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RNA N6-methyladenosine (m6A) modification in tumorigenesis and progression has been
highlighted and discovered in recent years. However, themolecular and clinical implications
of m6A modification in melanoma tumor microenvironment (TME) and immune infiltration
remain largely unknown. Here, we utilized consensusmolecular clusteringwith nonnegative
matrix factorization based on the melanoma transcriptomic profiles of 23m6A regulators to
determine the m6A modification clusters and m6A-related gene signature. Three distinct
m6A modification patterns (m6A-C1, C2, and C3), which are characterized by specific m6A
regulator expression, survival outcomes, and biological pathways, were identified in more
than 1,000melanoma samples. The immune profile analyses showed that these three m6A
modification subtypes were highly consistent with the three known immune phenotypes:
immune-desert (C1), immune-excluded (C2), and immune-inflamed (C3). Tumor digital
cytometry (CIBERSORT, ssGSEA) algorithm revealed an upregulated infiltration of CD8+

T cell and NK cell in m6A-C3 subtype. An m6A scoring scheme calculated by principal
component of m6A signatures stratified melanoma patients into high- and low-m6sig score
subgroups; a high scorewas significantly associatedwith prolonged survival and enhanced
immune infiltration. Furthermore, fewer somatic copy number alternations (SCNA) and PD-
L1 expression were found in patients with high m6Sig score. In addition, patients with high
m6Sig score demonstrated marked immune responses and durable clinical benefits in two
independent immunotherapy cohorts. Overall, this study indicated that m6A modification is
involved in melanoma tumor microenvironment immune regulation and contributes to
formation of tumor immunogenicity. Comprehensive evaluation of the m6A modification
pattern of individual tumors will provide more insights into molecular mechanisms of TME
characterization and promote more effective personalized biotherapy strategies.

Keywords: skin cutaneousmelanoma, methylation of N6 adenosinemodification, tumor microenvironment, immune
profiles, immunotherapy

Edited by:
Yicheng Long,

Cornell University, United States

Reviewed by:
Cai Chen,

Merck (United States), United States
Xueqian Zhuang,

Memorial Sloan Kettering Cancer
Center, United States

Mingqiang Wang,
Stanford University, United States

*Correspondence:
Xiaokang Li

silukangkang@163.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Epigenomics and Epigenetics,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 19 August 2021
Accepted: 25 October 2021

Published: 21 December 2021

Citation:
Du F, Li H, Li Y, Liu Y, Li X, Dang N,
Chu Q, Yan J, Fang Z, Wu H, Zhang Z,
Zhu X and Li X (2021) Identification of

m6A Regulator-Associated
Methylation Modification Clusters and

Immune Profiles in Melanoma.
Front. Cell Dev. Biol. 9:761134.
doi: 10.3389/fcell.2021.761134

Frontiers in Cell and Developmental Biology | www.frontiersin.org December 2021 | Volume 9 | Article 7611341

ORIGINAL RESEARCH
published: 21 December 2021
doi: 10.3389/fcell.2021.761134

http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2021.761134&domain=pdf&date_stamp=2021-12-21
https://www.frontiersin.org/articles/10.3389/fcell.2021.761134/full
https://www.frontiersin.org/articles/10.3389/fcell.2021.761134/full
https://www.frontiersin.org/articles/10.3389/fcell.2021.761134/full
https://www.frontiersin.org/articles/10.3389/fcell.2021.761134/full
https://www.frontiersin.org/articles/10.3389/fcell.2021.761134/full
http://creativecommons.org/licenses/by/4.0/
mailto:silukangkang@163.com
https://doi.org/10.3389/fcell.2021.761134
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2021.761134


INTRODUCTION

Methylation of N6 adenosine (m6A) is a revisable RNA
modification process that is widely present in various types
of common RNAs, such as mRNAs, lncRNAs, and miRNAs,
and essential for a variety of physiological processes and
disease progression (Zhao et al., 2017; Zaccara et al., 2019).
The m6A modification is manipulated by three regulatory
proteins, methyltransferases (“writers”), demethylases
(“erasers”), and binding proteins (“reader”), and this
modification process is dynamic and reversible (He et al.,
2019). Increasing evidence has identified the important
roles m6A modifications play in various cellular processes
and in cancer progression through regulating RNA stability,
mRNA splicing and translation, and microRNA processing (Li
et al., 2019; Chen et al., 2020a). Meanwhile, a large number of
studies have shown that the process of tumor development and
abnormal immune regulation of the body are associated with
abnormal expression of m6A-modified regulatory proteins
(Chen et al., 2019a; Shulman and Stern-Ginossar, 2020;
Wang et al., 2020). Therefore, systematic and
comprehensive explanation of tumor heterogeneity brought
about by genetic variation and epigenetic regulation will
facilitate the development and advancement of new
therapeutic technologies based on RNA methylation
(Martínez-Riaño et al., 2019).

Malignant melanoma is a highly metastatic cancer caused
by abnormal transformation of pigment cells and melanocytes
resulting from prolonged exposure to ultraviolet radiation
(Mazurkiewicz et al., 2021). Since melanoma is curable in
its initial stages, early diagnosis of this disease is crucial
(Eddy and Chen, 2020). Global data show that patients with
melanoma who develop metastases have a 5-years survival rate
of only 25% due to the difficulty of treatment (Eddy and Chen,
2020). Multiple novel targeted therapies targeting melanoma-
specific markers have been developed in recent years; however,
most patients often show lower effectiveness or shorter
duration to these treatments (Mazurkiewicz et al., 2021).
Among the multiple factors that influence treatment
outcome, the tumor microenvironment might account for a
major cause in the melanoma progression. The composition of
the microenvironment in melanoma is relatively complex,
which includes adventitial cells (keratin-forming cells,
cancer-associated fibroblasts CAF, adipocytes and
infiltrating immune cells), extracellular matrix components,
and tumor-specific physicochemical properties (Mazurkiewicz
et al., 2021). With the increased understanding of the tumor
microenvironment, the key immune cell subsets in
tumorigenesis and metastasis were also gradually
recognized. The evaluation of immune infiltration based on
the characteristics of TME was supposed as a key technique to
infer the pre-existing antitumor immunity and predict patient
response to immune checkpoint inhibitor therapy (Binnewies
et al., 2018; Galon and Bruni, 2019; Li et al., 2020a). Recently,
the new concept of “immune context” on tumor, which
classifies the TME characteristics of melanoma into three
categories, i.e., hot, excluded, and cold, also implies three

different types of effective treatment options (Hegde et al.,
2016; Chen and Mellman, 2017). In summary, systematic and
comprehensive dissection of the components of the tumor
microenvironment of melanoma and thus identification of the
corresponding tumor immune phenotype is a feasible and
reliable means to guide immunotherapy and predict the
effectiveness of immunotherapy (Mariathasan et al., 2018;
Pagès et al., 2018).

