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tRNA-derived fragments (tRFs) are a new classification of small non-coding RNAs
(sncRNAs) derived from the specific cleavage of precursors and mature tRNAs.
Accumulating recent evidence has shown that tRFs are frequently abnormal in several
cancers. Nevertheless, the role of tRFs in gastric cancer and its mechanism remain
unclear. In this study, we found abnormal expression of tRF-3017A (derived from tRNA-
Val-TAC) in gastric cancer tissues and cell lines and confirmed its effect on promoting the
invasion and migration of gastric cancer cells through functional experiments in vitro.
Analysis of clinicopathologic data showed patients with higher tRF-3017A were
associated with significantly higher lymph node metastasis. Mechanistic investigation
implies that tRF-3017A regulates the tumor suppressor gene NELL2 through forming the
RNA-induced silencing complex (RISC) with Argonaute (AGO) proteins. In this study, we
found that higher tRF-3017A were associated with significantly higher lymph node
metastasis in gastric cancer patients and the tRF-3017A may play a role in promoting
the migration and invasion of gastric cancer cells by silencing tumor suppressor NELL2.

Keywords: tRNA-derived fragment, gastric cancer, lymph node metastasis, NELL2, molecular mechanism
INTRODUCTION

Gastric cancer (GC) is one of the most common human cancers, which is the second leading cause
of cancer death worldwide, and its global burden is increasing (1, 2). In recent years, the incidence
and mortality rates of GC have been declining (3). However, GC still has the worst outcome of all
solid organ tumors, due to the frequent occurrence of late lymph node metastasis or distant
metastasis (4). Because the treatment of advanced GC is limited and the prognosis is poor, it is
urgent to find new biomarkers and prognostic indicators to reflect the disease status and develop
more therapeutic targets for this deadly disease.

tRNA-derived fragments (tRFs) are ubiquitous in all areas of biology. As short non-coding
RNAs, they are abundant and heterogeneous (5–7). Increasing studies have shown that tRFs aren’t
products from random degradation. Instead they are producted by specific cleavage of multiple pre-
tRNAs and mature tRNAs by different ribonucleases (8–11). tRFs are classified into two main
subgroups: shorter tRFs of length 14–36 nt and longer tRFs of lengths 30–40 nt (12–14). Angiogenin
(ANG) and other RNase cleave specific tRNAs and create longer tRFs (15). Dicer and ANG cleave
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specific tRNAs and produce shorter tRFs (16). Although the
naming of tRFs has not yet been unified, it is certain that there
are differences in the biological sources and functions of tRFs in
different subgroups (17). It has been indicated in studies that
tRFs play important roles in oncogenesis and cancer progression
(16, 18–21). tRFs can regulate tumor progression by competitive
binding of RNA binding proteins (22–24). It has also been
reported that tRFs can play an RNA silencing role similar to
that of miRNA, which is, mRNA silencing by forming RISC with
AGO protein (25, 26). Another study reported that a specific
tRNA-derived small RNA (tsRNA) named LeuCAG 3’ tsRNA
binds to mRNAs of ribosomal proteins to enhance efficient
translation (27). In summary, the main biological functions of
tRFs include regulation of gene expression, protein translation
and various cellular activities (28). Morever, recent studies have
suggested that tRFs can potentialy serve for prediction in breast
cancer (29–32), clear cell carcinoma (33, 34), colorectal cancer
(35, 36), and prostate cancer (37–39). Therefore, much attention
has been paid to these tRNA derivatives for cancer predictor and
therapeutic targets (20).

Abnormal expression of tRNA-derived fragments in GC was
detected through tRF&tiRNA array and we chose this upregulated
tRF-3017A for further study. tRF-3017A, a kind of specific
degradation product of mature tRNA-Val-TAC 3’ end, is
composed of 19 nt (5’-AGCCCCAGTGGAACCACCA’). Based
on qRT-PCR and clinicopathologic data analysis, we suggested
that the expression level of tRF-3017A was abnormally increased
in patients with lymph node metastasis of GC. The results of
functional experiments showed that tRF-3017A can promote GC
cells by targeting and regulating NELL2, its downstream mRNA.
Nerve epidermal growth factor-like like protein (NELL) was
originally discovered in chickens as a polymeric and
multimodular extracellular glycoprotein (40). Two NELL
mammalian homologues, named NELL1 and NELL2, have been
found in the human fetal brain cDNA library (41). NELL2 was
found enriched in the nervous system in the beginning and was
known to be involved in neural development (41–44). Previous
studies have shown that NELL2 is enriched in normal nerve cells
compared with nervous system tumors (45) and that it inhibits
cancer cell migration in renal cell carcinoma (46).

