDD. The additional restriction 
of methioine over and above choline induced the differential  
expression of a further 1032 transcripts (Figure 2B).

Transcripts showing at least a 2-fold change were segregated into 
up-regulated and down-regulated gene lists and examined for  
over-representation within all detected transcripts on the array plat-
form. GO-terms for lipid, sterol, fatty acid and organic acid bio-
synthesis were markedly over-represented in the list of suppressed 
genes. Over-expressed pathways in CDD mice included ‘immune 
system process’ and ‘inflammatory response’. Up-regulated  
pathways in mice on the MCDD diet included ‘positive regulation 
of mitotic cell cycle’ and ‘negative regulation of cell cycle arrest’ 
(Supplementary Figure 1).

The most up-regulated genes in CDD mice included immune  
mediators (Gpnmb, Ly6d); fibrosis mediators (Mmp12, Mmp13); 
and the detoxification enzymes Gsta1 and Gsta2 and the micro-
somal enzyme Cyp4a14. The most suppressed genes in CDD 
included lipid synthesis genes (Sqle, Elovl3, Elovl6, Aacs, Acly, 
Acss2, Acacb), the endopeptidase inhibitor Serpina4-ps1 and the 
multifunctional triglyceride metabolism enzyme Pnpla3. Whilst 
these genes were similarly differentially expressed in MCDD mice, 
volcano plots revealed considerably more severe transcriptional 
derangement in MCDD compared with CDD, both in the number 
and fold change of differentially expressed genes (Figures 2C  
and 2D). Additional genes up-regulated in MCDD included the 
mitotic proteins Cdc20, Nupr1, the metalloproteinase Adam32, the 
inflammatory mediator Slpi and the aldo-ketoreductase Akrb7. 
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Figure 1. Body weight and hepatic lipid content. A) In comparison with control animals, mice on CDD gain less weight whereas those 
on MCDD lose weight. B) Hepatic liver triglyceride content was increased on both CDD and MCDD diets. C) Liver weight was reduced in 
MCDD fed mice but not CDD. D) Liver histology from control, CDD and MCDD mice. H+E = Hematoxylin and Eosin staining showing marked 
macrovesicular steatosis in both CDD and MCDD mice (white arrows). PSR = Picosirius Red stain staining for new collagen formation showing 
increased periportal and interstitial fibrosis in MCDD animals (black arrows). In MCDD liver stained with PSR, insert at higher magnification 
shows increased fibrosis more clearly. E) Quantified fibrosis content (PSR positive staining as a percentage of entire image). n = 10 per group 
for all figures. * P < 0.05 ** P < 0.01 (one way ANOVA with Tukey post hoc test versus control animals). Error bars = +/- SEM.

qPCR validation of array findings was performed for known media-
tors of lipid uptake (Lpl), putative contributary genes to hepatic fat 
accumulation in NAFLD (Scd1, Aacs, Fasn, Mlxipl, Acsl1) and 
hepatic fibrogenesis (Mmp12), and Pdk1 which is an important link 
between insulin signaling and HCC. In addition, we analysed gene 
expression of four members of the Ces family due to their func-
tional role in triglyceride hydrolysis. Gene expression by qPCR was 
consistent with array findings for all genes (Figures 3A and B).

Lipid pathway analysis
We then proceeded to examine pathways of lipid uptake, synthe-
sis and disposal. Differentially expressed genes in relevant KEGG 
pathways in either group are depicted in Figure 4. Expression 
changes were generally greater in MCDD than CDD although they 
occurred in the same direction. Previous studies have suggested an 

increase in lipid uptake with MCDD, with upregulation of some 
of the FATP/solute carrier family 27 genes in association with 
increased sequestration of isotope labelled fatty acids17,26, however 
we noted only the down-regulation of the fatty acid translocase 
Scla27a5 (FATP5) with no change in the other FATP isoforms. We 
did identify marked upregulation of lipoprotein lipase, a key medi-
ator in triglyceride hydrolysis from lipoproteins. In keeping with 
the gene ontology analysis, the global picture suggests suppressed 
hepatic lipid synthesis. Perturbed genes in pathways of fatty acid 
biosynthesis initiation, Acyl-CoA synthesis, fatty acid elongation 
and cholesterol synthesis were almost universally down-regulated.

