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a b s t r a c t

The COVID-19 pandemic continues to wreak havoc on the world’s population’s health and well-
being. Successful screening of infected patients is a critical step in the fight against it, with radiology
examination using chest radiography being one of the most important screening methods. For the
definitive diagnosis of COVID-19 disease, reverse-transcriptase polymerase chain reaction remains
the gold standard. Currently available lab tests may not be able to detect all infected individuals;
new screening methods are required. We propose a Multi-Input Transfer Learning COVID-Net fuzzy
convolutional neural network to detect COVID-19 instances from torso X-ray, motivated by the latter
and the open-source efforts in this research area. Furthermore, we use an explainability method to
investigate several Convolutional Networks COVID-Net forecasts in an effort to not only gain deeper
insights into critical factors associated with COVID-19 instances, but also to aid clinicians in improving
screening. We show that using transfer learning and pre-trained models, we can detect it with a high
degree of accuracy. Using X-ray images, we chose four neural networks to predict its probability.
Finally, in order to achieve better results, we considered various methods to verify the techniques
proposed here. As a result, we were able to create a model with an AUC of 1.0 and accuracy, precision,
and recall of 0.97. The model was quantized for use in Internet of Things devices and maintained a
0.95 percent accuracy.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

The Coronavirus (COVID-19) is a viral disease caused by hard
cute respiratory syndrome coronavirus 2 (SARS-CoV-2). The out-
reak seems to have a detrimental impact on the market and
ealth. Many nations are challenged by the medical tools nec-
ssary for COVID-19 detection. They are looking forward to de-
eloping a low-cost, fast tool to detect and diagnose the virus
fficiently. Even though a chest X-ray (CXR) scan is a useful
andidate, the images created by the scans must be analyzed,
nd large numbers of evaluations need to be processed. A CXR of
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individuals is a vital step in the struggle against COVID-19. This
disease causes pulmonary opacities and bilateral parenchymal
ground-glass, sometimes with a peripheral lung distribution and
a morphology. Several Deep Learning (DL) techniques revealed a
firmly optimistic accuracy of COVID-19 patient discovery via the
use of CXRs [1] [2]. Because most hospitals have X-ray machines,
it is the radiologists’ first choice. Automatic diagnosis of COVID-19
from chest pictures is particularly desirable because radiologists
are limited and also busy in pandemic conditions. Despite the fact
that most machine learning models include a margin of error,
automation can be critical for screening patients who can then
be assessed with more precise tests.

Image segmentation is an essential procedure for most med-
ical image analysis tasks. Having great segmentations will help
clinicians and patients provide essential information for 2-D
and 3-D visualization, surgical preparation, and early disease
detection [3]. Segmentation describes regions of interest (ROIs),
e.g., lung, lobes, bronchopulmonary segments, and infected areas
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r lesions at the CXR or computed tomography (CT) images.
egmented regions could be further used to extract features
or description and other applications [4]. Automated computer-
ided diagnostic (CADx) tools powered by artificial intelligence
AI) techniques to detect and distinguish COVID-19 related nasal
bnormalities must be tremendously valuable, given the signif-
cant number of patients. These tools are particularly vital in
laces with inadequate CT accessibility or radiological experience,
nd CXRs create fast, higher throughput triage in mass casualty
ituations. These instruments combine radiological picture pro-
essing components with computer vision to identify common
isease indications and localize problematic ROIs. At the mo-
ent, recent advances in machine learning (ML), especially DL
pproaches using convolutional neural networks (CNNs), have
emonstrated promising performance in identifying, classifying,
nd measuring disease patterns in medical images in CT scans
nd CXRs [5–13].
In the past decades, Fuzzy logic has represented a vital role

n many research areas [10]. Fuzzy logic is an offshoot of fuzzy
et theory, which reproduces reasoning and human thinking to
oost the procedure’s efficacy when managing uncertain or vague
ata [13].
With little loss in model accuracy, post-training quantization

s a conversion technique that can reduce model size while im-
roving CPU and hardware accelerator latency. You can quantize
TensorFlow floating model that has already been trained by

onverting it to TensorFlow Lite format with the TensorFlow Lite
onverter.
As a result, the goal of this research is to use ML to solve the

roblem of identifying COVID-19, using X-rays. VGG16, ResNet
52V2, InceptionV3, and EfficientNetB3 were chosen as the neural
etworks to predict disease probability. Finally, in order to obtain
etter results, we use several techniques proposed here, such as
uzzy filters and MultiInput networks. According to a fuzzy equal
elation, fuzzy rough set-based approaches find reduct directly
n initial data. The difference between items is preserved by
fuzzy relation. The classification precision can be improved
sing a fuzzy rough set approach. As a result, we were able
o produce models with an Area Under Curve (AUC) of 1.0 and
everal variations with very high-performance evaluation metrics
ike precision, accuracy, and recall. To quantize the model, we use
ensorFlow Lite Converter with a 0.95 accuracy.
This study’s main novelty uses a multi-input network with a

ombination of segmented and non-segmented images in a neural
etwork composed of two pre-trained networks. In a nutshell, the
rimary contributions of this paper are:

• use a multi-input approach to CXR with COVID-19 classifi-
cation;

• apply a trapezoidal membership function to generate fuzzy
edge images of CXR with COVID-19;

• obtains classification models with AUC of 0.99 and recall of
100% to CXR COVID-19 detection.