Recent studies suggest an association between TME
immune cell infiltration and m6A modification; however,
this does not appear to be fully explained by RNA
degradation mechanisms (Zhao et al., 2017; Chen et al.,
2019a; He et al., 2019). It has been reported that YTHDF1
can promote lysozyme in dendritic cells to regulate the
degradation of tumor neoantigens, and the key to this
process is that YTHDF1 can accurately recognize the m6A
modification process of tumor neoantigens and enhance their
translation level (Han et al., 2019). When YTHDF1 is absent in
dendritic cells, this leads to enhanced cross-presentation of
antigens and enhanced cross-stimulation of CD8+ T cells. FTO
has been reported to be associated with cytotoxic effects in
colon cells by inhibiting YTHDF2-mediated RNA decay,
which in turn promotes PD-1, CXCR4, and SOX10, and
suppresses interferon-gamma (IFN-γ) expression (Yang
et al., 2019). This result was confirmed in an in vitro
experiment. When FTO is knocked down exogenously, IFN-
γ is substantially upregulated, which in turn makes colon
cancer mice sensitive to anti-PD-1 drug treatment.
METTL3, which also regulates mRNA m6A modifications,
regulates the dynamic balance of CD40, CD80, and Snail
(Lewinska et al., 2017; Wang et al., 2019). Unfortunately,
due to the unsophisticated nature of the current technology,
the studies mentioned are all on one or two m6A regulatory
molecules, and the antitumor effects produced by these
regulatory molecules are not the contribution of one or
several molecules, but rather they work together to regulate
the m6A modification process in the body and thus affect
cancer development and metastasis. Fortunately, the explosive
growth on transcriptomics and genomics sequencing database
provides a rich resource for a comprehensive and integrated
analysis of the role of m6A-related molecules in cancer and
immune regulation (Finotello and Trajanoski, 2018; Chen
et al., 2020b). Thus, deepening our understanding of cancer
immunity and developing new targets for cancer
immunotherapy requires a systematic and comprehensive
dissection of the TME immune cell infiltration profile
regulated by m6A-related molecules.

In this study, we integrated the transcriptome and genome
sequencing data from 1,020melanoma samples across TCGA and
GEO databases, and systematically analyzed and discovered the
direct and specific association between m6A modification
patterns and TME immune cell infiltration features in
melanoma. Using non-negative matrix factorization (NMF)
clustering analysis, we identified three novel m6A modification
patterns with TME features highly consistent with three
previously reported immune phenotypes: immune
inflammatory, immune rejection, and immune desert
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phenotypes (Chen and Mellman, 2017). Not only that, we
quantified the m6A modification clusters of individualized
tumors in the form of scores, which can be used to predict the
effectiveness of patients to ICI therapy. Our findings suggest that
m6A modifications play a crucial role in tumor immune
microenvironment signature formation and melanoma
treatment planning.

MATERIALS AND METHODS

Collect and Preprocess of Publicly
Attainable Expression Datasets
Gene expression data and clinical information for melanoma
patient samples were obtained from the GEO database (https://
www.ncbi.nlm.nih.gov/geo/) and TCGA database (https://portal.
gdc.cancer.gov/), which are publicly and freely available. We
screened the melanoma dataset and eventually included a total
of 1,020 patients in the study for subsequent analysis, including the
GSE19234, GSE22154, GSE50509, GSE59455, GSE65904,
GSE22153, GSE54437, and TCGA-SCKM datasets. For data
pre-processing, we downloaded the “CEL” files from the GEO
database, relying on the “affy” and “simpleaffy” R packages for
background correction and normalization, while the RNA
sequencing data from the TCGA database is downloaded in
normalized FPKM format and then converted to transcripts per
kilobase million (TPM) format. With reference to previous
experience, the “ComBat” method of the “sva” R package was
used to reduce the batch effect between different datasets, which
was mainly a problem for datasets from the GEO database (Dai
et al., 2018). Both somatic mutation data and copy number
variation data of TCGA-SCKM were curated from the UCSC
Xena database and Davoli et al. (Davoli et al., 2017). The copy
number variation of 23m6A regulators in human chromosomes
was mapped by the “RCircos” R package. For non-synonymous
mutations such as frameshift mutations, inflammatory mutations,
missensemutations, nonsensemutations, and splice site mutations,
numbers represent the tumor mutational load (TML).
Supplementary Table S1 presents the clinical information of
the samples from the meta-GEO and TCGA-SKCM databases.

Nonnegative Matrix Factorization
Clustering Analysis of 23 m6A Regulators
A literature review of m6A methylation modifications revealed that
there are now 23 recognized m6A regulators, which constitute the
modification pattern of m6A methylation (Zhao et al., 2017; Chen
et al., 2019a; He et al., 2019; Zaccara et al., 2019). Specifically, eight
writers include CBLL1, KIAA1429, METTL14, METTL3, RBM15,
RBM15B, WTAP, and ZC3H13; two erasers include ALKBH5 and
FTO; 13 readers include ELAVL1, FMR1,HNRNPA2B1, HNRNPC,
IGF2BP1, IGF2BP2, IGF2BP3, LRPPRC, YTHDC1, YTHDC2,
YTHDF1, YTHDF2, and YTHDF3; and 23 of them shared the
key task of m6A methylation modification. Using non-negative
matrix decomposition (NMF), we performed a clustering analysis
of the 23 m6A regulators based on their expression, which could
identify different types ofm6Amodification patterns. The expression

matrix A of the 23 m6A regulators was first split into non-negative
matricesW andH, as A ≈WH, and then the matrix A was subjected
to repeated factorization, and finally the output data was
summarized, which gave the clustering results of the melanoma
samples. It is crucial to consider factors such as covariance,
dispersion, and silhouette coefficient to determine the optimal
number of clustering groups. The “NMF” R package to perform
the clustering analysis used the “brunet” and “200 nruns” algorithms.

Functional Analysis and Annotation
The Hallmarker gene set (Subramanian et al., 2005) andMariathasan
et al. (Mariathasan et al., 2018) constructed gene set were used as well-
defined biometric backgrounds for gene set variation analysis (GSVA)
with “GSVA” R package (Hänzelmann et al., 2013), which was
designed to explore the variation in biological processes across
different m6A modification patterns. In the gene ontology (GO)
analysis, we annotated the functions of 23m6A regulators under
three entries of cellular component (CC), molecular function (MF),
and biological process (BP), which was done using the
“clusterProfiler” R package. For GSVA and GO analysis, the cut-
off value was set to a false discovery rate (FDR) < 0.01.