We then examined dominant pathways of hepatic fatty acid fate 
(triglyceride synthesis, β-oxidation, oxidation and peroxiso-
mal oxidation). These were found to be relatively unaffected, 
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Figure 2. Differential gene expression. A) Transcript profiles of each dietary intervention were sufficiently consistent to cluster by Euclidean 
distance. B) Venn diagram demonstrating high degree of overlap in dysregulated transcripts (≥2 fold change) in each group and the direction 
of transcriptional change. C and D) Volcano plots demonstrating transcriptional changes in CDD (C) and MCDD (D) mice. Dotted lines and 
blue colour represent adjusted P values < 0.05 and two fold differential expression change.
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Figure 3. CDD and MCDD induce changes in the hepatic expression of genes important in lipid metabolism and storage. (A) Microarray 
analysis and (B) qPCR validation of selected genes important in lipid transport, de novo lipogenesis, fibrogenesis, triglyceride hydrolysis and 
insulin signalling. (A) Adjusted P value < 0.05 (FDR) for all samples except those marked σ. (B) * = P < 0.05 versus control, one-way ANOVA 
with Bonferroni post hoc analysis. Error bars = +/- SEM.

apart from an upregulation of the phospatidic acid phosphatases 
Pap2a and Pap2c (which convert phospatidic acids to diacylglyc-
erol) and the peroxisomal fatty acid elongation enzyme Elovl1 in  
MCDD. The Cyp4a family of enzymes broadly catalyse the  
microsomal (ω) oxidation of saturated and unsaturated fatty 

acids and have reported to be upregulated by dietary and drug-
induced hepatic inflammation27–29. Interestingly, isoforms of Cyp4a 
enzymes demonstrated marked bi-directional differential expres-
sion with Cyp4a12a and Cyp4a12b strongly suppressed in CDD 
and MCDD whilst Cyp4a14 was upregulated by 4-fold with both 
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Figure 4. Heatmap depiction of expression changes in KEGG pathways of lipid transport, lipid synthesis and degradation and insulin 
signalling. Up- and down-regulated genes in each dietary intervention versus control animals are demonstrated by colour key. Pathways of 
lipid and cholesterol synthesis are globally suppressed.

diets. Other microsomal oxidation Cyp450 isoforms (Cyp4a10, 
Cyp4a32, Cyp4a29, Cyp4a30b) were unchanged. Cyp2e, which 
has previously been reported to be upregulated in MCDD  
was also unchanged29. In keeping with the theory of impaired  
very-low-density lipoprotein (VLDL) secretion in NAFLD17,30, 

endoplasmic reticulum (ER)-associated mediators of triglyceride 
hydrolysis and VLDL assembly (Pnpla3, Mttp and the carboxy-
lesterase enzymes: Ces1d, Ces1f, Ces3b) were markedly suppressed 
in MCDD, with Pnpla3 also suppressed in CDD. Interestingly, 
expression of the Ces1b isoform was clearly up-regulated in both 
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groups, in contrast to the other members of this class. Apoa4, a lipid 
binding protein involved in the expansion and secretion of VLDL 
particles was significantly induced. Finally, two key intermediar-
ies in hepatic insulin signal transduction (Irs2 and Pdk1) were also 
down-regulated.

One-carbon metabolism
Given the importance of choline and methionine as methyl donors, 
we then proceeded to examine the expression of genes important in 

one-carbon metabolism. There were striking changes in the expres-
sion of genes associated with choline, methionine and phosphati-
dylcholine (PC) metabolism in both interventions, broadly in the 
same direction (Figure 5A). Two pathways demonstrated signifi-
cant down-regulation of key enzymes in MCDD: including genes 
important in the synthesis of PC from choline (Chkb, Pcyt1a)  
and in the conversion of SAMe to homocysteine (Gnmt, Ahcy).  
Furthermore, the expression of enzymes that contribute to the  
clearance of methionine, SAMe and S-adenosylhomocysteine 

