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Relationship between rheology and structure of
interpenetrating, deforming and compressing
microgels
Gaurasundar M. Conley1, Chi Zhang1, Philippe Aebischer1, James L. Harden2 & Frank Scheffold 1

Thermosensitive microgels are widely studied hybrid systems combining properties of

polymers and colloidal particles in a unique way. Due to their complex morphology, their

interactions and packing, and consequentially the viscoelasticity of suspensions made from

microgels, are still not fully understood, in particular under dense packing conditions. Here we

study the frequency-dependent linear viscoelastic properties of dense suspensions of micron

sized soft particles in conjunction with an analysis of the local particle structure and mor-

phology based on superresolution microscopy. By identifying the dominating mechanisms

that control the elastic and dissipative response, we can explain the rheology of these widely

studied soft particle assemblies from the onset of elasticity deep into the overpacked regime.

Interestingly, our results suggest that the friction between the microgels is reduced due to

lubrification mediated by the polymer brush-like corona before the onset of interpenetration.

https://doi.org/10.1038/s41467-019-10181-5 OPEN

1 Department of Physics, University of Fribourg, Chemin du Musée 3, 1700 Fribourg, Switzerland. 2 Department of Physics, University of Ottawa, Ottawa,
Ontario K1N 6N5, Canada. Correspondence and requests for materials should be addressed to F.S. (email: Frank.Scheffold@unifr.ch)

NATURE COMMUNICATIONS |         (2019) 10:2436 | https://doi.org/10.1038/s41467-019-10181-5 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-0567-5811
http://orcid.org/0000-0002-0567-5811
http://orcid.org/0000-0002-0567-5811
http://orcid.org/0000-0002-0567-5811
http://orcid.org/0000-0002-0567-5811
mailto:Frank.Scheffold@unifr.ch
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Soft polymer microgels are fascinating systems whose pecu-
liar properties have resulted in highly diversified applica-
tions, spanning from purely academic to the industrial

domain1,2. Microgels as model soft spheres have been instru-
mental in shedding light on fundamental problems relating to
phase transitions3–6 and microgel additives as rheological modi-
fiers are ubiquitous in consumer and personal care products as
well as other industries and applications7–11. The complex
nanoscale architecture and softness sets them apart from more
conventional solid particles, emulsion droplets or foam bubbles,
with profound consequences for the mechanical properties of
dense microgel suspensions, which reveal rich and complex fea-
tures in their concentration dependence8,12,13.

The rheology of hard spherical particles in suspensions is
controlled by the volume fraction ζ of the dispersed phase as the
sole parameter determining a suspension’s phase behavior. In a
disordered suspension of hard spheres the maximal volume
fraction is reached at random close packing or jamming, ζrcp≃ ζJ
≃ 0.644,14,15. Emulsions, bubbles, and other soft building blocks,
on the other hand, can deform, allowing for ζJ ≤ ζ < 1. In this
range the particles form flat facets at contact points which in turn
store elastic energy16–18, resulting in familiar soft pastes such as
mayonnaise or shaving foam. Polymer microgels however are
different. They are highly swollen in good solvent conditions, and
as a consequence, microgels are compressible in addition to being
deformable and therefore highly overpacked states can be
reached1,19–21. Moreover, microgels prepared following standard
protocols have a fuzzy polymer shell decorating their compres-
sible cores22, allowing for shell compression and interpenetra-
tion23. Much work has been devoted to the characterization of the
elasticity and flow of dense microgel suspensions (or pastes) and
common features for microgels of different sizes and softness
have been established20,24–31. The elastic modulus grows rapidly
after the liquid–solid transition and then much more slowly at
higher concentrations. Relatively little is known, however, about
dissipative losses in dense microgel suspensions under shear and
their relationship to the microstructure.

Although models and detailed numerical studies have shed
much light on microgel rheological properties26,28,30,32–35, there
still exists no widely accepted framework that encompasses the
entire range of packing densities, from the glassy dynamics and
jamming to highly compressed states. Depending on the type
(more or less ionic) and size of microgel, osmotic deswelling36,
and interpenetration can be important, but if and when this plays
a role has been debated23,35,37. In the past, little or no in situ
information on the single-particle nanoscale level has been
available. Recently, however, significant progress has been
reported in studies revealing single-particle properties in dense
suspensions based on zero average contrast small angle neutron
scattering23 and microscopy34,37–40.