. Literature review

In epidemic regions, COVID-19 presumed patients are in im-
ediate demand for identification and suitable therapy. Never-

heless, medical images, mainly chest CT, include hundreds of
ieces that require a very long time for those experts in diagnos-
ng. Additionally, COVID-19, being a new virus, has comparable
ymptoms to several different kinds of pneumonia, which ne-
essitates radiologists to collect many experiences for attaining
more accurate diagnostic operation. Therefore, AI-assisted di-
gnosis utilizing medical images is highly desirable [4]. Several
tudies aim to separate COVID-19 patients from non-COVID-19
2

subjects. The researchers distinguished pneumonia manifesta-
tions with higher specificity from that of viral pneumonia on
chest CT scans. It was noted that COVID-19 pneumonia was
shown to be peripherally distributed together with ground glass
opacities (GGO) and vascular thickening [14]. Abdel-Basset et al.
[1] propose a hybrid COVID-19 detection model based on an im-
proved marine hunters algorithm (IMPA) to get X-ray image seg-
mentation. The ranking-based diversity decrease (RDR) strategy
enhances the IMPA operation to achieve better alternatives from
fewer iterations. The experimental results reveal that the hybrid
model outperforms all other algorithms for a range of metrics.
Abdul Waheed et al. [1] present a process to generate synthetic
chest X-ray (CXR) images by developing an Auxiliary Classifier
Generative Adversarial Network (ACGAN) [14]. The segmentation
approaches in COVID-19 programs can be mostly grouped into
two different classes, i.e., the lung-region-oriented approaches
as well as the lung-lesion-oriented procedures. The former lung-
region-oriented procedures aim to separate lung areas, i.e., entire
lung and lung lobes, from other areas in CT or X-ray, which is
considered as a requisite measure in COVID-19 [4]. Jin et al. [15]
shows a two-stage pipeline for screening COVID-19 in CT images,
where the entire lung area is first detected through an efficient
segmentation network based on UNet+. Wang proposes a novel
COVID-19 Pneumonia Lesion segmentation system (COPLE-Net)
to better deal with the lesions with various scales and looks [16].
Chouhan et al. [6] approach extract features from images using
several pre-trained neural network models. The study uses five
distinct models, examined their performance, and combined out-
puts, which beat individual models, reaching the state-of-the-art
performance in pneumonia identification. The study reached an
accuracy of 96.4% with a recall of 99.62% on unseen data from
the Guangzhou Women and Children’s Medical Center dataset.
Zheng et al. [17] developed a weakly-supervised deep learning-
based software utilizing 3D CT volumes to identify COVID-19.
The lung region was segmented using a pre-trained UNet; then,
the segmented 3D lung region was fed into a 3D deep neural
network to foretell the probability of COVID-19 infectious. The
present study presents a different approach from the studies pre-
sented, using a multi-input architecture and segmented images in
conjunction with non-segmented images. To extract information
from fabric photos, Lin et al. propose a multi-input neural net-
work. The segmented small-scale image and the related features
collected using standard methods are the inputs. Experiments
suggest that including these manually extracted features into a
neural network can increase its performance to a degree [18].
For identifying autism, Epalle et al. propose a multi-input deep
neural network model. The architecture of the model is built
to accommodate neuroimaging data that has been preprocessed
using three different reference atlases. For each training exam-
ple, the proposed deep neural network receives data from three
alternative parcellation algorithms at the same time and learns
discriminative features from the three input sets automatically.
As a result of this process, learned features become more general
and less reliant on a single brain parcellation approach. The study
used a collection of 1,038 real participants and an augmented set
of 10,038 samples to validate the model utilizing cross-validation
methods. On genuine data, the study achieve a classification
accuracy of 78.07 percent, and on augmented data, the model
reach a classification accuracy of 79.13 percent, which is about
9% higher than previously reported results [19].

3. Background

3.1. Blind/referenceless image spatial quality evaluator

Blind/referenceless image spatial quality evaluator (BRISQUE)
[20,21] is a reference-less quality assessment technique. The
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RISQUE algorithm estimates the quality score of an image with
omputational performance. The algorithm selects the pointwise
umbers of sectionally normalized luminance signs and measures
mage naturalness based on measured differences from a natural
icture form. The algorithm models the incidence of pairwise
tatistics of neighboring normalized luminance signals, which
rovide deformity orientation information. Though multiscale,
he version applies to calculate features making it computation-
lly fast and time-efficient [20,21].
The BRISQUE model utilized a spatial method. First, a locally

ormalized luminance, also known as Mean Subtracted Contrast
ormalized (MSCN) [20], is calculated as the following equation:

(m, n) =
I(m, n) − µ(m, n)

σ (m, n) + c
(1)

where µ(m, n) is the local mean, I(m,n) is the intensity image,
and normalizes using local variance σ (m,n). N are spatial indices,
M and N are the image height and width, respectively, to avoid
a zero denominator (variance). The local mean µ(m,n) and local
variance δ(m,n) is calculated using the following equations:

µ(m, n) =

k∑
k

= −k
L∑
l

=−L wk,lIk,l(m, n) (2)