Figure 5. CDD and MCDD induce changes in the hepatic expression of genes important in one-carbon metabolism. (A) Transcriptional 
changes in one-carbon metabolism enzymes induced by CDD and MCDD diets (* = adjusted P value < 0.05, Benjamini – Hochberg 
analysis). (B) SAMe levels as measured by MALDI analysis. (* = P< 0.01 one-way ANOVA with Bonferroni post hoc analysis). C) Metabolic 
interactions between methionine cycle, phosphatidylcholine synthesis and DNA methylation. Grey (CDD) and black (MCDD) arrows depict 
expression changes in each pathway. PE=phosphatidylethanolamine, PC=phosphatidylcholine, SAH=S-adenosylhomocysteine, SAMe =  
S-adenosylmethionine. Adapted from Li and Vance 2008.
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(Mthfd1, Gnmt, Achy, Dnmt3b) were suppressed in both groups. 
In MCDD mice, there was also marked upregulation of expression 
of Mat2a, an enzyme necessary for the synthesis of SAMe from 
methionine. In the light of these results, we measured SAMe con-
centrations in each group using MALDI-MSI. This demonstrated 
a significant reduction in SAMe in MCDD mice with no change 
in CDD (Figure 5B). A summary of pathways showing changes in 
enzyme expression is shown in Figure 5C.

Comparison with human NAFLD datasets
We then proceeded to compare our transcriptional findings with 
large published expression sets of three stages of NAFLD: sim-
ple steatosis, NASH and HCC22–24 (Figure 6). While a number of 
microarray studies have been performed in NAFLD31–33 we selected 
datasets from Ahrens et al and Lake et al (accession numbers: 

GSE48452 and E-MEXP-3291), due to the detailed patient and 
histological descriptors (including Kleiner NAFLD activity score) 
confirming NAFLD stage22,23. In addition, these datasets include 
all three NAFLD stages and control samples in the same data 
series, reducing assay variation, and are directly available from the 
ArrayExpress repository. This allowed direct comparison of obese 
subjects with simple steatosis (n=22, NAS score <3), and patients 
with NASH (n = 24, NAS score 3-5) with well characterised con-
trols (n = 37). Details of subject numbers and arrays used are in 
Supplementary Table 5. There are no current datasets available 
from exclusively NAFLD-induced HCC. We therefore used a large 
dataset of mixed Hepatitis C and alcohol-induced HCC samples 
(n=228), which are directly compared with cirrhotic liver samples 
(n=168) (accession number: GSE63898). In this way, we aimed to 
identify the transcriptional changes associated with HCC malignant 

Figure 6. Cross-species comparison of CDD and MCDD transcriptional changes with human stages of NAFLD. Venn diagrams showing 
common and distinct dysregulated gene orthologues between CDD and MCDD livers and human hepatic steatosis (A), human NASH (D) 
and human HCC (G). Scatter plots demonstrate Log2 fold change in common dysregulated orthologues between CDD and MCDD mouse 
livers and corresponding orthologues in human steatosis (B+C), human NASH (E+F) and human HCC (H+I). Trend line, P value and R2 value 
calculated by linear regression analysis.
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transformation and compared these with our findings in murine 
methyl donor deficiency. 

The CDD and MCDD transcriptomes demonstrated very limited 
similarity to all stages of human NAFLD. Only 2 (3%) of genes 
identified as dysregulated in human steatosis were also dysregu-
lated in CDD livers (Figure 6A and B). 26 (40%) of genes identi-
fied as dysregulated in human steatosis were also altered in MCDD 
mice, however changes in expression of the most commonly dys-
regulated genes were not in the same direction and there was no  
significant correlation on linear regression analysis (P = 0.9)  
(Figure 6C). There was a greater but still comparatively small 
overlap in dysregulated gene sets from human NASH studies and 
CDD and MCDD mice (39 (2.8%) and 143 (10.4%) respectively  
(Figure 6D). Those transcripts that were dysregulated in NASH 
and CDD or MCDD mice did demonstrate a weak but signifi-
cant correlation in terms of directional change (P 0.01, R2 0.150 
for CDD and P < 0.001, R2 0.129 for MCDD) (Figure 6E and F).  
Upregulated transcripts common to both CDD mice and  
NASH were almost exclusively involved in inflammatory (Lgals3, 
Cd52, Clec7a) and malignant processes (Tm4sf4, S100A11, 
Gpnmb). These genes were also upregulated in MCDD and NASH, 
in which there were additional changes in fibrosis regulators (Lum, 
Osbpl3, Col6a3, Tgfbi, Tmsb10, Tpm1) and oncogenes (Golm1 
and Emp1). Down-regulated genes common to CDD, MCDD and 
NASH were overrepresented in the GO terms “GO:0006629 Lipid 
metabolic process” and included the master lipid regulator Mlxipl 
and the lipid synthesis enzymes Acat2, Agpat2, Lss, Acacb and 
Mvd. 