In this present study, we detected tRF-3017A expression level in
tissues of GC patients and GC cell lines, and further analyzed the
relevance between tRF-3017A and clinicopathologic features of GC.
Biological functions of tRF-3017A were explored by functional
experiments which identified its effect on migration and invasion.
Furthermore, we identified a potential molecular regulatory
relationship between tRF-3017A and NELL2 in GC progression.
MATERIALS AND METHODS

Tissues
Eighty-seven GC tissues and matched-paired noncancerous
adjacent tissues (NATs) were obtained from GC patients who
underwent surgical treatment in the First Affiliated Hospital of
China Medical University (Shenyang, China) between 2016 and
2017. All of these GC patients were confirmed by pathological
Frontiers in Oncology | www.frontiersin.org 2
diagnosis and agreed after being informed according to ethical
guidelines. No patients were treated with chemoradiotherapy or
targeted therapy before the operation. Matched-paired NATs
were obtained from areas more than 5 cm away from the lesion.
All tissue samples were put into liquid nitrogen immediately
after separation and then transferred to −80°C for long-term
storage. The research ethics committee of the First Affiliated
Hospital of China Medical University permitted this study which
conformed to the criteria of the declaration of Helsinki.

Cell Culture
The human gastric mucosal epithelial cell line (GES-1) was
obtained from BeNa Culture Collection (Henan, China). The
human GC cell lines MGC-803 and HGC-27 were purchased
from Shanghai Institutes for Biological Sciences, China Academy
of Science (Shanghai, China). AGS, MKN-45, and SNU-16 cells
were obtained from the American Type Culture Collection
(Manassas, Virginia). All cells were incubated in RPMI 1640
medium (HyClone) supplemented with 10% fetal bovine serum
(FBS) and cultured at 37°C in an atmosphere containing 5% CO2

(Thermo, Waltham, MA, USA).

Microarray Analysis
Tissues and matched NATs of 10 patients with GC were
prepared for the nrStarTM Human tRF&tiRNA PCR Array
(Arraystar, Lnc. Rockville, MD 20850 USA. Cat#: AS-NR-002)
analysis. Microarray hybridization and samples preparation
followed manufacturer’s standard protocols.

RNA Extraction and Quantitative Real‐
Time PCR (qRT-PCR)
According to the manufacturer’s agreement, the total RNA of GC
tissues and cells was extracted by TRIzol reagent (Invitrogen,
USA). Mir-X™ miRNA First-Strand Synthesis Kit (Clontech) or
PrimeScript RT reagent Kit (Takara) was used to synthesize the
complementary DNA (cDNA). TB Green® (RR820A, Takara)
was used to identify expression level of tRF-3017A and mRNAs
on the Light Cycler 480 II Real-Time PCR system (Roche
Diagnostics). The program consists of a 95°C temperature
cycle for 5 s, 60°C for 20 s, and 55°C for 30 s, repeating 45
times. Samples were analyzed in triplicate, and melting curve
analysis were used to identify the specificity of the primers. Cycle
threshold (Ct) was based on total cycles required for the TB
Green® signal to cross the threshold. The relative expression of
tRF-3017A in all samples were calculated using the Ct method
normalized to RNU6B (U6) and Glyceraldehyde phosphate
dehydrogenase (GAPDH) for mRNAs. Samples with a Ct >38
were considered negative. The primers were customized using
Sangon Biotech, and sequences are shown in Table S1. After the
reaction, 2-DDCt method was used to analyze the data results, and
the formula was shown as follows: DDCt = DCttumor[Ct(target)-Ct

(reference)]-DCtNATs[Ct(target)-Ct(reference)].