σ (m, n) =

√ K∑
K

=−K

L∑
l

=−L wk,l(Ik,l(m, n) − µ(m, n))2 (3)

here w = {wk,l|k = −K , . . . , K , l = −L, . . . , L}

.2. K-means segmentation method

K-means clustering is a common segmentation technique in
ixel-based methods. Clustering pixel-based approaches have low
omplexity in comparison to other region-based approaches. K-
eans clustering is adequate for image segmentation because

he amount of clusters is usually known for images of particular
reas of the body. K-means is a clustering algorithm to partition
ata. Clustering is the procedure for grouping data points with
imilar feature vectors into several clusters. Let the feature vec-
ors obtained from l clustered data be X = {xi|i = 1, 2, . . . , /}.
he generalized algorithm starts k cluster centroids C = {cj|j =

, 2..., k} by randomly choosing k characteristic vectors from X.
ext, the feature vectors are grouped into k clusters using a
hosen distance measure, such as Euclidean distance [22].

.3. Fuzzy Edge images using trapezoidal membership functions

Edge detection is the strategy used most often for segmenting
mages based on fluctuations in intensity. Edge detection is a
equirement for image segmentation because it usually allows
he image to be represented by black and white colors. Edge
etection identifies the size and shape of an item. A better edge
etection method is very likely to be a valuable tool for several
pplications. A digital image is a discrete description of reality.
he image is composed of the color of the pixels and the position
f these objects. Any potential treatment of the picture will have
o account for the image’s discretization issues. For instance, at
imes, it is not possible to discern which pixel belongs to which
tem. Even a human has some difficulty with the place of the
dges on an image. Conventional segmentation techniques such
s watershed, region growing, and thresholding are suitable for
egmenting regions with clear boundaries. However, for cases
ith boundaries and inhomogeneity, these methods cannot help
egment the areas. Therefore, the fuzzy logic appears as a suitable
hoice for tackling these edges’ representation [23] [24–27].
3

Fuzzy systems are an option to the classic boolean logic that
only has two states: false or true. The membership values have
been signaled by either 0 absolute false or 1 for complete accu-
racy and range. Fuzzy systems overcome the uncertainties in the
information and solve image processing [28]. In a fuzzy inference
system (FIS) [24], a fuzzy set declares each fuzzy number and
requires a predetermined range of crisp with a grade of mem-
bership. The fuzzy sets of input membership functions transfer
crisp inputs into fuzzy inputs. The set is explained as follows
X = x1, x2, . . . , xn where, x is an element µ in the set X. A
membership worth expresses the grade of membership linked to
each element xi in a fuzzy set A, which reveals a combination
A = µ1(x1), µ2(x2), ..., µn(xn).

3.3.1. Fuzzy Trapezoidal membership function
Membership function (MF) is a curve that defines how every

pixel from the input is redirected to a membership value between
1 and 0. The MF curve is a function of a vector x and is determined
by four scalar parameters b, a, c, and d [29,30].

3.4. Transfer learning

The use of DL and CNN methodologies in various computer
vision software has been grown quickly. DL draws its power
to optimize multiple neuron layers connected as a system that
includes operators and linear.

A convolutional neural network is a type of feed-forward
neural network broadly employed for picture-based classifica-
tion, object detection, and recognition. The fundamental principle
is using convolution, which generates the filtered characteristic
maps piled over each other [31].

A CNN is a structure of DL that measures the convolution be-
tween the weights along with a picture input. It selects attributes
from the input data as opposed to conventional ML methods.
During the learning process, the optimal values to the convolution
coefficients, using a pre-defined price function, are discovered,
based on which the characteristics are automatically determined.
Convolution is a method that takes a little matrix of numbers
(known as kernel or filter), pass it on an image and change it
based on the values from the filter. Subsequent attribute map
values are calculated according to the following formula [32]:

G[m, n] = (f ∗ h)[m, n] =

∑
i

∑
k

h[j, k]f [m − j, n − k] (4)

The convolutional layer gives a convolved characteristic map;
as a result signal after applying the dot product between a small
region of input and the filter weights to which they all are
connected. Then, the pooling layer performs a downsampling
operation. In the convolutional neural system, the size of pooling
layer output can be measured using the following formula [31]:
W − F + 2P

S
− 1 (5)

where W is the input size; F is the convolutional kernel size; P is
the padding value and S is the step size.

Transfer learning has brought considerable importance since
it can work with little or no information in the training phase.
That is, data that is well-established is adjusted by move learning
from one domain to another. Transfer learning is well-suited to
scenarios where a version performs poorly due to obsolete data
or scant [33,34]. This form of transfer learning used in DL is
known as an inductive transfer. This is where the reach of feasible
models, i.e., model bias, is narrowed in a practical way using a
model match on a different but related task.

Since AlexNet won the ImageNet competition, CNNs are uti-
lized for a broad selection of DL applications. From 2012 to
the current, researchers are attempting to apply CNN on several
different tasks [35].
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Fig. 1. The second phase of proposed method.
.4.1. VGG16
The VGG16 system is fashioned of 3 x 3 convolutional layers,

3 convolutional layers, and three fully-connected layers and can
e attached to the pooling layer after every phase. The max-
ooling layer follows some convolutional layers. The stride is set
o 1 pixel. The five max-pooling layers use a determined stride of
and a 2 x 2-pixel filter. A padding of 1 pixel is done for the 3 x
convolutional layers—all the layers of the network use ReLU as

he activation function [36].