In this work, we propose a framework to explain the
frequency-dependent linear viscoelasticity of microgel suspen-
sions, composed of micron-sized poly(N-isopropylacrylamide)
(pNIPAM) microgels with a dense core and a fuzzy corona, from
weakly compressed packings to strongly overpacked states by
combining the results from oscillatory shear measurements and
nanoscale imaging. To this end we characterize the macroscopic
rheological properties of soft particle suspensions at a constant
temperature and take advantage of the advent of microscopic
structural information about individual microgels and pairs of
microgel particles resolved via dSTORM superresolution micro-
scopy41. Our aim is to describe and connect the mechanisms that
determine the viscoelastic and in particular the dissipative
behavior across the different concentration regimes. From the
latter we can derive important information about the lubrified
facetted microgel interfaces and the onset of corona

interdigitation. We note that we do not address the properties of
ionic42 or weakly cross-linked microgels particles43 nor of those
with radii of less than 100 nm. As discussed in recent work, small
particles appear to behave qualitatively differently and can for
example be overpacked up to a factor of ten without a corre-
sponding increase in elastic modulus31,44,45.

Results
Superresolution microscopy. We study swollen pNIPAM
microgels prepared by free radical precipitation polymerization at
a constant temperature T= 22 °C. From static and dynamic light
scattering we find the total microgel radius is Rtot ≃470 nm and
the radius of the highly cross-linked core is R= 380 nm38. Details
about the synthesis and characterization are included in the
methods section (additional data is plotted in the Supplementary
Figs. 1 and 2). The same batch of microgels was used in our
earlier work, ref. 37. The experimentally accessible mass con-
centrations c of our suspensions, in wt/wt%, can be converted into
effective packing fractions ζ= k × c via the voluminosity k= 0.08,
as shown in ref. 37. We estimate the error bar in setting ζ to about
±3%, see also ref. 46. We have verified, using small angle light
scattering that, on the time scale of the experiment, the samples
do not crystallize37 (see also Supplementary Fig. 3). The structure
and morphology of standard, micron-sized pNIPAM microgels
and microgel pairs are resolved via single and dual color super-
resolution microscopy and small angle light scattering, from
marginally jammed to deeply overpacked states, as depicted in
Figs. 1 and 2 and discussed in detail in our earlier work37,38, see
also Supplementary Fig. 3. We have determined the lateral spatial
dSTORM resolution to be approximately 30 nm, about an order
of magnitude better than conventional widefield light microscopy
as shown in Fig. 1. To obtain a faithful contour of each particle
and use it for measuring different geometric features we use the
Laplacian of Gaussian edge detector in Matlab (MathWorks, Inc.,
USA) (for details see methods section). Using synthetic data we
can estimate the statistical error of the contour line determination
to about ±5 nm or less. We can identify three consecutive stages
of packing37. In the first stage, just above solidification (ζ≳ 0.64
or c≳ 8%), the microgel’s fuzzy corona or brush is compressed as
the measured distance between neighboring particles drops below
d= 2Rtot, see Fig. 2 and Supplementary Figs. 3 and 4. We note
that the compression of the fuzzy corona cannot be visualized
directly with dSTORM, due to the extremely low polymer density
and the associated noisy signal in this region (see also Supple-
mentary Fig. 2). In the following stage, once the dense cores come
into contact (ζ≳ 1.1), interpenetration becomes noticeable and
the microgels start to significantly deform, which allows denser
packing of the particles without change in measured size (see also
Supplementary Fig. 5). Interpenetration gradually increases as the
contacting facets expand. Finally, once interpenetration and
deformations have saturated and the volume is homogeneously
filled by the polymer gel (ζ≳ 1.9), isotropic compression and a
reduction of the microgel size ∝ ζ−1/3, remains the only
mechanism that allows further densification.

Oscillatory shear experiments. We perform oscillatory shear
measurements in the linear regime (strain γ= 0.1%) at a fixed
temperature of T= 22 °C covering a wide range of ζ, from the
onset of jamming ζ≳ ζJ= 0.64 to deeply overpacked, and deter-
mine the elastic and loss moduli as a function of frequency, G′(ω)
and G″(ω). Selected examples of frequency-dependent measure-
ments of G′ and G″ are shown in Fig. 3a covering the ζ range
from marginally jammed to deeply overpacked. In all cases we
find G′ being nearly frequency independent and greater than G″,
indicating solid like behavior. Dissipative losses, however, are
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relatively high and G″(ω) shows a minimum around ω ~1 rad/s,
typical of emulsions and foams, in addition to microgels16,29,47.
With increasing concentration, the minimum becomes progres-
sively less pronounced and finally, with ζ= 1.9, has all but dis-
appeared. To characterize the ζ—dependent elasticity of our
microgel suspensions we take the value G′(ω) at a fixed frequency
of ω= 1.2 rad/s, Fig. 3b. Below the jamming packing fraction ζJ
we measure a weak elastic modulus that we can tentatively ascribe
to the entropic glass regime, where the onset of elasticity is given
by Gp ~kBT/R3, the only energy density scale for noninteracting
spheres48 (in our case kBT/R3 ≃0.04 Pa), which then crosses over
to a regime governed by the jamming elasticity (see also refs. 33,49

and Supplementary Fig. 6). Starting from ζ ~ ζJ, when microgel
coronas are in direct contact, we find a steep increase of G′.
Increasing ζ by a factor two results in a nearly three order of

magnitude increase of G′. This trend, however, does not continue
over the entire range, instead we observe a slow crossover into a
different regime where the slope is reduced
considerably17,25,28,29,50.