Cell Transfection
According to the cellular tolerance, six-well plates with 2 ml
culture medium were used to plate 2×105 cells per well. Cells
were transiently transfected by 50 nM tRF-3017A mimics or
February 2021 | Volume 10 | Article 570916
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corresponding negative control-mimics (NC-mimics) and 100
nM tRF-3017A inhibitor or NC-inhibitor (GenePharma) by
utilization of Lipofectamine 3000 Reagent (Thermo Fisher
Scientific). Short interfering RNAs (siRNAs) targeting NELL2
and pEX3 plasmid for overexpressing NELL2 were synthesized
by RiboBio and GenePharma. The final transfection
concentration of pEX3-NELL2 and si-NELL2 was 50 and 100
nM, respectively. Sequences of transfection reagents are shown in
Table S1. After 48 h transfection, cells were harvested and used
in subsequent experiments.

Transwell Assay
Transwells (REF3422, Corning, NY, USA) were performed to
transwell migration assay. 5×104 cells transfected with tRF-3017A
mimics or tRF-3017A inhibitor after 48 h were cultured with 200
ml RPMI medium (without FBS) in the upper chamber, and 600 ml
culture medium with 10% FBS was added to the bottom chamber.
Cotton swabs were cautiously used to remove the non-migratory
cells from the upper chamber after 24 h of incubation at 37°C with
5% CO2. After staining with hematoxylin and eosin (H&E), the
remaining cells were captured in 9 randomly selected visual fields
by utilization of a Leica DM3000 microscope (Leica, Wetzlar,
Germany). Color grab comparison method of Software Image-Pro
6.0 was used to count the remaining cells. For transwell invasion
experiments, Matrigel (356234, MA, USA) was added to the upper
chamber based on the above scheme.

Wound Healing Assay
2.5×104 cells transfected with tRF-3017A mimics or tRF-3017A
inhibitor after 48 h were plated in 12-well plates and cultured all-
night. The single-cell layer was nicked using the tip of a 200-
microlitre pipettor. Before adding the new medium (without
FBS), PBS was used to remove floating cells and scraped cell
fragments. Areas of wound were displayed at 200x magnification
under an inverted light microscope (Leica DMI3000B). Images
were captured at 0 and 24 h after the scratch was made. The
scratch area coverage, which reflects the migration ability of GC
cells, was analyzed by Image-J software (Media Cybernetics,
Rockville, MD, USA).

Cell Counting Kit-8 Proliferation Assay
The Cell Counting Kit-8 (CCK-8) (SA618, Dojindo Laboratories,
Kumamoto, Japan) was used to measure the capacity for cellular
proliferation according to the manufacturer’s instructions. 2×103

cells of HGC-27 were seeded into 96-well culture plates for 24,
48, 72, and 96 h, respectively. The microplate reader (Bio-Rad,
Hercules, CA, USA) was used to determine the optical density at
a wavelength of 450 nm.

Western Blot
Total protein was extracted via Total Protein Extraction kit
(T9300A, BCA Protein Assay Kit, Takara). SDS-PAGE gels
(KGMG010W10, KeyGen) and polyvinyl difluoride (PVDF)
membranes (ISEQ00010, Millipore, MA, USA) are used for
protein electrophoresis and transfer, respectively. 5% free fat milk
emulsion was used to block the membrane at room temperature for
2 h. Then the primary antibody was incubated overnight at 4°C.
Frontiers in Oncology | www.frontiersin.org 3
Primary antibodies are NELL2 antibody 1:1,000 dilution (ab181376,
rabbit monoclonal antibody, Abcam, CA, USA) and GAPDH
antibody 1:5,000 dilution (ab21612, rabbit polyclonal antibody,
Abcam, CA, USA). Secondary antibodies which anti-rabbit
(1:5,000, ZB2301, ZSGB-BIO, Beijing, China) were added at 25°C
for 1.5 h, then membranes were imaged by GelCapture software
(DNR Bio-Imaging Systems). For experiments based on GC tissue
samples, MinuteTM (Tissues Total Protein Extraction Kit for WB,
Cat No. SD-001, MN, USA) was used to extract total protein.