.4.2. ResNet
Deep Residual Network (ResNet) is an Artificial Neural Net-

ork (ANN) that overcomes reduced precision when developing
plain ANN using a deeper layer compared to a shallower ANN.
his Deep Residual Network’s purpose would be to earn ANN with
ayers with higher precision. The idea of it would be to create ANN
hat may upgrade the weight into a shallower layer, i.e., decrease
4

degradation gradient [37]. Residual Networks (ResNet) improving
DL introduces the notion of restructuring the layers in order
for residual functions to be learned, which are relative to the
inputs of these layers instead of learning capabilities that have
no reference to the layer inputs. This restructuring solved the
vanishing gradient problem in CNNs and allowed the training
of considerably deeper neural networks. ResNet-152 includes
152 layers that are 8× VGGNet’s depth, nevertheless has lower
complexity. An ensemble of ResNet-152 models attained 3.57%
precision error on the ImageNet test dataset and won first place
in the ILSVRC 2015 classification challenge.

3.4.3. InceptionV3
Google’s Inception V3 is the variant of the DL Architectures

series Inception V3 trained with 1000 classes using the first
ImageNet dataset with more than 1 million pictures [38].
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Fig. 2. Image samples of the chosen datasets.
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.4.4. EfficientNets
EfficientNet is a DL family of models with fewer parame-

ers than the state-of-the-art versions. The model improves per-
ormance by a smart mixture of depth, width, and resolution.
fficientNet scales width and resolution using a compound co-
fficient. The advantage of EfficientNets in comparison to CNN
s related to the decrease in the number of FLOPS along with
hich parameters, increasing precision. The classification accu-
acy for EfficientNet can also be better than those that have
imilar complexities [35,39,40].

.5. Class activation map

The convolutional layer can be utilized as object sensors with-
ut giving an object’s annotated bounding box to the practice
ample. CNN lost this ability when connected to a fully connected
ayer. Unlike a traditional CNN, whereby looking at the image,
he goal is to identify the picture class, the class activation map
roduces a heatmap to show the significant area of the image
lassified. Class activation mapping is a method to generate a
pecified category representing the discriminative areas that link
he class of the object [41,42].

.6. Quantization

Deep learning has a long track record of success, but the use
f heavy algorithms on large graphical processing units is not
deal. In response to this disparity, a new class of deep learning
ethods known as quantization has emerged. Quantization is
sed to reduce the size of the neural network while maintaining
igh performance accuracy. This is particularly important for on-
evice applications, where memory and computation capacity are
 t

5

constrained. The process of approximating a neural network that
uses floating-point numbers by a neural network with low bit
width numbers is known as quantization for deep learning. The
memory requirements and computational costs of using neural
networks are drastically reduced as a result of this.

4. Proposed method

The proposed method consists of using a multi-input network
with two input images: a non-segmented image and the second
segmented image using a fuzzy trapezoidal membership function
or a K-means cluster segmentation. The proposal consists of four
stages. The first one reads the set of images of the two datasets
previously presented and performs the data shuffling. The second
phase is to apply the fuzzy filter and the segmenter separately
using K-means to compare which achieves the best accuracy. The
fuzzy filter applies a trapezoidal fuzzy number presented as:

trapezoidal : f (x, a, b, c, d) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, x ⩽ a
x − a/b − a a ⩽ x ⩽ d
1, b ⩽ x ⩽ c
d − x/d − c, c ⩽ x ⩽ d
0, d ⩽ x

(6)

We use the Brisque score to select the best parameters (a,b,c,d)
or the fuzzy filter. Initially, images treated with a diffuse filter
nd a cluster are used to train four networks using transfer of
earning, namely VGG16, InceptionV3, ResNet152V2, and Effi-
ientNetB3. This test aims to compare the performance between
he applied diffuse filter and the cluster averages. We evaluate

he tests using the AUC, accuracy, precision and recall metrics.
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Fig. 3. X-ray samples with fuzzy filter.
The third phase consists of applying tests with a multi-input
etwork with two pre-trained networks. We altered the networks
y substituting the last layer, using a fully connected layer, with
0 nodes divided into another fully connected sigmoid layer
ith a single node. The criteria are applied in 12 combinations
etween VGG16, InceptionV3, ResNet152V2, and EfficientNetB3.
6

These tests were executed on ten epochs. The combination with
a better AUC score was chosen to be tunning and evaluated. The
fourth phase of the process consists of tunning the best model
chosen. We train the best model in 100 epochs, and the metrics
of the ROC curve, f1-score, and recall by epoch are presented.
The last step consists of using class activation maps to compare
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Fig. 4. Description of the dataset used in this study.
xplainable ML practice with and without the fuzzy filter (see
igs. 1 and 3).