Elasticity and storage modulus G′(ω). In earlier work Senff and
Richtering studied neutral pNIPAM microgels chemically similar
to ours but of smaller size R ~130 nm at 20 °C20. In this pio-
neering study the rapid increase of elasticity after jamming has
been described ad-hoc in terms of a soft interaction potential of
the form ψ ~ r−n 20,25 resulting in a power law G′ ~ ζm with m=
1+ n/3. A more physically descriptive, yet still quantitative
approach has been proposed by Scheffold et al.28 for micron sized
microgels, whereby the microgels are modeled as solid cores, of
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Cores touchMicrogels touch
and jam
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Packing fraction
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1.1 1.9 Effective0.64
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Interpenetration/deformation

Fig. 2 Two-color dSTORM superresolution microscopy of microgel pairs. Examples for dye-labeled tracer particles seeded in densely packed microgel
suspensions are shown (T= 22 °C)37. Particles are labeled with the fluorophores Alexa Fluor®647 or CF680R. The effective packing fraction ζ increases
from left to right (ζ= 0.86, 1.01, 1.26, 1.50, 1.89, 2.13). Left: The dashed circles with radius Rtot= 470 nm visualize the total microgel size including the
barely visible low-density corona. The arrow points to the contact area where the brush-like corona is partially compressed. The straight line indicates the
cross-section of the contact area. Right: The solid lines show the contour of the microgels for higher packing densities where the corona has already been
fully compressed onto the core and microgels interpenetrate37. The overlap area ΔF is highlighted in yellow
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Fig. 1 Comparison of conventional widefield and dSTORM superresolution images of densely packed microgels. a, b show images of Alexa Fluor®647 dye-
labeled microgels seeded in a dense suspension (ζ= 0.86, c= 10.8 wt%). Images are taken in the bulk and thus some of the particles are out of focus and
located deeper inside the sample, appearing less bright. This also affects the superresolution imaging leading to a reduced number of localized points that
can be used for the reconstruction. c Widefield and two-color dSTORM images of microgels at the glass-sample interface including a pair in contact (ζ=
1.89, c= 23.6 wt%). The widefield image was taken with a low pass filter for Alexa Fluor®647 and thus the microgel labeled with second dye CF680R is
barely visible. The two-color image was reconstructed using the spectral demixing technique37, 63. Scale bar 500 nm in panel a and c and 2 μm in panel b
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size R, decorated by polymer brushes, of thickness L0 ≃ Rtot− R,
which mediate their interactions. The net repulsion between
brushes at the microgel periphery, derived from the Alexander—
de Gennes scaling model for polymer brushes in good solvent
conditions, suffices to describe the onset of solid like behavior. To
derive an expression for G′, a local spring constant κ is defined
which is directly related to the interaction potential between two
spheres by κ= ∂2ψ/∂r2, and to the elastic modulus as G′ ≈ κ/πR.
The complete expression for G′(ζ,α) ≃ kTαs3(τ9/4− τ−3/4), where
τ(ζ, α)= (1− α)/[(ζ/ζJ)−1/3− α], modulus a prefactor of order
unity, is derived in28 where s is the effective average separation
between grafting sites and α is the ratio between core and total
radius of the particle. By setting α= 0.84 and adjusting the pre-
factor kBTα/s3= 60 Pa for a best fit we obtain the dotted orange
line shown in Fig. 3b. The value of α= 0.84 compares well with
the static light scattering result R/Rtot ≃ 0.81 (see Supplementary
Fig. 1) and previous studies on similar systems28. We find very
good agreement with the experimental data in the lower con-
centration range, 0:64 � ζ≲1, delineating the range where the
microgels are predominantly interacting via their brush-like
coronas, Fig. 2. Instead of the divergence of G′(ζ), predicted by
the brush model we find, at higher concentrations, a slower, linear
increase of elasticity as a function of packing fraction. This is in
agreement with several previous studies on dense microgel
packings and can be attributed to the finite softness of the
microgel core29,31,32,50–52. By extrapolation, we can estimate an
onset of the linear regime at ζc= 0.87 ± 0.01. This occurs well
before the divergence predicted by the brush model at ζ ≈ 1.08,
resulting in a crossover region where the softness of the core
eventually dominates over the stiffness of the highly compressed
corona, see also the recent work by Bergman et al.53. As shown in
Fig. 4b, for ζ∈ [ζc, 1] the brush model and the linear scaling
superimpose while for ζ ≥ 1 the core softness dominates. The
fuzzy shell is now compressed almost entirely onto the core.
Thus, the linear increase of elasticity is consistent with the jam-
ming of discrete homogeneous microgel particles of size smaller
than the unperturbed radius Rtot (see also Supplementary Fig. 4).
We note that for dense emulsions, consisting of homogeneous,
incompressible soft particles, a linear increase G′ ~ ζ− ζc is also
observed16. As ζ is increased further for the microgels, significant
particle deformations can be seen by dSTORM, Fig. 237. The
entire system now becomes more and more homogeneously filled
with polymer as the interstitial spaces between spherical particles
in contact vanish. The latter is confirmed by small angle light
scattering data37 (see also Supplementary Fig. 3), which shows a
dramatic drop in the scattering contrast for ζ ≥ 1.9 (c ≥ 23 wt%).
Interestingly, for these very large filling fractions, we find an