RNA Immunoprecipitation (RIP) Assay
The Magna RIP RNA-binding protein immunoprecipitation kit
(17-700, Millipore, MA, USA) was used to perform the RIP assay
for Ago2. Anti-Ago2 antibody (ab32381, Abcam, CA, USA) and
control IgG were used for the RIP assay. The expression of tRF-
3017A and NELL2 immunoprecipitated by Ago2 were evaluated
by qRT-PCR.

Dual-Luciferase Reporter Assay
To determine the target regulating relationship between tRF-
3017A and NELL2 mRNA, a luciferase reporter assay was
implemented using AGS cells. 3 ‘UTR of NELL2 mRNA
including the tRF-3017A binding site and it’s mutant construct
were inserted in the luciferase reporter vector of pmirGLO. The
luciferase reporter was cotransfected with NELL2-3’UTR fusion
vector and tRF-3017A mimics, inhibitor and corresponding NC.
Cells were harvested 48 h later. And then the luciferase reporter
assay (E1910, Promega, USA) and Infinite M200 PROmicroplate
reader (Tecan) were used to detect the luciferase activities (firefly
and renilla).

Statistical Analysis
All data were analyzed by SPSS version 21.0 (Chicago, IL, USA),
GraphPad Prism, Image-Pro Plus, and Image J software. The
histogram drawn according to -DDCt is used to describe the
expression level of tRF-3017A in 87 GC patients. The scatter plot
drawn according to -DCt and paired t test was used to describe
the relative expression of tRF-3017A in 87 patients with cancer
tissue and its paired NATs. Chi-square test and ROC analysis
were used to analyze the correlation between expression of tRF-
3017A and clinicopathologic data of 87 GC patients. The relative
expression of tRF-3017A and clinicopathologic data in 87
patients were used for ROC analysis. Pearson correlation was
performed to determine correlation coefficients. All experiments
were accomplished with the lowest three times. Mean value ±
standard deviation (SD) was used to list Data. The differentiation
between two groups was compared with the Student’s t-test.
RESULTS

Expression of tRF-3017A Is Increased in
GC Tissues and Cell Lines
According to the tRF&tiRNA PCR array data, we analyzed the
differential expression of tRNA fragments (fold change >2 and
P <0.05) and found that six were upregulated and 12 were
downregulated in GC tissues compared with NATs.
February 2021 | Volume 10 | Article 570916
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Statistically significant gene results were shown in Figure S1A
and Table S3. An upregulated tRF, tRF-3017A was selected for
following study. tRF-3017A is a degradation product of mature
tRNA-Val-TAC which specific cleave at the 3’ end of T-loop
(Figure 1A). We investigated the expression of tRF-3017A using
qRT-PCR in 87 cases of GC tissues and matched-paired NATs
and found upregulated tRF-3017A in 62 of 87 (71.2%) pairs of
GC tissue relative to matched-paired NATs (-DDCt, Figure 1B).
Based on paired t test, the expression of tRF-3017A was higher in
GC tissues than in matched-paired NATs (-DCt, P < 0.001,
Figure 1C). We then detected the expression level of tRF-3017A
in GC cell lines (MKN-45, MGC-803, SNU-16, AGS, and HGC-
27), using its expression level in GES-1 as a reference. We found
increased expression of tRF-3017A in GC cells (Figure 1D).

Chi-square test was used to analyze the clinicopathologic data of
87 GC patients to further explore the potential clinical value of tRF-
3017A expression level and clinicopathologic features (Table 1). We
found that higher tRF-3017A expression level was significantly
associated with higher lymph node metastasis (P = 0.016). ROC
curves were carried out to identify if tRF-3017A could function as a
diagnostic tool to differentiate GC tissues from matched-paired
NATs or to indicate more detailed clinicopathologic features.
Unfortunately, the tRF has not demonstrated satisfactory
diagnostic efficacy (Figures S1B, C).
Frontiers in Oncology | www.frontiersin.org 4
Collectively, these results suggest that up-regulated
expression of tRF-3017A may play a role in the metastasis of GC.