.0.1. Training and implementation details
We use Adaptive Moment Estimation (Adam) as the optimizer

nd Binary Cross Entropy as the loss function and Sigmoid as
he networks’ activation function. The initial learning rate was
.001. We chose the simple learning speed schedule of decreasing
he learning rate by a constant element when operation metric
lateaus about the validation/test place (commonly called Reduce
earning rate on plateau). We configure Reduce learning rate on
lateau to monitor validation loss with factor parameter equals
.2 and patience with value 2. The best-chosen combination was
btained after 100 epochs.
7

4.1. The dataset

We use two datasets to train the proposed COVID-Net. The
first dataset was available on https://github.com/ieee8023/covid-
chestxray-dataset and approved by the University of Montreal’s
Ethics Committee (Fig. 2). The dataset is a collection of CXR of
Healthy vs. Pneumonia (Corona) affected patients, infected pa-
tients, along with few other categories such as SARS (Severe Acute
Respiratory Syndrome), Streptococcus and ARDS (Acute Respi-
ratory Distress Syndrome). The second dataset is available on
the Kaggle platform on https://www.kaggle.com/nabeelsajid917/
covid-19-X-ray-10000-images and was used to test the model.
Fig. 4 shows the diversity of patient cases from the dataset. The
first dataset contains 5888 images, where 1.576 do not have
any pneumonia, 4.265 have pneumonia of unknown cause, 58

https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/ieee8023/covid-chestxray-dataset
https://www.kaggle.com/nabeelsajid917/covid-19-X-ray-10000-images
https://www.kaggle.com/nabeelsajid917/covid-19-X-ray-10000-images
https://www.kaggle.com/nabeelsajid917/covid-19-X-ray-10000-images
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Fig. 5. Loss and AUC by epoch results.
ases of COVID-19, and 4 SARS images. We use a third dataset
vailable on https://www.kaggle.com/alifrahman/covid19-chest-
ray-image-dataset to improve the test results.

.2. Model analysis

We use the AUC, accuracy, precision, and recall to compare the
odels.

.2.1. The AUC metric
The trapezoidal rule is used to ascertain the AUC. The resulting

rea is equal to this Mann–Whitney U statistic divided by N1 ∗N2,
where N1 and N2 are the number of instances in C1 and C2,
respectively. The AUC can be described as the chance to correctly
identify the C1 case when confronted with a randomly selected
case from each class.
8

4.2.2. Confusion matrix
Let I(x,y) : R2

→ R be a medical image and S(I(x,y)): R2
→

Ω, Ω = 0, 1 a binary decision of picture I(x,y). According to [43],
the gold standard as G and the result as R, each fold can be
classified as:

• true positive: G(x, y) = 1 ^R(x, y) = 1,
• false positive: G(x, y) = 0 ^R(x, y) = 1,
• true negative: G(x, y) = 0 ^R(x, y) = 0,
• false negative: G(x, y) = 1 ^R(x, y) = 0,

4.2.3. Precision
The precision is given by

P =
TP

(7)

TF + TP

https://www.kaggle.com/alifrahman/covid19-chest-xray-image-dataset
https://www.kaggle.com/alifrahman/covid19-chest-xray-image-dataset
https://www.kaggle.com/alifrahman/covid19-chest-xray-image-dataset
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Fig. 6. Loss and AUC by epoch results.

Table 1
Results of experiment single input classification with K-Means cluster.
Model AUC Accuracy Precision Recall

VGG16 0.861497 0.763889 0.711111 0.888889
ResNet152V2 0.700231 0.527778 0.517241 0.833333
InceptionV3 0.870370 0.500000 0.500000 1.000000
EfficientNetB3 0.756944 0.680556 1.000000 0.361111

Table 2
Results of experiment single input classification with Fuzzy.
Model1 AUC Accuracy Precision Recall

VGG16 0.900463 0.597222 1.000000 0.194444
ResNet152V2 0.951389 0.777778 0.692308 1.000000
InceptionV3 0.912037 0.875000 0.829268 0.944444
EfficientNetB3 0.992670 0.736111 1.000000 0.472222

Table 3
Results of experiment single input classification without Fuzzy.
Model1 AUC Accuracy Precision Recall

VGG16 0.989197 0.972222 0.972222 0.972222
ResNet152V2 0.611111 0.611111 0.562500 1.000000
InceptionV3 0.852623 0.847222 0.765957 1.000000
EfficientNetB3 0.977238 0.916667 0.941176 0.888889

4.2.4. Recall
The recall is given by:

=
TP

TP + FN
(8)

where TP is the number of true positives and FN the number of
false negatives, where R is Recall, the recall is the capability of
the classifier to find all the samples. The best value is 1, and the
worst value is 0.

4.2.5. Accuracy
Accuracy is a metric for deciding the models’ performance in

categorizing positive and negative classes. Assessing all detailed
data with all data calculates the rating. It is given by:

Accuracy =
TP + TN

(9)

TP + TN + FP + FN

9

Fig. 7. Class Activation Map of SARS sample X-ray.

4.3. Big O for convolutional networks

The number of features in each feature map in a CNN is at most
a constant times the number of input pixels n (usually 1). Because
each output is merely the sum product of k pixels in the picture
and k weights in the filter, and k does not vary with n, convolving
a fixed size filter across an image with n pixels requires O(n) time.