When comparing the transcriptome of each dietary intervention 
to HCC, there was again only minimal overlap in perturbed tran-
scripts (81 (1.6%) in CDD and 333 (7.6%) in MCDD) (Figure 6G). 
There was no correlation in terms of directional change between 
CDD and HCC (Figure 6H). Overlapping transcripts between 
MCDD mice and HCC did show a weak and highly significant  
agreement in direction of transcriptional change (R2 0.085, P 
< 0.0001, Figure 6I). Genes which were dysregulated in both  
MCDD and CDD datasets and in HCC were overrepresented  
in GO terms ‘GO:0000278 mitotic cell cycle’, ‘GO:0007599 Hae-
mostasis’ and ‘GO:0070373 negative regulation of ERK1 and ERK2 
cascade’ and include putative HCC oncogenes Cdc20, Osgin1 and 
Cdk1. 

Discussion
It is widely assumed that the steatosis induced by CDD and MCDD 
results from impaired export of VLDLs, which are required for trig-
lyceride clearance from hepatocytes, perhaps because deficiency 
of choline and methionine results in an inability to synthesise the 
major lipid bilayer component phosphatidylcholine (PC) required 
for VLDL synthesis30,34. Our study supports the concept that both 
decreased PC synthesis and impaired VLDL secretion may play a 
role in the hepatic pathology in these models and suggest a potential 
role for the carboxylesterase (Ces) enzymes in mediating the reduc-
tion in VLDL secretion.

The importance of reduced hepatic lipid clearance in MCDD is  
supported by studies demonstrating i) reduced clearance of  
radiolabelled hepatic fatty acids, ii) a decrease in serum VLDL 
concentrations and iii) reduced serum triglyceride accumula-
tion in the context of the peripheral lipase inhibitor typoxalol17,26. 
Additionally, increased hepatic sequestration of radiolabelled fatty 
acids and increased incorporation of 14C into hepatic triglycerides 
suggest that increased lipid uptake and/or increased de novo lipo-
genesis may also occur with MCDD17,26,34. These effects have not 
been reported in rodents exposed to CDD alone17,35; indeed ex vivo 
studies using primary hepatocytes isolated from rats maintained 
on CDD has shown that the presence of methionine is sufficient 
to maintain normal levels of PC synthesis and VLDL export into 
culture media34 and similar experiments in mouse primary hepa-
tocytes demonstrated only a minor reduction in triglyceride export 
and no change in apolipoprotein secretion in choline deficient  
media9. These findings may be due to the presence of an acces-
sory pathway for PC synthesis which is only present in liver, where  
in the absence of choline, PC can be directly synthesised from 
phosphatidylethanolamine (PE) by the enzyme phosphatidyleth-
anolamine N-methyltransferase (PEMT) using methionine as a 
methyl donor. Indeed ~30% of PC is synthesised in this way in 
rodent liver36.