elastic modulus G′ ≈ 104 Pa, comparable to data reported by
Calvet et al.54 for macroscopic homogeneous pNIPAM gels of
similar composition to ours (~5 mol% BIS).

Friction and loss modulus G″(ω). Next, we consider the energy
losses in the system where the influence of the discrete particulate
nature of the suspension at high-packing fractions is striking.
Over the entire range we find significant dissipative losses, typical
for soft glassy materials55, but in stark contrast to macroscopic
gels which are almost entirely elastic in their stress response.
Calvet et al.54 found for macroscopic pNIPAM gels G″/G′ ~10−3,
typically about two orders of magnitude less than what we
observe.

Anomalously large losses are well known for jammed
emulsions, despite the fact there are no static friction forces
between the emulsion droplets. Liu et al. showed, that the high-
dissipative losses observed for emulsions are due to dynamic
dissipation in the fluid confined between planes of facets sliding
relative to each other56. The random orientation of slip planes
leads to a broad range of stress relaxation rates that result in G″
~A(ζ)ω0.5+ η∞ω in this regime, where η∞ denotes the back-
ground viscosity of the solvent phase. Their amplitudes A(ζ)
increase by about a factor 3–4 over the concentration range
accessible for emulsions, ζ ≃ 0.6− 0.86, which can be explained
by the increased viscosity of the compressed liquid film confined
in the shear planes56. Earlier pioneering work by Cloitre and co-
workers on polyelectrolyte microgels, with a radius R= 220 and
R= 125 nm, already suggested that densely packed microgels
develop flat facets at contact and that the thin water film trapped
in between can lubricate the contacts, but a connection to the
model of Liu et al. was not made17.

Based on the emulsion work and by comparison with the
dSTORM data we can now verify the accuracy and the range of
validity of this scenario for our microgel system. As discussed
before, we described the microgel by a cross-linked core covered
by a brush-like corona. At ζ > ζJ the brushes are partially
compressed and the restoring forces lead to the rapidly increasing
macroscopic shear modulus G′, Fig. 3b. It is known that
compressed polymer brushes of thickness L < L0 do not inter-
penetrate and do not show any noticeable friction when sheared
slowly against each other, down to compression ratios of L/L0
~0.1− 0.1557–59, suggesting that the model developed for
emulsions should also apply to microgels, at least over a limited
concentration range, before the onset of interpenetration. As a
critical test, we fit G″(ω)= A(ζ)ωp with adjustable parameters A
and p roughly over a decade in frequency ω∈ [10,100] rad/s.
Figure 4a shows these fits in a logarithmic representation for each
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choice of ζ. We note that the contribution of the background fluid
is small enough that it can be safely neglected over the range of
frequencies ω ≤ 100 rad/s considered. Up to ζ ≃ 0.9 the data are
well-described by the ω0.5 scaling predicted for emulsion droplets
with no static friction and also the amplitudes A(ζ) are similar to
those reported for emulsions in ref. 56, inset Fig. 4b. Quantitative
differences in A(ζ) between emulsions and microgels can be
explained by the fact that disjoining pressure between the droplet
interfaces and the compressed brushes of the microgel corona are
not exactly the same.