4.4. Pseudo-code and source code

The process of building the single input model is described in
the algorithm in the listing 1. Three parameters are required by



Q. Hu, F.N.B. Gois, R. Costa et al. Applied Soft Computing 123 (2022) 108966

t
(
t
g
t

DEFINE FUNCTION create_single_model(weights,dropout_var ,network):

INPUT_shape=(256,256,3)

SET model1 TO VGG16(include_top=False,INPUT_shape=(256, 256, 3))

IF network==’VGG16’:

SET model1 TO VGG16(include_top=False,INPUT_shape=(256, 256, 3))

IF network==’ResNet152V2’:

SET model1 TO ResNet152V2(include_top=False,
INPUT_shape=(256, 256, 3))

IF network==’InceptionV3’:

SET model1 TO InceptionV3(include_top=False,
INPUT_shape=(256, 256, 3))

IF network==’Xception’:

SET model1 TO Xception(include_top=False, INPUT_shape=(256, 256, 3))

IF network==’EfficientNetB3’:

SET model1 TO EfficientNetB3(weights= " imagenet " ,

include_top=False, INPUT_shape=INPUT_shape)

SET flat1_ TO Flatten() (model1.output)

SET dropout_ TO Dropout(dropout_var)(flat1_)

SET dense1_ TO Dense(weights, activation=’relu’)(dropout_)

SET batch_ TO BatchNormalization()(dense1_)

SET dense2_ TO Dense(weights, activation=’relu’)(batch_)

SET dropout_ TO Dropout(dropout_var)(dense2_)

SET dense3_ TO Dense(4, activation= " relu " )(dropout_ )

SET output TO Dense(1, activation= " sigmoid " )(dense3_)

model= Model(INPUTs=model1.INPUT, outputs=output)

RETURN model

Listing 1. Pseudo-code method to create Single Input Model
he method: The weight of adjacent layers of neural networks
the model uses transfer learning, including additional layers
o a pre-trained network); the Dropout value used for network
eneralization and the network to be created (the model uses
ransfer learning, including additional layers to a pre-trained
10
network); and the weight of adjacent layers of neural networks
(the model uses transfer learning, including additional layers to a
pre-trained network). BatchNormalization is used in this method.
Batch normalization is a transformation that keeps the mean
output close to 0 and the standard deviation of the output close
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DEFINE FUNCTION create_model(weights,dropout_var ,network):
INPUT_shape=(256,256,3)
SET model1 TO VGG16(include_top=False, INPUT_shape=(256, 256, 3))
IF network[0]==’VGG16’:

SET model1 TO VGG16(include_top=False, INPUT_shape=(256, 256, 3))
IF network[0]==’ResNet152V2’:

SET model1 TO ResNet152V2(include_top=False, INPUT_shape=(256, 256, 3))
IF network[0]==’InceptionV3’:

SET model1 TO InceptionV3(include_top=False, INPUT_shape=(256, 256, 3))
IF network[0]==’Xception’:

SET model1 TO Xception(include_top=False, INPUT_shape=(256, 256, 3))
IF network[0]==’EfficientNetB3’:

SET model1 TO EfficientNetB3(weights= " imagenet " ,
include_top=False, INPUT_shape=INPUT_shape)

SET flat1 TO Flatten() (model1.output)
SET dropout1 TO Dropout(dropout_var)(flat1)
SET dense1 TO Dense(weights, activation=’relu’)(dropout1)
SET batch1 TO BatchNormalization()(dense1)
SET dense12 TO Dense(weights, activation=’relu’)(batch1)
SET dropout12 TO Dropout(dropout_var)(dense12)

SET model1 TO Model(INPUTs=model1.INPUT, outputs=dropout12)

SET model2 TO Net7(weights= " imagenet " ,
include_top=False, INPUT_shape=INPUT_shape)

IF network[1]==’VGG16’:
SET model2 TO VGG16(include_top=False, INPUT_shape=(256, 256, 3))

IF network[1]==’ResNet152V2’:
SET model2 TO ResNet152V2(include_top=False, INPUT_shape=(256, 256, 3))

IF network[1]==’InceptionV3’:
SET model2 TO InceptionV3(include_top=False, INPUT_shape=(256, 256, 3))

IF network[1]==’Xception’:
SET model2 TO Xception(include_top=False, INPUT_shape=(256, 256, 3))

IF network[1]==’EfficientNetB3’:
SET model2 TO EfficientNetB3(weights= " imagenet " ,

include_top=False, INPUT_shape=INPUT_shape)

SET flat1_ TO Flatten() (model2.output)
SET dropout_ TO Dropout(dropout_var)(flat1_)
SET dense1_ TO Dense(weights, activation=’relu’)(dropout_)
SET batch_ TO BatchNormalization()(dense1_)
SET dense2_ TO Dense(weights, activation=’relu’)(batch_)
SET dropout_ TO Dropout(dropout_var)(dense2_)

model2= Model(INPUTs=model2.INPUT, outputs=dropout_)

SET modeld TO Sequential()
modeld.add(Dense(14, INPUT_dim=4, activation= " relu " ))
modeld.add(Dense(28, activation= " relu " ))
modeld.add(Dropout(dropout_var))
modeld.add(Dense(4, activation= " relu " ))
SET model2.trainable TO False
SET combinedInput TO concatenate([model1.output,model2.output])
SET x TO Dense(4, activation= " relu " )(combinedInput)
SET x TO Dense(1, activation= " sigmoid " )(x)
SET modelall TO Model(INPUTs=[model1.INPUT,model2.INPUT], outputs=x)