Estimation of Immune Cell Infiltration
In quantifying the relative abundance of 28 immune cell types
curated by Charoentong et al. in the tumor microenvironment,
we refer to recent studies using the single sample gene enrichment
analysis (ssGSEA) method, which well marks the specific
functional gene panels of each immune cell type (Charoentong
et al., 2017; Jia et al., 2018). As in the previous study (Chen et al.,
2020a), we expressed the relative abundance of various immune
cell types in the form of enrichment scores, and they were
normalized to a uniform distribution from 0 to 1. In terms of
biosimilarity, infiltrating immune cells were evaluated and acted
upon using multidimensional scaling (MDS) and Gaussian fitting
models, and moreover, the deconvolution approach CIBERSORT
(Newman et al., 2019) (http://cibersort.stanford.edu/) was then
used to estimate the abundance of 22 different subpopulations of
leukocytes, which have melanoma gene expression profiles.

Quantification of Immune Response
Predictor
T cell-inflamed gene expression profile (GEP) is a superior
predictor of response to anti-PD-1 regimens, which contained
IFN-γ-responsive genes related to antigen presentation, cytotoxic
activity, and adaptive immune resistance (Ayers et al., 2017). The T
cell-inflamed scores were calculated and weighted by averaging of
the included genes for the IFN-γ (6-gene) and expanded immune
(18-gene) signatures. Inmodeling different types of tumor immune
evasionmechanisms, we drew on the Tumor Immune Dysfunction
and Exclusion (TIDE) algorithm proposed by Jiang et al. (Jiang
et al., 2018). This algorithm integrates the dysfunction of tumor-
infiltrating toxic T lymphocytes (CTLs) and rejection of CTLs by
immunosuppressive factors. The higher TIDE score implies greater
chance of immune escape of tumor cells and represents a possible
poor outcome of treatment with ICIs. Themethod of Estimation of
Stromal and Immune cells in MAlignant Tumor tissues using
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Expression data (ESTIMATE) (Yoshihara et al., 2013) was adopted
to calculate the immune score of tumors, and this algorithm can be
better based on transcriptional profiles to estimate the cellularity of
the tumor and the purity of the tumor. The level of infiltrating
immune and stromal cells is the basis for tumor purity, which is
predicted by the immune score of the tumor. In detail, a high
immune score of a tumor is an indication of a high infiltration of
immune cells in the tumor tissue, or a low tumor purity.

Capture of Significantly Mutated Genes and
Tumor Mutation Features
The MutSigCV algorithm was used to identify significantly
mutated genes (SMGs) (Lawrence et al., 2013; Chen et al.,
2019b), which takes into account the specific background
mutation rate in the mutation context before evaluating the
significant enrichment of non-resting somatic mutations in a
gene. We considered q < 0.1 as statistically significant, and these
genes needed to be certified in the Cancer Cell Line Encyclopedia
of Humans (CCLE) (Ghandi et al., 2019) to be defined as SMGs
(Chen et al., 2020c) (Supplementary Table S2). The “maftools” R
package (Mayakonda et al., 2018) was used to characterize genes
in the TCGA-SKCM cohort that underwent m6A modification,
the mutation details of SMGs, and the capture of mutational
features in the genomic data. The ExtractSignatures function
based on Bayesian variation non-negative matrix decomposition
was used for model construction; specifically, using this function,
we split the mutation portrait matrix into two non-negative
matrices and noted as “signature” and “contribution,” where
“signature” represents the mutation process and “contribution”
represents the corresponding mutation activities (Chong et al.,
2021a). Better still, the SignatureEnrichment function allows
determining the optimal number of extracted mutation
features and assigning them appropriately to each sample. For
comparison and annotation, using the Catalogue of Somatic
Mutations in Cancer (COSMIC) (Kandoth et al., 2013) as a
reference, we performed a cosine similarity analysis on the
extracted melanoma mutation portraits.

Identify Differentially Expressed Genes
Between Different m6A Modification
Phenotypes
Patients were classified into three clusters of m6A modification
patterns using a consensus clustering algorithm, and then the
“limma” R package (Ritchie et al., 2015) was used to find
differentially expressed genes between groups. Voom
normalized data were then subjected to “lmFit” and “eBayes”
function algorithms, which in turn allowed the calculation of
specific data for differential expression. In this process, we set
adjusted p-values <0.001 as statistically significant differences.

Construct the m6Sig Score System
Based on principal component analysis (PCA), we constructed an
m6A score system to quantify the level of m6A modifications in
specific patients. According toDEGs, they are the intersecting parts
of different m6A clusters, and we analyzed the prognostic impact of

each gene on melanoma patients with the help of univariate Cox
regression models. Deeper feature selection was performed for
genes that significantly affect the prognosis of melanoma patients,
and this process was computed by the recursive feature elimination
(RFE) method of random forest and the 10-fold cross-validation
method included in the “caret” R package. Further, we obtained the
gene expression profiles based on the above steps, and the principal
components 1 and 2 obtained from PCA analysis were the basis of
our feature score. The specific formula for this score system is
referred to a previous study (Zhang et al., 2020; Chong et al.,
2021b), m6Sig score � ∑(PC1i + PC2i).

Collect Genomic and Clinical Information
for the ICI Cohort
The gene expression profiles of patients treated with ICI were
retrieved in publicly available databases, focusing on matching
with clinical information. Ultimately, we included metastatic
melanoma treated with PD-1 (nivolumab or pembrolizumab)
or PD-1 combined with CTLA-4 (ipilimumab) (Liu et al., 2019),
and metastatic urothelial carcinoma (mUC) treated with
atezolizumab (anti-PD-L1 mcAb) (Mariathasan et al., 2018) in
this study. The gene expression profiles of the samples were
converted in TPM format.

Statistical Analyses
All statistical analyses in the study were performed with R 3.6.1.
Student’s t-test was performed for quantitative data conforming to
a normal distribution, andWilcoxon rank sum test was performed
for non-normally distributed data. When more than two sets of
analyses were performed, the nonparametric test was the Kruskal-
Wallis test, while the parametric test was the analysis of variance
(Hazra and Gogtay, 2016). The Fisher exact test was used for the
calculation of contingency rates. Kaplan-Meier survival analysis
and Cox regression analysis were performed using the “Survminer”
package, and the m6Sig score subgroup stratum was “survival”
package with the surv-cutpoint function completed. “timeROC”
package completed the evaluation of the m6Sig score model, which
plotted the corresponding subject operating characteristic curve
(ROC) and calculated the area under the curve (AUC). In
analyzing the relationship between patient’s clinical
characteristics and the m6Sig score system, multivariate
regression models were used to adjust for confounding factors
in this. p < 0.05 was considered as statistical significance, and the
Benjamini-Hochberg method was used to perform multiple
hypothesis testing for false discovery rate (FDR) (Love et al., 2014).