tRF-3017A Promotes the Invasion and
Migration of GC Cells
To further explore whether tRF-3017A could regulate biological
function in GC cells, we knocked down and overexpressed tRF-
3017A in HGC-27 and AGS cells, and qRT-PCR was used to
detect the overexpression efficiency (Figure S1D). Transwell
assay was performed to evaluate the migratory and invasive
capacities of GC cells transfected tRF-3017A mimics or inhibitor
and their matching NC. As shown in Figure 2A, GC cells treated
with 3017A-mimics showed significantly enhanced invasion and
migration abilities. In contrast, GC cells treated with 3017A-
inhibitor had markedly weaker abilities than in the NC group
(Figure 2B). A wound healing assay was then conducted to
observe whether tRF-3017A could affect the motility of GC cells.
Different scratch healing rates in wound healing analysis showed
that motile ability was significantly enhanced after tRF-3017A
overexpression and decreased after tRF-3017A knockdown
(Figures 3A, B). CCK-8 proliferative assays was performed to
detected how tRF-3017A affects GC cell proliferation. However,
proliferation of GC cells were not affected by knockdown/
overexpression of tRF-3017A (Figure S1E).
A B

C D

FIGURE 1 | Expression of tRF-3017A in GC tissues and cell lines. (A) tRF-3017A is a 3’ fragment of mature tRNA-Val-TAC. The specific cleavage site is located at
the T-loop. Image from tRNADB (http://trna.bioinf.uni-leipzig.de/DataOutput/Result?ID=tdbD00011005). (B) Expression level (-DDCt) of tRF-3017A was quantified in
GC tissues compared with matched-paired NATs among 87 GC patients by qRT-PCR, and U6 RNA was used as a qRT-PCR control for tRF-3017A. Each column
represents up/down-regulated tRF-3017A expression in one GC patient. (C) Expression of tRF-3017A was upregulated (-DCt, paired t test) in GC tissues relative to
matched-paired NATs among 87 GC patients by qRT-PCR. (D) Expression of tRF-3017A in GC cell lines. GES-1, human gastric mucosal epithelial cell, was used as
a qRT-PCR control. *P < 0.05; **P < 0.01.
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tRF-3017A May Play a Role in Regulating
the Migration and Invasion of GC Cells by
Targeting NELL2
We used the 3’ UTR complementary binding principle and
mRNA target prediction algorithms to predict downstream
target genes of tRF-3017A using online databases, and to
investigate the molecular mechanism of tRF-3017A in
regulating GC cells. As shown in Figure 4A, we evaluated
target gene results that overlapped between miRanda,
TargetScan, TargetRank, and tRFTar and reviewed available
literature to improve reliability and narrow the prediction
range. We comprehensively considered structure scores, free
energy ranking and reports of existing studies, and selected
eight higher ranking genes, ESAM, ARMCX3, NELL2,
MARCH1, TRIM38, TPPP, EPHA4, and SOCS5. Preliminary
validating results by qRT-PCR indicated that NELL2 changed
the most of all and that its expression levels were upregulated
after transfection with tRF-3017A inhibitor or downregulated
after transfection with tRF-3017A mimics (Figures 4B, C).
Although there was also a statistically change in EPHA4,
NELL2 was selected for further study due to its most
significant change. To verify the regulatory relationship
between tRF-3017A and NELL2 at the protein level, we
transfected GC cells with tRF-3017A mimics or inhibitors and
detected NELL2 expression level by Western blot. tRF-3017A
overexpression significantly decreased protein expression of
NELL2 in GC cells. In contrast, tRF-3017A inhibition
significantly increased protein expression of NELL2 in GC cells
(Figures 4D, E). Transwell assay was carried out to validate the
biological function of NELL2 in HGC-27. As shown in Figure
4F, silencing NELL2 could significantly increase GC cells
migration and invasion. While migration and invasion of GC
cells were impaired by NELL2 overexpressing. The transfection
TABLE 1 | Correlation between tRF-3017A expression and clinicopathological
factors in tissue samples of GC patients (n = 87).