Figure 4b shows the dependence of the power-law fit
parameters A and p on ζ. Starting at ζ≳ ζc deviations from the
ω0.5 scaling can be clearly observed. For a solid core the corona
would be entirely compressed on the core at ζ→ 1.08, but in our
case the core and the corona deformation are coupled and the
transition is smeared in the range ζ∈ [0.87, 1.08] due to the
compressibility of the core. Thus for ζ ≥ ζc chains in the corona
are not stretched anymore and the density of the corona and the
core gradually approach each other32, as illustrated in Fig. 4c. As
a consequence the penalty for the dangling ends of the corona to
interdigitate becomes progressively smaller and losses, expressed
by the ratio G″/G′= tanδ, increase over the entire frequency
spectrum probed, full symbols in Fig. 4d (see also Supplementary
Fig. 6b). In this regime, two-color dSTORM provides key
information about this interdigitation process. The open circles
in Fig. 4d show the overlap area ΔF/F extracted from a ~500 nm
thick z-section through the center of adjacent microgel particles37

(see also Supplementary Fig. 5). The overlap increases rapidly
from ζc= 0.87 to ζ= 1.9 and saturates above. We also observe a
lowering of the high frequency slope, from G″ ~ ω0.5 to ~ω0.3,

dashed lines in Fig. 4b, marking a deviation from the viscous
behavior of jammed emulsions where the slope of 0.5 is
maintained56, but in agreement with previous observations on
dense microgel suspensions17,27,31. Interestingly, we find that the
anomalously large losses, expressed in terms of tanδ=G″/G′,
scale directly with the overlap area ΔF/F derived from super-
resolution microscopy, as shown in Fig. 4d. In particular, both
seem to rise together toward a plateau value at large ζ. We stress
the fact that for ζ < ζc the situation is entirely different. As long as
the corona is not yet fully compressed, the brush–brush interfaces
of the touching microgel coronas are lubricated, G″ increases
slowly and thus the relative viscous losses drop with the modulus:
tanδ ∝ 1/G′ as shown by the red dash-dotted line in Fig. 4d.

Discussion
Our investigations reveal that the onset of elasticity in the dense
microgel suspensions is governed by compression of their fuzzy
outer shells while the friction between the microgels is reduced
due to lubrification mediated by this polymer brush-like corona.
At higher packing fractions, we visually observe deformation,
interpenetration and compression and here the elasticity increases
linearly with concentration starting at ζc, in agreement with the
jamming picture of dense assemblies of homogeneous soft
spheres. Deep in the jamming regime our microgel particles have
lost their core–shell structure as the soft brush-like corona has
already been compressed onto the core. Eventually the faceted
and interpenetrating polymeric particles fill space homo-
geneously. Interestingly, in contrast to other recent studies, we
find no evidence for spontaneous deswelling due to an ionic
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osmotic pressure difference between the inside and the outside of
the microgels as suggested by Scotti et al.36. Revealing the origin
of the different behavior reported in the literature will require
further experimental and theoretical work.

The observed significant and mounting viscous dissipation
demonstrates that the particulate nature of microgel suspensions
remains dominant up to the highest packing fractions studied.
Despite the close similarities of the lossy behavior with dense
emulsions for ζ between 0.64 and 0.9, we find that the microgel
systems enter a distinctly different regime with respect to dissipation
at higher packing fractions, not accessible to emulsions, due to the
effects of the interpenetrating corona chains. While storage moduli
G′(ω) are nearly independent of frequency ω, both for emulsions
and microgels, up to the maximum possible packing density, the loss
spectra G″(ω) vary quite significantly with concentration and the
magnitude of G″(ω) increases even more rapidly with ζ than the
storage modulus above ζc. Indeed, superresolution microscopy
suggests that faceting and weak interpenetration opens up new
pathways for dissipation which explains the rising loss modulus in
the overpacked regime and again highlights the essential role played
by the particulate nature of the microgel suspensions and the
microgel structure even at the highest packings.