RESULTS

Mapping Genetic Variants of m6A
Regulators in Melanoma
In our study, we explored the possible physiological roles of
23 m6A methylation-regulated genes in melanoma, including the
“writers” CBLL1, KIAA1429, METTL14, METTL3, RBM15,
RBM15B, WTAP, and ZC3H13; the “readers” ELAVL1, FMR1,
HNRNPA2B1, HNRNPC, IGF2BP1, IGF2BP2, IGF2BP3,

Frontiers in Cell and Developmental Biology | www.frontiersin.org December 2021 | Volume 9 | Article 7611344

Du et al. Identification m6A-Modification Clusters in Melanoma

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


FIGURE 1 | The landscape of genetic alterations of m6A regulators in melanoma. (A) Visualization of the Metascape enrichment network presenting similarities
within and between clusters of terms. The same colors represent the same clustering terms. (B) Mutations in 23 m6A regulators were present in 133 of 467 melanoma
patients (28.48%), with the most prevalent missense mutations, nonsense mutations, and frame shift deletion mutations. The numbers on the right side are
representative of the mutation frequency of each regulator. Each column is one patient. (C) Visualization of co-occurrence and exclusion of 23 m6A regulator
mutations. Green color represents co-occurrence, and purple color represents exclusion. (D) CNV mutations are present in all 23 m6A regulators. Column heights

(Continued )
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LRPPRC, YTHDC1, YTHDC2, YTHDF1, YTHDF2, and
YTHDF3; and the “erasers” ALKBH5 and FTO. These m6A
regulators not only recognize, remove, and add m6A
modification sites but also, as revealed by GO enrichment
analysis and Metascape analysis, can actually alter biological
processes, such as regulating mRNA stability, RNA
modifications, and RNA metabolism (Figure 1A). Among 467
melanoma patient samples with genomic sequencing, 133
(28.48%) had somatic mutations in m6A regulators, which
mainly included missense mutations, nonsense mutations, and
code-shifting mutations (Figure 1B). KIAA1429 had the highest
mutation frequency, followed closely by IGF2BP1, and the next in
the gradient were YTHDC1, LRPPRC, YTHDC2, ZC3H13,
YTHDF1, and IGF2BP3. Interestingly, IGF2BP1, ZC3H13, and
YTHDF1 had only missense mutations in the relatively high
mutation frequencies. Analysis of the co-mutation profiles of the
23 m6A regulators revealed significant co-mutations between
FMR1 and IGF2BP1, IGF2BP2 and IGF2BP1, ZC3H13 and
LRPPRC, YTHDF3 and RBM15, ALKBH5 and METTL3, and
ALKBH5 and FMR1 (Figure 1C). When performing CNV
mutation analysis, we concluded that there was widespread
CNV amplification in IGF2BP1, YTHDF1, and KIAA1429,
while CNV deletion was more widespread in WTAP and
RBM15 (Figure 1D). Comparing primary melanoma and
metastases, we found that ALKBH5, ELAVL1, FMR1,
HNRNPA2B1, HNRNPC, IGF2BP1/2/3, KIAA1429, LRPPRC,
RBM15, YTHDC1/2, YTHDF1/3, and ZC3H13 were significantly
upregulated in metastases, while RBM15B and METTL3 were
significantly upregulated in primary melanoma (Figure 1E). The
expression of m6A regulators with aberrant CNV amplification
was also upregulated in metastases compared to primary
melanoma (ALKBH5, FMR1, HNRNPA2B1, IGF2BP1/2/3,
KIAA1429, YTHDC1, YTHDF1/3), and conversely, m6A
regulators with aberrant CNV deletion were also
downregulated (METTL3, RBM15B, YTHDC2), which are
obtained by combining Figure 1D. The m6A regulator
network mapped in Figure 1F showed the interaction
relationships between 23 molecules that are interconnected
and influence each other, which further modulates the
prognosis of melanoma patients. This implies that there is a
complex and well-organized crossover network between the
regulators of writers, readers, and erasers, and this network
allows the m6A modification pattern to further refine and take
effect, influencing the development and metastasis of melanoma.
Using the Spearman correlation test, we found that there is a
mutual regulatory relationship between these m6A regulators.
Interestingly, ALKBH5 was negatively correlated with most of the
m6A regulators, while FMR1 and HNRNPA2B1 were positively
correlated with most of them (Supplementary Figure S1A). We

further analyzed the association between tumor purity and
23 m6A modification regulators (Figure 1G) and found that
most of the m6A regulators were positively correlated with
tumor cell purity, whereas WTAP has a negative association,
suggesting that WTAP was enriched in non-tumor cell
components. Forest plots with Cox regression model were
employed to speculate the relationship between m6A
regulators and the prognosis of melanoma patients. We found
that samples with high expression of WTAP, FMR1, and
METTL14 were associated with improved overall survival,
while an opposite tendency was observed in RBM15B and
ELAVL1 (Supplementary Figure S1B). Taken together, we
integrated the genomic and transcriptomic landscapes of m6A
regulators in melanoma, and noticed the changes in the
expression levels and genetic variation of m6A regulators
driving the development and progression of melanoma.

Them6AMethylationModification Pattern Consisting of 23m6A
Regulators Is Associated with Prognosis in Melanoma Patients.

Further, we stratified melanoma samples into three m6A
modification patterns according to the expression of m6A
regulators, a process based on consensus clustering analysis of
the NMF algorithm (Supplementary Figure S2A,C). We named
the three clusters as m6A-C1, m6A-C2, and m6A-C3, respectively
(Figure 2A). The samples of m6A-C2 cluster had significantly
different from the other two groups with regard to ELAVL1,
RBM15B, YTHDF1/2/3, IGF2BP1/2/3, WTAP, METTL3,
ZC3H13, RBM15, HNRNPA2B1, CBLL1, and LRPPRC.
Besides, YTHDF1, IGF2BP3, METTL3, ZC3H13, and LRPPRC
were significantly upregulated in the m6A-C1 subtype, WTAP
and RBM15 were significantly upregulated in the m6A-C3
subtype, while ELAVL1, IGF2BP3, ZC3H13, and LRPPRC
were significantly decreased in the m6A-C3 subtype. This
conclusion was validated in the meta-GEO cohort consisting
of five datasets, which include GSE19234, GSE22154, GSE50509,
GSE59455, and GSE65904 (Supplementary Figure S2B).
Patients in the m6A-C3 cluster have a significant survival
advantage than other clusters in both TCGA and meta-GEO
cohort (log-rank test, TCGA: p < 0.0001, Figure 2B; meta-GEO:
p � 0.0015, Figure 2D). This model remained significant after
multivariate Cox proportional risk regression analysis adjusted
for clinicopathological factors of age, gender, and stage (TCGA:
HR � 0.34 (0.21–0.51), p < 0.001; meta-GEO: HR � 0.51
(0.35–0.76), p < 0.001; Figures 2C,E).