In our study, detailed analysis of the expression of genes in de novo 
lipogenesis pathways in CDD and MCDD strongly suggest an 
appropriate compensatory response to the high hepatic triglyceride 
content, with a clear suppression of key mediators of fatty acid syn-
thesis and elongation and cholesterol synthesis (Figure 7). This sup-
ports the concept that impaired lipid clearance rather than impaired 
de novo lipogenesis is responsible for the hepatic fat accumulation 
that occurs with both diets. Consistent with this, the expression of 
the Ces enzymes (Ces1d, Ces1f, Ces3b) was markedly suppressed 
in MCDD and the expression of the liver predominant Ces isoform, 
Ces3b, was also suppressed in CDD. These enzymes are important 
regulators of VLDL lipid packaging and assembly in the hepatic 
endoplasmic reticulum (ER), and as such a reduction in expression 
would be expected to result in reduced hepatic lipid clearance20. 
Mice lacking liver specific Ces3 (also known as triacylglycerol 
hydrolase) have a reduction in circulating VLDL triglycerides and 
cholesterol levels on a standard chow diet with altered hepatic 
lipid droplet morphology20,37. Furthermore, Ces1 overexpression in 
mice reduces hepatic triglyceride content and plasma glucose lev-
els whereas liver specific knock-down results in increased hepatic  
triglyceride19. Whilst it is unclear why the expression of these 
genes is suppressed in the presence of an increased hepatic lipid 
load (notably in MCDD), we suggest that these models may  
present an opportunity for investigating the mechanism of action 
of these important hepatic lipid clearance enzymes and the screen-
ing of therapeutics that exploit these molecular targets. The  
expression of Patatin-like phospholipase domain containing  
3 (Pnpla3) was also suppressed in both CDD and MCDD mod-
els. The human PNPLA3I148M variant is strongly associated with  
human NAFLD38; humans homozygous for the PNPLA3I148M 
allele are reported to have ~73% more hepatic triglyceride when  
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Figure 7. Transcriptional dysregulation mapped to pathways of lipid transport and metabolism in hepatocytes. Arrows demonstrate 
direction of transcriptional change in CDD (hatched) and MCDD (grey) diets. Pnpla3 and Ces suppression suggest impaired packaging of 
lipid into VLDL particles on the surface of the ER (black star), which may represent a novel site of lipid accumulation.

compared with matched heterozygote controls, and both  
in vivo and in vitro studies suggest that this is due to impaired 
triglyceride hydrolysis and VLDL export39–42. Thus, Pnpla3  
suppression may also contribute to triglyceride accumulation in 
methyl donor deficiency.

Dissection of the interacting pathways involved in choline, methio-
nine and PC metabolism in these models provides further insights 
into the mechanisms by which the murine liver responds to dietary 
choline and methionine deficiency. Whilst choline has a major role 
as a substrate for PC synthesis36, the essential amino acid methio-
nine is also necessary for the methylation of a large variety of sub-
strates including DNA, proteins and lipids and for the synthesis of 
polyamines, and it is also crucial for normal hepatocyte function43. 
Both substrates are important for the maintenance of hepatic SAMe 
levels, which are normally tightly regulated to maintain normal 
hepatic function15, and the direction of transcriptional changes 
with choline and methoinine deficiency strongly suggest a drive 
to maintain hepatic SAMe concentrations. The down-regulation of 
Chkb and Pcyta which are involved in the synthesis of PC from 
choline, coupled with the upregulation of methionine adenosyl-
transferase (Mat2a), which synthesises SAMe from methionine, 
suggest a forward drive to maintain SAMe levels. The concurrent 
down-regulation of Gnmt and Ahcy (which metabolise SAMe and 

SAH respectively) may act as a further cellular buffer to maintain 
SAMe concentrations44. Nevertheless, despite these changes, we 
found reduced levels of hepatic SAMe in MCDD mice in agree-
ment with other studies45, suggesting an inability to maintain SAMe 
levels with severe defciency of both substrates. Thus, the cumula-
tive effect of the observed transcriptional changes in MCDD mice is 
directed at maintaining SAMe concentrations at the expense of PC 
synthesis, with the potential to result in decreased VLDL synthesis. 
Further evidence in support of the importance of SAMe deficiency 
in the pathogenesis of liver disease in MCDD mice is supported by 
the fact that the deleterious effects of MCDD diets can be rescued 
by the administration of SAMe46.