Methods
Microgel synthesis. pNIPAM microgels were synthesized by free radical pre-
cipitation polymerization to obtain micron sized neutral particles as described in
ref. 38 and references therein. This standard protocol, used in a majority of studies
on thermosensitive microgels, is known to produce inhomogeneous particles with a
dense core surrounded by a fuzzy shell or corona22. Other, more recent synthesis
approaches, use starved feed conditions to produce much more homogeneous
particles without dangling ends which are not subject of this study and could be
addressed in future work60. The synthesis was carried out in a round bottom three-
necked flask, equipped with a magnetic stirrer, a reflux condenser and a gas inlet.
N-isopropylacrylamide (Acros Organics, Sigma-Aldrich, 99%), NiPAM, is used as
the monomeric unit. N,N-Methylenebis(acrylamide) (Sigma-Aldrich, 99%), BIS, is
used as a cross-linker and N-(3-aminopropyl)methacrylamide hydrochloride
(Polysciences, Sigma-Aldrich), APMA, as a co-monomer. The latter is used in
order to incorporate free amine groups into the microgels to later be used as
conjugation points for fluorescent dyes. NiPAM is recrystalized twice in hexane for
purification, while all other chemicals are used as received. The solution is left to
degas under an inert atmosphere of Nitrogen for 40 min before raising the tem-
perature to 70 °C, a temperature at which pNIPAM is insoluble in water. The
initiator, 2,2-Azobis(2-methylpropionamidine) dihydrochloride (Sigma-Aldrich,
97%, 0.0365 g), AAPH, is dissolved in 5 g of H2O prior to addition to the reaction
mixture. Once this is done the solution starts to become turbid within approxi-
mately 5 min as the microgels begin to grow. At this point an injection pump
containing the APMA solution is started with an addition rate of 0.5 ml/min. The
synthesis is carried out for 4 h, then the reaction mixture is left to cool at room
temperature overnight under constant stirring. The concentrations of the reagents
are 126.9 (mmol/L) NiPAM, 6.58 (mmol/L) BIS, 1.14 (mmol/L) AAPH, and 0.37
(mmol/L) APMA. The solution is subsequently filtered to remove aggregates and,
in order to remove unreacted species, 4 cycles of centrifugation, removal of
supernatant and resuspension in water are performed. The resulting microgels have
a degree of cross-linking of 4.9 mol% and a co-monomer concentration of 0.27 mol
%, assuming complete consumption of all reagents. The swollen microgels at T=
22 °C are very weakly charged due to the initiator, with a measured zeta potential of
~ζ ’ 16mV in pure water (Brookhaven PALS zeta Potential Analyzer, Smo-
luchowski method) in agreement with literature data suggesting values of less than
10 mV for swollen microgels of the same type61. For the dyed microgels (Alexa
Fluor®647) we measure a similarly small value ~ζ ’ 12mV showing that the dye
labeling does not add any significant amount of charged groups to the microgel
particles. Our microgels have a total radius of Rtot= 470 nm (polydispersity 6%)
at T= 22 °C with a core radius of R= 380 nm, determined by static light scattering
from a dilute suspension at T= 22 °C37. We find a hydrodynamic radius R ≃460
nm both in water and MEA (mercaptoethylamine, Sigma Aldrich) aqueous solu-
tion at pH= 8 used for dSTORM. Moreover we find that, within the experimental
uncertainty, the hydrodynamic radius is not affected by the addition of electrolyte
up to 100 mM KCl. The radius of the collapsed microgel at T= 40 °C is
approximately R ≃250 nm (see also Supplemental Fig. 1b).

Preparation of dense microgel suspensions. Dense, jammed samples were
obtained by centrifugation of a dilute stock suspension and redilution with pure
deionized water (rheology experiments) or 50mM MEA (mercaptoethylamine, Sigma
Aldrich) aqueous solution for dSTORM. MEA is an amino thiol which acts as an

antioxidant with chemo-sensitizing and radioprotective properties62. We have deter-
mined the conductivity of a 50mM MEA aqueous solution at 22 °C to approximately
4mS/cm. All samples were prepared starting from a stock solution having a polymer
concentration c0= 0.9 wt% (ζ= 0.072). This initial mass density has been determined
by drying the sample overnight in a vacuum oven at 80 °C and weighing. The
reproducibility of drying and weighing is rather high and the remaining uncertainty
with respect to the effective volume fraction ζ of approximately ±3% is mainly due to
the difficulty to quantify exactly the voluminosity k, see also ref. 46. To reach higher
concentrations we use a temperature controlled centrifuge set to T= 30 °C rotating at
13,300 rpm, imposing a force of 17,000g. Due to the microgels being composed of
mostly solvent at temperatures T < 33 °C, their density contrast is very low and thus
centrifugation is not very efficient to reach high densities. By heating the sample above
~33 °C, the microgel size can be reduced and density increased, significantly speeding
up the concentration process by centrifugation. We place the sample, contained in a
clean Eppendorf tube, in the oven at 55 °C until it turns milky white, signaling the
volume phase transition. This takes at most 1min. We then immediately centrifuge it
for 3min and remove supernatant to reach the desired final concentration cf deter-
mined by weight. Due to the low-surface charge, at high temperatures and especially at
higher concentrations, microgels tend to aggregate which can result in visible floc-
culation. This is reversible and microgels are quickly redispersed when cooled. Due to
centrifugation a concentration gradient will develop in the sample. To homogenize it,
the final concentrated sample is again heated, mixed via a vortex mixer then cooled.
This process is repeated until the sample appears homogeneous, typically after 1–2
cycles.