Characterization of the Immune Landscape
With Three m6A Modification Clusters
We performed GSVA analysis against on Hallmarker gene set in an
attempt to discover differences in the biological behavior of the

FIGURE 1 | represent mutation frequencies. Pink dots represent loss mutations, and blue dots represent gain mutations. (E) Differential expression of mRNA of 23 m6A
regulators in metastatic melanoma and primary melanoma. * represents p-values in statistics (*p < 0.05; **p < 0.01; ***p < 0.001). (F) Interaction network of the three m6A
regulators in melanoma. Different colors represent different types of m6A regulators; green is a reader, blue is a writer, and red is an eraser. The connecting lines represent
the correlation matrix; pink is positive correlation, while blue is negative correlation. Larger circles represent smaller p-values for prognostic analysis, and the shiny green
dot in the center of the circle represents protective factors, while the black dot represents risk factors. (G) Visualization of tumor purity and 23 m6A regulator. Red color
represents co-occurrence, and blue color represents exclusion.
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FIGURE 2 |m6Amethylation modification cluster and unsupervised clustering. (A) Results of unsupervised clustering of gene expression of 23 m6A moderators in
the TCGA-SKCM cohort. (B) Kaplan-Meier curves of overall survival (OS) for different m6A clusters in the TCGA cohort. (C) Subgroup analysis for estimating clinical
prognostic value of m6A modification subtype after adjusting for age, gender, and stage in the TCGA cohort. (D) Kaplan-Meier curves of overall survival (OS) for different
m6A clusters in the meta-GEO cohort. (E) Subgroup analysis for estimating clinical prognostic value of m6A modification subtype after adjusting for age, gender,
and stage in the meta-GEO cohort.
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FIGURE 3 | TME characteristics in distinct m6A modification clusters. (A) Heatmap of enriched pathways based on Hallmark gene set corresponding to different
m6A modification clusters. (B) Relative distribution of six immune subtype in three different m6A clusters. (C) Expression level of immune checkpoint-related key genes
among the three m6A clusters. (D) Association between TCGA genomic molecular typing and m6A clusters. (E) Association between TCGA transcriptome molecular
typing and m6A clusters. (F) Relative infiltration level of 28 immune cell subsets among three distinct m6A modification clusters.
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three m6A modification clusters. As shown in Figure 3A, m6A-C1
cluster was associated with cell proliferation and differentiation and
glucose transport, including oxidative phosphorylation, PI3K/AKT/
mTOR signaling, DNA repair, and glycolysis. m6A-C2 cluster is
distinguished by cancer and immune surveillance, involving
epithelial mesenchymal transition, TGF-β signal, TNF-α
signaling via NF-κB, and IL2/STAT5 signaling. As for m6A-C3,
it was significantly enriched in signaling pathways related to
inflammation and innate immune response, such as interferon-γ
response, interferon-α response, allograft rejection, IL6/JAK/
STAT3 signaling, and inflammatory response. The GSVA results
further corroborate that these three m6A methylation modification
clusters are directly related to different molecular mechanism, and
m6A-C3 was strongly associated with antitumor immunity. In
addition, we further evaluated the immune enrichment level of
m6A methylation modification clusters using the ImmuneScore
model constructed by ESTIMATE algorithm. The results showed
significant differences in different clusters in both TCGA-SKCM
cohort and the meta-GEO cohort (Supplementary Figure S3A,B).
There is a coherence between the immune activation and survival
time, which cluster with higher ImmuneScore having greater
survival benefit for patients, like m6A-C3 in the TCGA-SKCM
cohort and meta-GEO cohort. Thorsson et al. (Thorsson et al.,
2018) divided the tumor immune landscape into six immune
subtypes, represented with immune infiltration and stromal
activation. Consistent with our findings, the m6A-C1 cluster is
more inclined to the “Proliferation” and “Wound Healing”
subtypes, m6A-C2 is highly expressed in “TGF-β Response,” and
m6A-C3 is mainly dominated by “Lymphocyte Infiltration
Signature Score,” “Macrophage Regulation,” and “IFN-γ
Response” subtypes (Figure 3B). In addition, we performed a
comparative analysis of immune checkpoint-related key genes
(IDO1, CD274, TIM-3, PDCD1, CTLA-4, LAG3, and
PDCD1LG2) among the three clusters. The results indicated the
expression levels of seven key genes differ significantly between
the three clusters, and the highest expression was all observed in
the m6A-C3 cluster. TCGA-SKCM has established molecular
typing based on the genomic landscape and transcriptomic
profile. Although the proportion of m6A modification clusters
among different mutational-based molecular subtype (BRAF-
Mut, RAS-Mut, NF1-Mut, and Triple Negative) were not
significant (Figure 3D), an obvious difference was found in
transcriptomic-based subtype across three m6A modification
clusters (Figure 3E). Samples with TCGA-Immune subtype
account for 93.1% of the m6A-C3 cluster, followed by 64.8%
in m6A-C2 subtype. However, the m6A-C1 were dominated by
TCGA-Keratin (55.7%) and TCGA-MIFT-low (32.8%) subtype,
which demonstrated the desert-related immune phenotype in
m6A-C1. It is feasible to determine immune cell type abundance
and expression from bulk tissues with digital cytometry (Newman
et al., 2019). We also compared the immune cell infiltration level
among the three m6A modification clusters in Figure 3F. The
m6A-C1 cluster showed more myeloid-derived suppressor cell
(MDSC), regulatory T cells, and T helper cell infiltration, while
the m6A-C3 cluster exhibited infiltration of most types of T cells,
natural killer cells, and dendritic cells. This suggested that the
lower survival risk of melanoma patients with m6A-C3 clusters

may be due to effective activation of the pre-existing immunity to
inhibit tumor growth and malignant progression. Likewise,
evaluation on immune cell abundance by CIBERSORT
algorithm also corroborate our conclusions (Supplementary
Figure S3C). In addition, the association between each m6A
regulator and immune cell infiltration was also explored. As
expressed in Supplementary Figure S3D, upregulation of
WTAP and ALKBH5 was positively correlated with enhanced
immune infiltration, while high expression of LRPPRC,METTL3,
YTHDF1/3, and ZC3H13 was mostly associated with
immunosuppression.