RETURN modelall

Listing 2. Pseudo-code method to create Multi-Input Model
o 1. The algorithm in the listing 2 describes the process of creat-
ng the Multi-input model. The approach requires the same three
arameters that were used to generate the single input model.
he last parameter is an array containing a list of networks that
ill be used to build the model. Model(INPUTs=[model1.INPUT,
11
model2.INPUT], outputs=x) concatenates the output of the two
models, while concatenate([ model1.output, model2.output]) con-
catenates the input of the two models. The pseudo-code for
experiment execution is shown in the listing 3. There are two
network lists, and the algorithm combines the networks and
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networks=[’VGG16’,’ResNet152V2’,’InceptionV3’,’EfficientNetB3’]
networks2=[’VGG16’,’ResNet152V2’,’InceptionV3’,’EfficientNetB3’]
best_auc=-10

FOR weights IN range(1,20,1):
FOR network IN networks:

FOR network2 IN networks2:
IF network!=network2:

OUTPUT(’Testing with {} and {} and {} ’
.format(network,weights,network2))

OUTPUT(’Creating model’)
model=create_model(weights ,0.5,[network,network2])

SET opt TO Adam(lr=1e-3, decay=1e-3 / 100)

OUTPUT(’Model created’)

SET losses TO tf.keras.losses.BinaryCrossentropy()

model.compile(loss= " binary_crossentropy " ,
optimizer=opt,metrics=[
tf.keras.metrics.Precision(name=’precision_2’),
tf.keras.metrics.Recall(name=’recall_2’)
,tf.keras.metrics.AUC(name=’auc’),’accuracy’])

OUTPUT(’Model compiled’)

history=model.fit(
x=[train_images ,np.array(images_fuzzy)], y=y,
validation_data=([valid_images ,

np.array(images_valid_fuzzy)],y_valid),
epochs=10, batch_size=10,callbacks=callbacks)

auc=max(history.history[’val_auc’])

IF auc>best_auc:

best_auc=auc

best_network=network

best_weight=weights

OUTPUT(’val_auc’,auc)

IF (auc)>0.98:
OUTPUT(’find’)

df_history=pd.DataFrame.from_dict(history.history)

df_history.to_csv(’History to {} and {} with weight of {} ’

.format(network,network2,weights)+’.csv’)

Listing 3. Experiment execution pseudo-code
he layer weights. The model is trained with original and fuzzy
mages using the Adam optimizer and binary cross entropy loss
unction for each combination.

The Listing 4 show the main imports. The 5 and 6 listings
escribe methods for creating single and multi-input models,
espectively. Listing 7 shows the code for training and evaluating
everal neural network configurations. The code for executing the
redictions is listed in Listing 8. The procedure of applying the
uzzy transformation, which is provided through the python API
12
skfuzzy, to each image is shown in Listing 9. The fuzzy method’s
parameters were chosen using the brisque score technique.

5. Results and discussion

This study’s primary goal is to present a monitoring model
and reduce human errors in COVID-19 diagnosis. The proposed
model’s performance was measured using the Area Under the re-
ceiver operator characteristic curve (AUC). The code used in these
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import tensorflow as tf
from tensorflow.keras.applications.vgg16 import VGG16
from tensorflow.keras.applications import ResNet152V2
from tensorflow.keras.applications import InceptionV3
from tensorflow.keras.applications import Xception
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import Input
from tensorflow.keras.layers import Flatten
from tensorflow.keras.layers import BatchNormalization
from tensorflow.keras.layers import Dropout
from tensorflow.keras.layers import concatenate
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import GlobalMaxPooling2D
from keras.optimizers import Adam
from tensorflow.keras.applications import DenseNet121

import sys
import subprocess
import pkg_resources
required = {’efficientnet’}
installed = {pkg.key for pkg in pkg_resources.working_set}
missing = required - installed
if missing:

!pip install -U efficientnet
import efficientnet.keras as efn

from efficientnet.keras import EfficientNetB0 as Net
from efficientnet.keras import EfficientNetB3
from efficientnet.keras import EfficientNetB3 as Net7

Listing 4. Imports
experiments and datasets is available in https://www.kaggle.com/
naubergois/covid-xray-classification-with-fuzzy-1-0-recall and
https://www.kaggle.com/naubergois/fork-of-covid-xray-classifica
tion-with-fuzzy-1-0-r. The model requires O(n) time. We use
Brisque values to tunning the Fuzzy filter parameters and obtain
a=0.2, b=0.4, c=200, and d=200. Fig. 3(c) shows samples of the
X-rays with respective Brisque scores. Fig. 3(a) presents a non-
SARS sample with the best fuzzy parameters. Fig. 3(b) presents a
non-SARS sample with the best fuzzy parameters.

The first results concern the comparison between the use of
the fuzzy filter and the segmentation with K-means. Table 1 show
the results obtained with the use of K-means, each table show
AUC, accuracy, precision and recall of each model. EfficientNetB3
obtain the better precision and InceptionV3 the better recall re-
sult. Tables 2 and 3 show the results for all pre-trained networks
used with and without the fuzzy filter. We can see that the fuzzy
filter has considerably improved the results of the ResNet152V2
model and for the AUC of all models. On the other hand, fuzzy
filters reduce the recall of VGG16 and EfficientNet B3. The use of
the fuzzy filter surpassed the use of the K-means cluster in all
experiments. Fig. 5(a) present the loss by an epoch of the best
single input models. Fig. 5(b) present the AUC by an epoch of the
best single input models.