Rheology. Oscillatory shear measurements were performed on non-labeled
microgels suspended in pure water. We use a commercial rheometer (Anton Paar
MCR 502), using a cone-plate geometry (cone radius 25 mm, angle 1.0°), equipped
with a solvent trap to limit evaporation during the measurement. Selected examples
of frequency-dependent measurements of G′ and G″ are shown in Fig. 3, covering
the ζ range from marginally jammed to deeply overpacked. We also perform
measurements for a fixed frequency at selected concentrations with the addition of
50 mM MEA to mimic the conditions used for the dSTORM imaging experiments,
data shown in the Supplementary Fig. 6. The results are in very good agreement
over the entire range of interest. We note however that measurements in MEA at
the lowest concentration of 7.3 wt% (ζ= 0.584), gave a torque below the sensitivity
of the instrument while for pure water we find the torque sufficient to perform a
measurement. This indicates a difference in elasticity between the different solvent
conditions in lowest range measured. We attribute this to dissolved ions screening
the charges at the tips of the dangling polymer chains, present when using ionic
initiators for synthesis, weakening interactions when microgels are in close
proximity. These very weakly jammed or glassy samples are however not in the
focus of the present study and shall be discussed elsewhere, using more sensitive
methods, such as for example dynamic light scattering or diffusing wave
spectroscopy28,56. Finally, we note that for the weakly elastic microgel packings we
observed an unphysical small drop of G′(ω) at high frequencies for data taken at
ζ ≤ 0.78 (probably due to residual wall slip) and have thus excluded a small number
of data points from the fit in Fig. 4a) to avoid bias.

dSTORM superresolution microscopy. The functionalized microgels are dye-
labeled using the formation of stable amide bonds following the reaction between
the NHS ester and the amines present in the microgel due to the addition of the
APMA co-monomer acting as conjugation points. We mix an excess amount of dye
with microgels in pure water and let the solution react at room temperature for 2 h
on an oscillating tray, covered with aluminum foil. Removal of unreacted dye is
done by 4–5 cycles of centrifugation of the sample to concentrate the heavier
microgels, removal of the supernatant and resuspension in deionized water. The
resulting microgels are kept in the fridge at 4 °C. As dyes we use both the fluor-
ophore Alexa Fluor®647 and CF680R37 (Sigma Aldrich). For dSTORM imaging we
mix trace amounts of dye-labeled microgel particles in a matrix of unlabeled
microgels and suspend the mixture in a 50 mM MEA (mercaptoethylamine, Sigma
Aldrich) to improve the blinking for dSTORM38,62. For two-color dSTORM the
MEA concentration was increased to 100 mM. Adding 50–100 mM MEA raises the
solvent pH to about pH= 10 and we have added HCl to reduce the pH to 8.
Between 60 and 80,000 frames were recorded at 60 to 100 frames per second37. For
two-color dSTORM we apply the spectral demixing approach which is free of
chromatic aberrations since both fluorophores are excited using a single laser line λ
= 639 nm. The method, described in detail in ref. 37,63, relies on using two
fluorophores having significantly overlapping excitation and emission spectra. Both
are then simultaneously excited and the emitted light is split by a dichroic mirror
(cutoff wavelength λ= 690 nm) and imaged side by side on the same camera. The
split and imaging we achieve using a commercial device, OptoSplit (Cairn
Research, UK), which houses the dichroic mirror alongside adjustable mirrors to
produce and align the two images. We determine the color cross-talk to about 1%
only37. From the localization of single fluorophores we extract the coordinates and
reconstruct a superresolved image with the freely available ImageJ plugin Thun-
derSTORM64. The delayed addition of the co-monomer that binds to the fluor-
escent dye for dSTORM imaging was implemented in order enhance the signal
from the boundaries leading to a depletion of signal in the center of the particles, as
shown in Fig. 2, which improves contrast but is otherwise insignificant for our
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analysis. The reconstructed 2D images (composed of square pixels of edge size 15
nm) originate from a plane of ~500 nm thickness adjusted to the center of the
particles (see also Supplementary Fig. 7). This follows from our image recon-
struction protocol, where we set a corresponding threshold for the maximum width
of the Gaussian fitting the point image. The two-color images shown in Fig. 2 are
taken on dye-labeled pairs of particles located directly on the cover slide to make
sure that the imaging section intersects the particle at the same height. Images of
individual particles recorded in the bulk show no difference compared to the
particles located at the surface as shown in ref. 37, and therefore we believe the
sample cell boundary does not significantly affect the deformation and inter-
penetration recorded in the imaging plane.