Differentially Expressed Genes Associated
With m6A Methylation Modifications in
Melanoma
Since RNA N6-methyladenosine (m6A) modification plays an
important role in post-transcriptional regulation, we further
examine the potential impact on gene expression change of each
m6A modification cluster in melanoma. To clarify these queries, we
employed the Bayesian-based method to identify differentially
expressed genes (DEGs) that are differentially regulated across
the three m6A methylation modification clusters. As illustrated in
the Venn diagram of Figure 4A, there are a total of 636 DEGs which
may play the crucial role in distinguishing the three m6A
modification clusters (Supplementary Table S3). Based on these
636 representative DEGs of m6A signature, we further stratified the
melanoma samples into three well typed transcriptomic phenotypes
(denoted as m6Sig-SI, m6Sig-SII, and m6Sig-SIII) by unsupervised
consensus clustering analysis (Supplementary Figure S4A).We also
compared the m6A clusters and m6A signature-derived subtype,
and found a significant association among these two-stratification
method (Supplementary Table S4, adjusted χ2 test, p < 0.0001).
Patients in m6Sig-SII were proved to be associated to better
prognosis, while m6Sig-SI had a worse outcome (p < 0.001, log-
rank test; Figure 4B). PD-L1 and ImmmuneScore were also highly
expressed in m6Sig-SII subtype than the other subtypes (p < 0.0001,
Kruskal Wallis test; Figures 4C,D). Mariathasan et al. (Mariathasan
et al., 2018) summarized and formed a suit of gene set for assessing
the activation of immune and stroma signaling pathway, whereby we
adopted to evaluate the m6Sig signature. Them6Sig-SI subgroup was
enriched in cell proliferation and DNA damage repair related
pathways, m6Sig-SIII was characterized by CD8 T effector and
antigen processing related pathway, whereas m6Sig-SII was
focused in epithelial mesenchymal transition (EMT) related
signaling pathway (Figure 4E). The expression level of 23 m6A
regulators in three gene subgroups was also compared and shown in
Supplementary Figure S4B. We observed significant differences of
m6A regulator expression in the three m6A gene-signature
subgroups, which was consistent with the expected results of the
m6A methylation modification clusters.

The m6Sig Score System and Its Clinical
Relevance
The results of the previous parts of the study can be concluded
that m6A methylation modification has a strong association with
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prognosis and immune regulation in melanoma patients. In order
to be able to accurately predict the m6Amethylation modification
cluster of tumors in individual melanoma patients, we developed
the m6Sig score system to quantify the m6A modification cluster
based on the identified m6A-related signature genes. In
Figure 5A, the Sankey diagram uncovered the workflow of the
m6Sig score system in melanoma. It can be found that m6A-C3
was linked to a higher m6Sig score, and lower for keratin and
MITF-low subtypes. We sought to evaluate the significance of the
m6Sig score system in predicting the prognosis of patients with
melanoma through survival analysis. As shown in Figures 5B,C,
the m6Sig score system clearly distinguished patient with different
prognosis in both the TCGA-SKCM cohort and meta-GEO
cohort (patients with high m6Sig scores had a better
prognosis). We performed the Kruskal Wallis test and showed
that the m6Sig score could be clearly distinguished in the immune
and keratin subtypes (Figure 5D). Encouragingly, them6Sig score

system can be extremely well distinguished among the previous
m6A clusters and m6Sig clusters (Supplementary Figure S5A,B),
which are clusters constructed based on m6A methylation
modification clusters and DEGs, respectively. Compared with
clinicopathological staging, the m6Sig score system can better
evaluate the prognosis of melanoma patients (AUCs for stage and
m6Sig score are 0.613 and 0.681, respectively; Supplementary
Figure S5C). In detail, multivariable cox regression model
revealed that melanoma patients with low m6Sig scores had a
worse survival outcome in TCGA (Supplementary Figure S5D)
and meta-GEO cohort (Supplementary Figure S5E). This score
system was also explored by ImmuneScore, and patients with
high m6Sig scores had a higher ImmuneScore (p < 0.0001,
Supplementary Figure S5F,G). Among the six immune
subtypes, the m6Sig score was also differentially distributed.
Samples with high scores were mostly clustered in the
“Macrophage Regulation,” “Lymphocyte Infiltration Signature

FIGURE 4 | Construction of differential expression of m6A gene signatures and functional annotation. (A) The 636 differentially expressed genes between the three
m6A clusters were recognized as m6A-related gene signature and shown in the Venn diagram. (B) Survival curves of m6A signature gene-based NMF unsupervised
clustering in TCGA cohort. (C) Differences in PD-L1 expression among m6Sig subtype groups. (D) Differences in ImmuneScore between m6sig subtype groups. (E)
Enrichment level of the three m6Sig subtypes in the classical signaling pathway constructed by Mariathasan et al.
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FIGURE 5 | Construction of m6Sig score and explore the relevance of clinical features. (A) Alluvial diagram of m6A clusters in groups with different molecular
subtypes (immune, keratin, and MITF-low), m6A-gene cluster, and m6Sig score. (B) Kaplan-Meier curves for high and low m6Sig score patient groups in TCGA cohort.
(C) Kaplan-Meier curves for high and low m6Sig score patient groups in meta-GEO cohort. (D) The m6Sig score differed between the three TCGA molecular types. (E)
The m6A score was negatively correlated with the SCNA mutational level. (F) The m6A score was positively correlated with PD-L1 expression level. (G) Mutation
status of significantly mutated genes (SMGs) in the TCGA cohort, stratified by subgroups with low (left) versus high m6Sig scores (right). Each column represents one
patient. Mutation types and clinical characteristics were annotated in different colors.
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Score,” and “IFN-γ Response” subtypes (Supplementary Figure
S5H), which was similar to the m6A-C3 cluster. Heatmap of
correlation matrix demonstrated that the m6Sig score was
markedly positively correlated with the immune activation
process and negatively correlated with cell cycle and DNA
damage repair (Supplementary Figure S5I). To better evaluate
the effectiveness of our m6Sig score system in predicting the
prognosis of melanoma patients, we introduced two independent
cohorts (GSE22153 and GSE54437) to perform a survival
analysis, and the results showed that patients with high m6Sig
score had a better prognosis (Supplementary Figure S6A,B).
Furthermore, a survival analysis after combining all patients
involved in this study revealed that a high m6Sig score
continued to indicate a survival benefit in melanoma patients
(p < 0.0001, Supplementary Figure S6C). The TCGA-SKCM
cohort also demonstrated that melanoma patients with high
m6Sig score had prolonged disease-free survival (DFS, p �
0.0064, Supplementary Figure S6D). In addition, m6Sig score
also negatively correlated with somatic copy number alternation
(SCNA) level (r � −0.49, p < 0.0001, Figure 5E), which is a
significant predictor of immunotherapy resistance in melanoma.
The PD-L1 expression levels were also positively correlated with
the m6Sig score (r � 0.75, p < 0.0001, Figure 5F), suggesting that
melanoma patients may also benefit from the m6Sig score system
for PD1/PD-L1 treatment regimens. More deeply, we performed
significant mutation gene (SMG) analysis of melanoma samples
based on m6Sig score, and the waterfall plot of mutation
landscape noted that BRAF (54%/48%), SIRPB1(11%/5%), and
KNSTRN (7%/2%) had higher somatic mutation rates in the
high-score group, although BRAF was not statistically significant
(Figure 5G). These data assist us to more comprehensively
understand the m6Sig score system mapping to genomic
variants, predicting that m6A methylation modification is
closely linked to somatic mutations in melanoma patients.