Variable tRF-3017A expression P-value

Low no. (%) High no. (%)

Age 0.144
<60 11 (35.5) 29 (51.8)
≥60 20 (64.5) 27 (48.2)

Gender 0.126
Male 21 (37.7) 46 (82.1)
Female 10 (32.3) 10 (17.9)

Tumor size (cm) 0.411
<4.5 15 (48.4) 22 (39.3)
≥4.5 16 (51.6) 34 (60.7)

Histologic grade 0.807
Well/moderately 13 (41.9) 25 (44.6)
Poorly 18 (58.1) 31 (55.4)

pT stage 0.558
pT1 2 (6.5) 5 (8.9)
pT2 5 (16.1) 5 (8.9)
pT3 9 (29) 12 (21.4)
pT4 15 (48.4) 34 (60.7)

pN stage 0.016*
pN- 15 (48.4) 13 (23.2)
pN+ 16 (51.6) 43 (76.8)

pTNM stage 0.064
I 4 (13) 8 (14.3)
II 13 (41.9) 9 (16.1)
III 13 (41.9) 36 (64.3)
IV 1 (3.2) 3 (5.4)

Invasion into lymphatic vessels 0.066
Absent 11 (35.5) 10 (17.9)
Present 20 (64.5) 46 (82.1)

Venous invasion 0.691
Absent 27 (87.1) 47 (83.9)
Present 4 (12.9) 9 (16.1)
tRF-3017A, tRNA-derived fragment 3017A; pT, pathological Tumor; pN, pathological
Node; pTNM, pathological Tumor-Node-Metastasis; *P < 0.05.
Bold value indicates P‐value was lower than 0.05 with statistical significance.
A

B

FIGURE 2 | Transwell assays verified the effect of tRF-3017A on migration and invasion of GC cells. (A) Migration and invasion of GC cell lines HGC-27 and AGS
were investigated after tRF-3017A-mimics or NC-mimics. (B) Migration and invasion of GC cell lines HGC-27 and AGS were investigated after tRF-3017A-inhibitor or
NC-inhibitor. Representative images and bar graphs were depicted. Data are shown as mean ± SD. NC, negative control. *P < 0.05; **P < 0.01.
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efficiency of overexpressing NELL2 and knockdown NELL2 was
shown in Figure S1F.

Then qRT-PCR was performed to examine the expression of
NELL2 relative to tRF-3017A. We found that mRNA level of
NELL2 was downregulated in cancer tissues compared with
NATs among 84 cases (three cases did not participate in this
analysis due to insufficient cDNAs) of GC tissues (Figure 4G).
Correlation between expression level of tRF-3017A and NELL2
was analyzed and the correlation coefficient was -0.41 (P < 0.001)
(Figure 4H), which suggesting a moderate negative relevance
between tRF-3017A and NELL2 RNA expression levels.

In order to verify whether tRF-3017A regulates NELL2
through miRNA-like mRNA silencing mechanism, luciferase
report assay and RIP assay were performed. Luciferase reporter
assay based on complementary pairing in the 3 ‘UTR region of
NELL2 (Figure S1G) showed that relative luciferase activity of
luciferase mRNA containing the wild-type NELL2-3’UTR could
significantly increased or decreased by tRF-3017A inhibitor or
mimics. In contrast, mutant NELL2-3’UTR luciferase activity
was not affected (Figure 4I). These results demonstrated that
tRF-3017A could specifically bind 3’UTR of NELL2. Western
Blot experiments for 12 patients with significant differential tRF-
3017A expression from the study cohort showed that the
expression of tRF-3017A inversely correlated with NELL2
(Figure S1H). Furthermore, RIP based on Ago2 was
performed in GC cells to explore the level of tRF-3017A and
NELL2 immunoprecipitated by Ago2 via qRT-PCR. The results
of Ago2-RIP assay validated that both tRF-3017A and NELL2
interact directly with Ago2 (Figure 4J).
Frontiers in Oncology | www.frontiersin.org 6
The Migration and Invasion Ability of GC
Cells Which Effected by tRF-3017A Could
Be Largely Rescued by Inhibition or
Overexpression of NELL2
Rescue experiments were performed to further support the
results that tRF-3017A affects the ability of migration and
invasion of GC cells by targeting NELL2. Our results showed
that knockdown of NELL2 restores impaired migration and
invasion ability induced by knocking down tRF-3017A
(Figures 5A, B). Likewise, the enhanced ability of migration
and invasion induced by overexpression of tRF-3017A was
reversed by overexpressing NELL2 (Figures 6A, B). In
conclusion, our results demonstrated that tRF-3017A may be
in action in promoting GC cells migration and invasion by
regulating its downstream target gene NELL2. This presents a
potential mechanism by which tRF-3017A promotes the
invasion and migration of GC cells (Figure 7).
DISCUSSION