Edge detection and contour smoothing of particles imaged by dSTORM. Our
goal now is to obtain a faithful contour of each particle and use it for measuring
different geometric features such as the particle area, area overlap and deforma-
tions. To this end we must first segment the image, that is separate the particle
from the background and determine the boundary. There are several methods in
image analysis to accomplish this, all with their advantages and pitfalls. More
sophisticated methods involve gradients or Laplacians of the image. What char-
acterizes an edge is a sharp change in intensity, making derivatives well suited to
capture their locations. We use the Laplacian of Gaussian edge detector in Matlab
(MathWorks, Inc., USA), which allows for edges to be selected based on their
strength, and not on image intensity values. It also produces closed contours
without branching, unlike methods based solely on thresholding. The Laplacian of
Gaussian edge detection consists of the following steps: first the image is smoothed
by convolution with a Gaussian kernel, then the Laplacian (second derivative in
2D) is calculated and finally the zero-crossings are found which correspond to
edges. Examples for the image segmentation done with this method, starting from a
dSTORM image of a typical round and a more compressed and deformed particle
are shown in Supplementary Fig. 8. The two particles also display different
intensities (i.e., density of blinking events detected), yet we can see that the overall
shapes and sizes are well captured, with a decrease in size and deformations clearly
visible for the second example. Nonetheless, the presence of significant roughness
of the contour remains an obstacle in characterizing shape deformations. Visual
inspection of the original deformed particle image clearly suggest five corners and
nearly flat facets and this are the features to isolate by image analysis. In order to
smooth the particle contours while maintaining the prominent shape features we
need to eliminate small scale shape fluctuations without significantly altering the
overall larger scale shape and corners. To this end we use the method of Fourier
descriptors65, which has been used for a variety of applications involving image
analysis. By taking the Fourier transform of the contour different spatial fre-
quencies can be separated, then, by appropriate filtering, a smoothed contour can
be retrieved and used as a starting point for further analysis. First, coordinates of
the boundary pixels with respect to the particle′s center of mass are extracted from
the segmented image and ordered counterclockwise. We thus obtain a discrete
curve [xj, yj] with j= 1...N where N is the number of pixels. Then, the coordinates
are transformed into complex numbers as zj= xj+ iyj. Now the Fourier descriptors
Z(k) are calculated using a discrete Fourier transform

ZðkÞ ¼ 1
N

XN�1

j¼0

zje
�i2πjk=N ðk ¼ 0:::N � 1Þ: ð1Þ

All the spatial information pertaining to the original contour is now encoded in
the Fourier descriptors and, through an inverse transform, the full contour can be
retrieved. The center of mass is used initially simply for centering the boundary
around the particle image. An accurate determination of it is otherwise irrelevant
since the descriptors inherit translation invariance from Fourier transforms. Since
fine details are encoded in higher frequency components, if those are set to 0 before
back transforming, noise can be eliminated and the contour smoothed. We are
essentially using a low pass filter, as commonly done in signal processing. The
truncated inverse transform z′j, using only N′ <N descriptors, is calculated as

z′j ¼
PN′=2

k¼�N′=2 ZðkÞei2πjk=N ðj ¼ 0:::N � 1Þ. The new contour coordinates are

simply obtained as x′j= Re(z′j) and y′j= Im(z′j). In Supplementary Fig. 9, we can
see how different choices of number of descriptors influence the resulting contour.
Already with N′= 30 we retrieve all the details and roughness of the original
contour, indicating that the eliminated descriptors are redundant. At the other
extreme, setting N′= 3, we lose instead too much detail. The contour has four soft
corners instead of the five, which can be visually identified. With N′= 6 we obtain
a very good representation of the features we can see from the image, noise is
removed while all corners are still captured. In this work we have used these
settings to smooth contours.

Next, we discuss the reproducibility and statistical error of the edge detection
procedure. To this end we generate synthetic dSTORM images of a disc of radius 430
nm or a similarly sized hexagon (edge length 430 nm). We randomly select points in
the area of a particle and repositioned them with a Gaussian error of 30 nm. Then we
apply the same procedure as described above to create an image. The contour analysis
is performed on this image. As shown in Supplementary Fig. 10 the uncertainty in the
location of the edge drops rapidly and reaches values of less than ±5nm for the
experimental conditions N > 10,000 points. Additional systematic errors arise from the
tradeoffs already described before such as the low-density tail, Supplementary Fig. 2,

and smoothness/geometrical accuracy, Supplementary Fig. 9. The latter will lead to
some smearing of sharp edges which can also be seen in the synthetic data,
Supplementary Fig. 10. From this we can estimate an imaging error of about ±10 nm
at the tip of edges. The accuracy of determining the contact lines and the overlap areas
shown in Fig. 2 are little affected by this as long as the bare resolution is smaller than
the edge length, which is the case for dSTORM (but not for standard microscopy). In
summary we estimate the reproducibility of the edge detection method in the most
relevant regime, extraction of the overlap area, to about ±5 nm or about 1% of the
unperturbed particle radius.

Data availability
The data sets generated during and/or analyzed during the current study are available
from the corresponding author on reasonable request.
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