The m6Sig Score System Can Be a Better Predictor of the
Effectiveness of Immunotherapy in Cancer

Cancer treatment regimens based on immune checkpoint
inhibitors have provided a landmark innovation in the
treatment of malignancies, mostly in melanoma. In addition to
TML and PD-L1, TIDE and T cell-inflamed GEP have been
recommended to predict immune response in recent years (Chen
et al., 2019c; Chen et al., 2019d). We compared the established
m6Sig score system with the T-cell inflamed gene expression
profile (GEP) score and found that melanoma patients with high
m6Sig score had elevated T-cell inflamed GEP score in both the
TCGA-SKCM cohort and the Meta-GEO cohort (p < 0.0001,
Figures 6A,B). In contrast, TIDE showed increased levels in
patients with low m6Sig scores, implying that greater chance of
tumor immune escape and resistance in low m6Sig scores
subgroup (p < 0.0001, Figures 6C,D). These results further
demonstrate that m6A modification clusters play a critical role
in the immune response of tumors, thereby affecting the immune
microenvironment of tumors.

Aforementioned data point to a strong association between
m6A modification and immune response, we next investigated
whether the m6Sig score could predict patients’ response to ICI
treatment in independent immunotherapy cohorts. Patients with

high m6Sig score exhibited significantly longer survival time (log-
rank test, p � 0.0082, Figure 6E) and markedly clinical response
to PD-1/CTLA-4 treatment in melanoma (response rate, high vs
low m6Sig score subgroup, 52.3 vs 31.2%, Figure 6F). This result
was also identified in an anti-PD-L1 metastatic uroepithelial
cancer cohort (Mariathasan et al., 2018), in which patients
with high m6Sig scores significantly benefited from PD-L1
immunotherapy (log-rank test, p � 0.0005, Figure 6G;
response rate: high vs low m6Sig score subgroup, 32.7 vs
17.8%, Figure 6H). Furthermore, we found that patients with
PD-1 immune response also had a higher m6Sig score (p � 0.0012,
Figure 6I). Metastatic uroepithelial carcinoma patients with
immune inflamed phenotype had a higher m6Sig score than
immune excluded and desert phenotype (Figure 6J). A
significant elevation of PD-L1 was identified in high m6Sig
score subgroup (p < 0.0001, Figure 6K). Therefore, we divided
the overall population into four subgroups according to the
TMEsig-score and PD-L1 distribution, including TMEsig-
score-H + PD-L1-H, TMEsig-score-H + PD-L1-L, TMEsig-
score-L + PD-L1-H, and TMEsig-score-L + PD-L1-L. The
TMEsig-score-H + PD-L1-H subgroup exhibited the best
prognostic outcome compared with the other three subgroups
(log-rank test, p < 0.0001, Figure 6L). Based on the results of the
above analysis, our established m6Sig score system enables the
prediction of responsiveness and prognosis to cancer
immunotherapy.

DISCUSSION

Recently, the dynamic and reversible process of m6A
modification has been reported in participation of the innate
immune, inflammatory response, and anti-tumor processes
(Chen et al., 2019a; Shulman and Stern-Ginossar, 2020).
Although numerous studies have recently revealed how m6A
regulators are epigenetically regulated in the tumor
immunogenicity, the association between m6A regulators and
the overall tumor microenvironment has not yet been elucidated
in melanoma. Thus, identifying distinct m6A modification
clusters in the TME infiltration will contribute to advancing
our understanding of anti-tumor immune response and
facilitating more effective precision immunotherapy strategies.

In this study, we identified three different immunophenotypic
m6A methylation modification clusters, which are characterized
by different anticancer immune effects. The m6A-C1 phenotype
is distinguished by promotion of cell proliferation and activation
of PI3K/AKT/mTOR signaling pathway, and we prefer it to be the
immune-desert phenotype. The m6A-C2 phenotype is more
characteristic of cancer and immune surveillance, and it is
associated with EMT, TGF-β, and TNF-α pathway activation
and is an immune-excluded phenotype. The m6A-C3 phenotype,
on the other hand, is associated with activation of pathways
related to inflammatory response, innate immune response, and
is an immune-inflamed phenotype. It has been shown that the
tumor microenvironment plays a central role in tumorigenesis
development and progression, and the levels of tumor-infiltrating
CD4+/CD8+ T cells, M1 macrophages, NK cells, and
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FIGURE 6 | The m6Sig score predicts immunotherapeutic benefits. (A) Comparison of the relative distribution of T-cell inflamed GEP scores between the high and
low m6Sig score groups in the TCGA cohort. (B) Comparison of the relative distribution of T-cell inflamed GEP scores between the high and low m6Sig score groups in
the meta-GEO cohort. (C) Comparison of the relative distribution of TIDE between the high and low m6Sig score groups in the TCGA cohort. (D) Comparison of the
relative distribution of TIDE between the high and low m6Sig score groups in themeta-GEO cohort. (E) Kaplan-Meier curves for high and low m6Sig score patient
groups in the melanoma PD-1/CTLA-4 cohort. (F) The fraction of patients with clinical response to anti-PD-1/CTLA-4 immunotherapy in low or high m6Sig score groups.

(Continued )
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inflammatory cytokines directly influence the onset of immune
priming and adaptive immunity (Topalian et al., 2016; Galon and
Bruni, 2019; Zeng et al., 2020). Interestingly, the m6A-C2
phenotype is associated with activation of the TGF-β signaling
pathway and intermediate immune cell infiltration, and thus, we
hypothesized that melanoma patients with m6A-C2 phenotype
would benefit from the combination of immune checkpoint
inhibitors and TGF-β blockers. There is evidence pointing out
that activation of the TGF-β pathway hinders lymphocyte attack
on “tumor barriers” (Tauriello et al., 2018). Moreover, inhibitors
targeting TGF-β can effectively remodel the tumor
microenvironment in the form of reprogrammed peritumor
stromal fibroblasts, which can restore the body’s anti-tumor
immunity (Mariathasan et al., 2018; Panagi et al., 2020). We
found that the m6A-C3 phenotype was associated with
enrichment of activated tumor-infiltrating lymphocytes,
making this phenotype more likely responsive to ICI
immunotherapy.