The development of GC is accompanied by the gradual
accumulation of multiple genes and epigenetic changes in a
complex regulatory interaction network (47, 48). Early studies
suggested that tRFs are the products of random degradation of
tRNA (49, 50). With the advance of sequencing technology, we
gradually realized that tRFs play crucial roles in different sorts of
biological processes and that they may play an important role in
A

B

FIGURE 3 | The scratch wound healing assay on GC cell lines. (A) The scratch wound healing assay was used to determine the cell motility ability in GC cell lines
HGC-27 and AGS transfected with tRF-3017A-mimics or NC-mimics. (B) The scratch wound healing assay was used to determine the cell migration ability in GC
cell lines HGC-27 and AGS transfected with tRF-3017A-inhibitor or NC-inhibitor. Representative images and bar graphs were depicted. Data are shown as mean ±
SD. NC, negative control. **P < 0.01.
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A B C

D F

E

G H

I J

FIGURE 4 | tRF-3017A may play a role in regulating the migration and invasion of GC cells by regulating NELL2. (A) Venn diagram evaluated the overlapped genes
among miRanda, TargetScan, TargetRank, and tRFTar predictions. (B, C) The expression levels of eight predicted target genes were performed to detect in AGS
cell line after transfection with tRF-3017A-inhibitor or mimics by qRT-PCR. (D, E) The expression levels of NELL2 were detected in AGS cell line after transfection
with tRF-3017A-inhibitor or mimics by western blot. (F) GC cell migration and invasion ability were detected after transfected with si-NELL2 and pEX3-NELL2.
(G) Expression of NELL2 was downregulated (-DCt, paired t test) in GC tissues relative to matched-paired NATs among 84 GC patients by qRT-PCR. (H) Correlation
analysis of relative expressions of tRF-3017A and NELL2 and “r” is the correlation coefficient. (I) The luciferase activity of wild type NELL2 3’UTR or mutant NELL2
3’UTR after transfection with tRF-3017A mimics or 3017A-inhibitor and their corresponding NC in AGS cell line. (J) The result of the RIP based on Ago2 showed that
tRF-3017A may exert its miRNA-like silencing effect by combining Ago2, thus targeting NELL2. Representative images and bar graphs were depicted. Data are
shown as mean ± SD. NC, negative control. *P < 0.05; **P < 0.01.
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tumorigenesis and progression. Therefore, the biological
functions of these tRFs have attracted growing attention.
Increasing evidence shows that tRFs play important roles in
oncogenesis and the development of various tumors (51–53).
tRF-1001 is essential for proliferation in colorectal cancer, and
knocking down tRF-1001 arrests tumor cells in the G2 phase
(14). Stable expression of tRF-CU1276 can inhibit a DNA
dynamics regulator, endogenous RPA1, thus regulating the
Frontiers in Oncology | www.frontiersin.org 8
molecular DNA damage response and inhibiting proliferation
in lymphoma cell lines (54). The newly identified tRF-1280,
previously known as miR-1280, can inhibit metastasis in
colorectal cancer (36). Moreover, the metastasis and
progression of breast cancer can be inhibited by endogenous
tRFs replacing YBX1 (23). Nevertheless, the expression level,
potential function, and molecular mechanism of tRFs in GC are
still indistinct.
A

B

FIGURE 5 | Knockdown of NELL2 restores impaired migration and invasion ability induced by knocking down tRF-3017A. (A) GC cell migration and invasion ability
were detected after co-transfected with tRF-3017A inhibitor and si-NELL2. (B) The scratch wound healing assay was used to detect GC cell migration ability after
co-transfection. Data are shown as mean ± SD. NC, negative control. *P < 0.05; **P < 0.01.
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In the present study, in order to find the differentially
expressed tRNA-derived fragments in GC, we performed
tRF&tiRNA microarray analysis on 10 pairs of GC and its
paired NATs. We selected tRF-3017A which is upregulated for
further study. We detected tRF-3017A expression level and
found that it was abnormally highly expressed in GC tissues
and cell lines. To identify the relevance between tRF-3017A and
Frontiers in Oncology | www.frontiersin.org 9
clinicopathologic features, the chi-square test was performed and
suggested the association between higher expression of tRF-
3017A and lymph node metastasis. It is well known that the
occurrence of GC metastasis is a key factor affecting patient
prognosis. Therefore, we explored the diagnostic value of tRF-
3017A for occurrence and lymph node metastasis of GC through
ROC analysis. Unfortunately, tRF-3017A has not demonstrated
A