Whilst there are some clear biological similarities between the 
hepatic pathology induced by methyl donor deficiency in rodents 
and human NAFLD/NASH35,47–49,50, there are also a number of 
major differences. In humans, NAFLD is closely associated with 
obesity and insulin resistance, whereas in rodents, CDD results in 
profound hepatic steatosis without insulin resistance17,51 and MCDD 
causes an inflammatory steatohepatitis with fibrogenesis and sig-
nificant weight loss with an increase in peripheral insulin sensi-
tivity30,52. Our transcriptomic analysis also suggests that CDD and 
MCDD produce a hepatic phenotype which is markedly dissimi-
lar to human NAFLD in terms of lipid handling. Whereas human 
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NAFLD is associated with an upregulation of genes important in 
de novo lipogenesis (FASN, MLPXL, ACACA, SREB-1c)53,54, this 
is either not seen, or indeed the reverse is observed in mice main-
tained on CDD/MCDD diets. Furthermore, although some findings 
in human NASH support the concept that NAFLD may result at 
least in part in from an inability to synthesise PC55,56, none of the 
genes dysregulated in the one carbon metabolism pathways of inter-
est in CDD/MCDD were also altered in the human simple steatosis 
or NASH datasets. Although SAMe depletion is a feature of human  
NAFLD and correlates with severity of disease in NAFLD biop-
sies, and oral SAMe preparations are currently under review as a 
treatment for chronic liver disease14,16, mediators of SAMe metabo-
lism were not altered the human statosis or NASH datasets. Some 
enzymes important in SAMe metabolism were dysregulated in 
the human HCC data (upregulated AHCY (LogFC 0.58); down-
regulated BHMT (logFC-1.35), GNMT (LogFC -1.05) and MAT1a 
(logFC -0.97)), however these did not reflect the changes seen in 
the mouse model apart from a similar change in the expression of 
GNMT.

In conclusion, our data suggest a novel alternative mechanism for 
methyl donor deficient liver injury involving impaired VLDL par-
ticle assembly due to suppression of key triglyceride hydrolysis 
proteins. Although these CDD and MCDD models are widely used 
for the study of NAFLD, their translational impact in studies of 
NAFLD/NASH is likely to be limited by fundamental differences in 
the global transcriptional profiles between these models and human 
disease states. Our data do suggest that MCDD may be a useful 

model for studying the development of HCC secondary to the  
premalignant inflammatory steatohepatitis NASH. We suggest that 
there remains an urgent need for novel, more representative models 
of the full spectrum of NAFLD pathology.
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This is an interesting study suggesting a novel mechanism for hepatic lipid accumulation in methyl donor
deficient diets. Non-alcoholic fatty liver disease (NAFLD) is increasingly diagnosed worldwide and is
considered to be the most common liver disorder in Western countries. There is an urgent need for more
studies defining the molecular pathways of NAFLD pathology and representative rodent models that
mimic such a complex disease. For that reason the relevance of this study is clear. The article is well
written, the methods well explained and the results clearly outlined.
The authors are aware that this rodent model lacks key features of NAFLD in humans such as obesity,
type 2 diabetes and insulin resistance. Both methyl donor deficient diets did not induce weight gain and
resulted in hepatic steatosis without insulin resistance.  It is important to appreciate as the authors do in
the introduction, that there are other diet induced obesity mouse models of NASH (e.g. c57BL/6) that can
be induced with an obesogenic diet, although histological features of necroinflammation and fibrosis take
longer to appear. The main advantage of nutrient deficient diets is that the liver injury is occurring more
rapidly and predictably, which has led to widespread use of these dietary deficit models to study NASH.
Whilst it is of importance to describe the transcriptome differences between MCDD/ CDD diets and
human NAFLD, it would also have been of interest to compare MCDD CDD models to diet induced
obesity mouse models as well.
It is also important to recognise that the phenotype of MCDD CDD diets is different from human NAFLD,
with significant weight loss and loss of liver volume, with a hyper catabolic state and lack of insulin
resistance. Figure 1 illustrates clearly the significant weight loss and loss of liver volume in MCDD
compared to CDD, whilst developing more severe liver injury and fibrosis.
The lipid pathways analysis again reveals more marked changed in MCDD than CDD mouse models, but
similarities in suppression of lipid synthesis genes, and increased expression of genes involved in
inflammatory pathways.  
Particular caution should be made with the comparison of transcriptional data from both diets were to
published human genomics data. One concern is that these human gene sets are obtained from liver
biopsies during bariatric surgery, thus typically these patients undergo bariatric surgery following a strict
calorie controlled diet specially designed to reduce liver volume at the time of surgery. This could have a
high influence on the gene analysis results. In addition, another factor that potentially influenced the cross
species comparison was the small study population. Selection of larger, non-bariatric surgery NASH liver
biopsies should be considered for comparison to the human transcriptome reference data. Further
comparison of MCDD / CDD to DIO mouse models and larger human NASH liver transcriptomes would
be valuable.