The m6A signature genes were derived from genes
differentially expressed in three m6A modification subtypes.
These m6A-related signature genes were further utilized to
identify transcriptomic subtypes and tumor microenvironment
landscapes in melanoma. Patients with m6Sig-SII subtype have
higher PD-L1 expression levels and higher immuneScores,
implying that patients with this subtype are better treated with
immune checkpoint inhibitors for better therapeutic outcomes.
For the sake of precision clinical practice, we optimized the m6Sig
signatures into the m6Sig score scheme, a system that could be
used to quantify the m6A modification level of individual tumors.
The m6A modification clusters characterized by an immune-
inflamed phenotype showed a higher m6Sig score, whereas the
modification cluster characterized by an immune-desert
phenotype had a lower score. The results based on survival
analysis highlight that the m6Sig score system can effectively
predict the prognosis of melanoma patients, and that this score
system is strongly associated with TCGA molecular subtypes,
genomic alternations, and PD-L1 expression levels. We also
observed that m6Sig score was closely correlated with T-cell
inflamed GEP score and TIDE, which are effective tools for
prediction of immunotherapy benefit, further demonstrating
that m6A RNA methylation modification can modulate the
effect of immune response in melanoma. To identify the
predictive value of m6Sig score system in immune response,
we performed a series of analyses in two additional
independent immunotherapy cohorts and validated the effect
of this score system. In a nutshell, the m6A RNA methylation
modification cluster can be used to determine the immune
phenotype of melanoma patients, further guiding clinical
treatment planning and effectively predicting the prognosis of
patients.

We also noticed that certain m6A regulators play different
roles in regulating tumorigenesis and tumor immunogenicity.
Recent studies have confirmed that the mRNA stability and
translation processes of the oncofetal IGF2 mRNA binding
proteins (IGF2BPs) are regulated by RNA N6-methyladenosine
(Huang et al., 2018). IGF2BP1, a member of the IGF2BPs family,
was then identified as an oncogene that promotes cancer
development by antagonizing cancer-suppressive miRNAs
(Müller et al., 2018; Müller et al., 2019). In contrast, our
results showed that IGF2BPs genes have higher expression
level in patients with metastatic melanoma and m6A-C1
subtype. It has been demonstrated that IGF2BP2 promotes
cancer progression by regulating the m6A-dependent glycolytic
process and promotes cancer metastasis in the form of an RNA-
protein ternary complex (Chen et al., 2019e). KIAA1429 is also
well known as an m6A methyltransferase. In hepatocellular
carcinoma, KIAA1429 promotes cancer metastasis and leads to
poor patient prognosis by regulating post-transcriptional
modifications (Lan et al., 2019). Our results also suggest this
function of KIAA1429 to promote metastasis and highly
expressed in m6A-C1 desert phenotype, but its prediction of
patient survival may require the combination of RBM15,
RBM15B, IGF2BP3, and HNRNPA2B1, with co-occurrence
between them. YTHDCs and YTHDFs containing YTH
domain act as “readers” in post-translational RNA methylation
modification, and YTHDFs enhance aerobic glycolysis by
degrading mRNA to further promote tumor formation (Wang
et al., 2021; Xia et al., 2021). Our study confirms that both
YTHDF1/3 and YTHDC1/2 are highly expressed in metastatic
melanoma, and of interest, the high expression of YTHDF1 in
patients with metastatic melanoma is accompanied by an
indication of a poorer prognosis, which suggests a new
direction for deeper studies of molecules containing YTH
domain. In our study, we found that ELAVL1 was not only
associated with metastasis of melanoma, but also reflected a
poorer prognosis of patients, which may be related to the fact
that ELAVL1 can stabilize oncogenic transcripts (Li et al., 2020b).
In summary, the results of our analysis demonstrate the
importance of a systematic and comprehensive consideration
of m6A modification clusters, which are diverse in cancer across
physiological processes.

Identification of significantly mutated genes underlying
human cancers is a critical foundation for cancer diagnostics,
therapeutics, and selection of rational therapies. In our study, we
found a higher proportion of SMGs of BRAF, SIRPB1, and
KNSTRN in the high m6Sig score subgroup, although BRAF
was of marginal significance. In a pan-cancer study, it was noted
that BRAF has a higher rate of specific driver mutations in
leukocytes of cancer patients, a phenomenon associated with
tumor-immune cell interactions (Thorsson et al., 2018). There is

FIGURE 6 | (G) Kaplan-Meier curves for high and lowm6Sig score patient groups in the metastatic urothelial carcinoma (mUC) PD-L1 cohort. (H) The fraction of patients
with clinical response to anti-PD-L1 immunotherapy in low or high m6Sig score groups of mUC cohort. (I) Distribution of m6Sig scores between immunotherapy
response and non-response in melanoma PD-1/CTLA-4 cohort. (J) Distribution of mUC m6Sig scores among the three immune phenotypes. (K) The relationship
between m6Sig score and PD-L1 expression level. (L) The m6Sig score combined with PD-L1 expression levels better predicted patient prognosis. CR, complete
response; PR, partial response; SD, stable disease; PD, progressive disease.
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new evidence that BRAFi induces the occurrence of anti-tumor
cell scorching immune responses, which may be a new strategy
for the treatment of melanoma (Erkes et al., 2020). Signal
regulatory protein beta 1 (SIRPB1) is a member of the signal
regulatory protein (SIRP) family, which also belongs to the
immunoglobulin superfamily, and is a negatively regulated
receptor-type transmembrane glycoprotein involved in
receptor tyrosine kinase-coupled signaling processes. SIRPB1 is
associated with neutrophil migration across the epithelium,
which provides a new target for drug design in
immunotherapy (Ribeiro et al., 2019). It has been reported
that KNSTRN mutations rarely occurred in other solid tumors
and leukemias, which are relatively specific for skin-related
cancers (Lee et al., 2016; Schmitz et al., 2019). These tumor
driver mutations in different m6Sig scores not only are associated
with malignant progression, metastasis, and recurrence of cancer
but also play a role in the regulation of immune activity,
demonstrating a complex and consequently clear interaction
between m6A RNA methylation modifications and tumor
immunogenomic.

The literature review helped us to integrate the well-known
23 m6A RNA methylation regulators for meta-analysis, but this
still requires newly discovered regulators to be included to
enhance the accuracy of the established m6A modification
clusters. There is a relative lack of PD-L1-based regimens for
melanoma patients, so we introduced a dataset of uroepithelial
carcinoma treated with atezolizumab, but we still hope that the
m6Sig score system can be analyzed and validated in melanoma
immunotherapy with different immune checkpoint inhibitors.
Moreover, all the data in this study were obtained from
retrospective cohort, which would introduce some bias.
Therefore, our next study focused on establishing a
prospective cohort of melanoma patients with immune
checkpoint inhibitors to validate and optimize the m6Sig
score system. In addition, the current m6Sig score system
does not yet incorporate the clinicopathological
characteristics of the patients, which also lead to the
drawbacks of the system.

In our study, we systematically assessed the m6A modification
clusters of 1,020 melanoma patients and comprehensively
analyzed the impact of m6A modification clusters generated by
23 m6A regulators on the cellular infiltration characteristics of the
tumor microenvironment. The results of this integrative analysis
confirm that RNA methylation is essential for the regulation of
tumor immune response, and assessing the m6A modification
clusters of patient tumors will help us better understand the
immune microenvironment infiltration characteristics and
provide new ideas for indications and protocol modifications
for immunotherapy.
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