B

FIGURE 6 | Enhanced ability of migration and invasion induced by overexpression of tRF-3017A was restored by overexpressing NELL2. (A) GC cell migration and
invasion ability were detected after co-transfected with tRF-3017A mimics and pEX3-NELL2. (B) The scratch wound healing assay was used to detect GC cell
migration ability after co-transfection. Data are shown as mean ± SD. NC, negative control. **P < 0.01.
February 2021 | Volume 10 | Article 570916

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Tong et al. tRF in Gastric Cancer
satisfactory diagnostic efficacy. The aberrant tRF-3017A
expression level in GC tissues and cell lines has never been
reported. Thus, in this study, we are the first to reveal the
association between tRF-3017A and GC lymph node metastasis.

In terms of mechanisms, previous studies have shown that tRFs
play important roles in RNA silencing through the complement of
tRFs and target mRNA. 3’ tRFs were found to bind with Ago2,
which is important in RNA interference (RNAi), for target
recognition (26, 55, 56). Some studies indicate that tRFs bind
directly to target mRNA, resulting in microRNA like effects (57,
58). For example, tRF-CU1276 in B-cell lymphoma regulates the
molecular response to DNA damage by directly binding to the
3’UTR of RPA1 (54). tRF5-Glu was found to inhibit cell
proliferation in ovarian cancer through directly binding to the 3’
UTR of BCAR3 (59). In this present study, it was observed through
functional experiments that the migration and invasion ability of
GC cells were promoted by the increase of tRF-3017A and also
inhibited by the absence of tRF-3017A. Based on the reported RNAi
mechanism, we further explored the mechanism of tRF-3017A
inducing GC metastasis. According to the 3’ UTR complementary
combination principle, the mRNA target prediction algorithm, the
reference of existing research and validation of RNA and protein
levels, we selected the possible regulated target genes, NELL2,
downstream of tRF-3017A. Existing studies have shown that
NELL2 is enriched in paracancer tissue and can inhibit clear cell
Frontiers in Oncology | www.frontiersin.org 10
carcinoma metastasis. Therefore, we attempted to verify whether
NELL2 participated in the mechanism promoting GC metastasis of
tRF-3017A. Correlation analysis showed that there is a moderate
negative correlation between tRF-3017A and NELL2 expression.
Knockdown and overexpression experiments validated that NELL2
could inhibit the migration and invasion of GC cell. Further
luciferase report analysis and RIP-Ago2 assay demonstrated that
tRF-3017A could form complex with Ago2 to target silencing
NELL2. In addition, results of RESCUE experiments supported
that tRF-3017A affects the migration and invasion of GC cells by
regulating its downstream target gene NELL2. Our results show that
tRF-3017A specifically bind to the 3’ UTR of NELL2 by interacting
with Ago2 and negatively regulate NELL2 expression, similar to the
mechanism of miRNA-mediated target gene silencing. In summary,
this study verified that a tRNA derived fragment, tRF-3017A, can
induce GC metastasis by targeting NELL2. The mechanism of tRF-
3017A induced metastasis in which NELL2 is involved may provide
a new therapeutic target for inhibiting GC metastasis.
CONCLUSIONS

In conclusion, this study found that tRF-3017A is abnormally
highly expressed, revealed that the upregulated expression of
tRF-3017A is associated with lymph node metastasis in GC and
FIGURE 7 | Working model illustrating the mechanism in which tRF-3017A may promote GC cell migration and invasion by targeting NELL2. RISC, RNA-induced
silencing complex.
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demonstrated that tRF-3017A promotes migration and invasion
of GC cell lines. Moreover, we revealed that tRF-3017A promotes
GC through regulation of NELL2 in a mechanism similar to
miRNA-mediated target gene silencing.
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