The authors used a dataset of mixed hepatitis C and alcohol-induced hepatocellular carcinoma (HCC)
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The authors used a dataset of mixed hepatitis C and alcohol-induced hepatocellular carcinoma (HCC)
samples to investigate the malignant processes present in NALFD. However this comparison is
inaccurate, since several mechanisms that are involved in HCV and ALD are not present in
NAFLD-induced HCC. There was no correlation between each dietary intervention to HCC.
In conclusion, the paper suggests a novel mechanism where impaired VLDL assembly due to supressed
triglyceride hydrolysis proteins is involved in methyl donor deficient liver injury. Furthermore, this study
demonstrates the limitations of methyl donor deficient diet rodent models to investigate NAFLD. Further
research is necessary to develop more accurate models that better mimic the disease spectrum, in order
to provide both increased mechanistic understanding and identification of novel therapeutic approaches.
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We read with interest the paper submitted by Lyall and colleagues. Non-Alcoholic Fatty Liver Disease
(NAFLD) is a truly global health issue with significant associated morbidity and mortality, the only currently
available therapeutic intervention is weight loss and exercise. The development of new therapeutics is
hampered by the lack of animal models that have been validated against human disease for both NAFLD
and the associated phenotype; NASH (Non-Alcoholic SteatoHepatitis) and attempts to validate models
are most welcome.  
The paper described the expected steatosis and fibrosis within both the CDD and MCDD cohorts, which

superficially resembles NASH, but as in human disease histo-pathological similarity does not imply
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superficially resembles NASH, but as in human disease histo-pathological similarity does not imply
common aetiology. The authors rightfully comment on the inherent physiological and phenotypic
confounders within the models compared with human NAFLD subjects. NAFLD is principally, albeit not
exclusively, characterised by peripheral insulin resistance, obesity and hepatic accumulation of
triglycerides. Within the MCDD rodents there was significant weight loss and insulin sensitivity, while the
CDD mice whilst developing hepatic steatosis, did not demonstrate insulin resistance. 
Within the gene analysis groups there were small numbers interrogated, likely related to the cost of
analysis being prohibitive. Within this cohort however; there was marked upregulation of "immune system
process" and "inflammatory process" with significant concordance between both groups.  
Interestingly, dominant pathways of hepatic fatty acid fate were relatively unperturbed; although there is
invariably some discordance between murine models and humans, particularly related to peroxisome
metabolism.
Whilst the study attempted to use closely modelled comparators; there were difficult variables with which
the authors had to contend. This relates in particular to the HCC cohort; which comprised of composite
HCC-related to HCV and ALD, which while similar have understated intrinsic differences. The CDD and
MCDD transcriptomes grossly demonstrated very little relation to human NAFLD. Of the genes that bore
commonality, the expression profiles were often oppositional and of no statistical significance.  The
observation of changes in PNPLA3 expression, which is the gene most strongly associated with Human
disease, should not be taken as evidence of similarity between the models and human disease, the
activity of PNPLA3 is not specific to NAFLD but important in regulating lipid handling and appears in other
liver diseases to have an impact on adaptive responses to oxidative stress
It is difficult to extrapolate the findings in relation to s-adenosylmethionine (SAMe). Recent work has
suggest amelioration of steatotic features within certain murine models but it is interesting that there was
no metabolic variability in SAMe mediators. Certainly the work presents a novel mechanism for methyl
donor deficient liver injury in a murine model affecting impaired VLDL particulate assembly as a
consequence of suppressed triglyceride hydrolysis proteins. It does not however; bear significant
transcriptional resemblance to human NAFLD or HCC.
This study does definitively demonstrate that whilst there are common histological features between
murine MCDD, CDD and human NAFLD; there are obviously inherent differences in how these pertain to
transcriptomic expression profiles. This would of course suggest that there are conceivably alternative
pathways which produce identical histological outcomes. Finally, the paper seeks to raise important
concerns about the limitations of both CDD and MCDD models in replicating human NAFLD and efforts
should continue to focus on developing more accurate models for future studies to utilise.
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