The Tables 5 and 6 present the results obtained through the
MultiInput technique using and not using the fuzzy filter. We
obtained a higher AUC in all cases with the fuzzy filter. There-
fore, it is easy to conclude that the fuzzy filter contributes to
distinguishing positive or negative for COVID. It is also verified
that in the same way that the EfficientNetB3 shows a decrease in
accuracy using a single input, there is no difference in the multi-
input technique (Table 4). The Table 7 shows the comparison
of the results between multi-input and single-input networks.
Except for the EfficientNetB3 model, multi-input models obtained

better value for AUC and accuracy.

13
Table 4
Comparative results between using images with
and without fuzzyfilter.
Fuzzy AUC Accuracy

ResNet152V2 0.951389 0.777778
InceptionV3 0.912037 0.875000
EfficientNetB3 0.992670 0.736111

No Fuzzy AUC Accuracy

ResNet152V2 0.611111 0.611111
InceptionV3 0.852623 0.847222
EfficientNetB3 0.977238 0.916667

Table 5
Results of experiment MultiInput classification without Fuzzy.
Model1 Model2 AUC Acc Prec. Recall

VGG16 ResNet152V2 0.99 0.94 0.97 0.92
VGG16 InceptionV3 0.98 0.94 0.97 0.92
VGG16 EffNetB3 0.97 0.93 0.92 0.94
ResNet152V2 VGG16 0.99 0.94 0.97 0.92
ResNet152V2 InceptionV3 1.00 0.97 0.95 1.00
ResNet152V2 EffNetB3 0.99 0.88 0.80 1.00
InceptionV3 VGG16 0.98 0.94 0.97 0.92
InceptionV3 ResNet152V2 1.00 0.97 0.95 1.00
InceptionV3 EffNetB3 0.99 0.96 0.97 0.94
EffNetB3 VGG16 0.97 0.93 0.92 0.94
EffNetB3 ResNet152V2 0.99 0.88 0.80 1.00
EffNetB3 InceptionV3 0.99 0.96 0.97 0.94

The combination of the VGG16 and ResNet152V2 network
achieved the best result. This combination was trained in 100
epochs. The VGG16 network received the images with a fuzzy
filter and ResNet152v2 received the images without the filter. The
Table 8 show the f1_score achieved by the model. The model had
a recall value of 1.
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def create_single_model(weights,dropout_var ,network):

input_shape=(256,256,3)

model1 = VGG16(include_top=False,input_shape=(256, 256, 3))

if network[0]==’VGG16’:
model1 = VGG16(include_top=False,input_shape=(256, 256, 3))

if network[0]==’ResNet152V2’:
model1 = ResNet152V2(include_top=False, input_shape=(256, 256, 3))

if network[0]==’InceptionV3’:
model1 = InceptionV3(include_top=False, input_shape=(256, 256, 3))

if network[0]==’Xception’:
model1 = Xception(include_top=False, input_shape=(256, 256, 3))

if network[0]==’EfficientNetB3’:
model1 = EfficientNetB3(weights= " imagenet " ,

include_top=False, input_shape=input_shape)

flat1_ = Flatten() (model1.output)
dropout_ = Dropout(dropout_var)(flat1_)
dense1_ = Dense(weights, activation=’relu’)(dropout_)
batch_ = BatchNormalization()(dense1_)
dense2_ = Dense(weights, activation=’relu’)(batch_)
dropout_ = Dropout(dropout_var)(dense2_)

dense3_ = Dense(4, activation= " relu " )(dropout_ )
output = Dense(1, activation= " sigmoid " )(dense3_)

model= Model(inputs=model1.input, outputs=output)

return model

Listing 5. Method to create Single Input Model
Table 6
Results of experiment MultiInput classification with Fuzzy.
Model1 Model2 AUC Acc Prec. Recall

VGG16 ResNet152V2 1.00 0.94 1.00 0.89
VGG16 InceptionV3 1.00 0.97 0.97 0.97
VGG16 EfficientNetB3 0.88 0.72 0.64 1.00
ResNet152V2 VGG16 1.00 0.94 1.00 0.89
ResNet152V2 InceptionV3 0.99 0.96 0.92 1.00
ResNet152V2 EfficientNetB3 0.98 0.92 0.94 0.89
InceptionV3 VGG16 1.00 0.97 0.97 0.97
InceptionV3 ResNet152V2 0.99 0.96 0.92 1.00
InceptionV3 EfficientNetB3 0.96 0.94 0.97 0.92
EfficientNetB3 VGG16 0.88 0.72 0.64 1.00
EfficientNetB3 ResNet152V2 0.98 0.92 0.94 0.89
EfficientNetB3 InceptionV3 0.96 0.94 0.97 0.92

Fig. 6(a) shows the model’s confusion matrix, and it is im-
ortant to note that no COVID-19 was misclassified. Figs. 7(a)
nd 7(b) present the class activation maps with and without
uzzy filter. We can observe that the regions of the map are well
elimited with fuzzy filter images.
Several approaches to discover COVID-19 are trained to find

ut Pneumonia. Pneumonia is a possibly life-threatening illness
aused by several pathogens. In common practice, most research
roposes to classify the presence of Pneumonia associated with
14
Table 7
Comparative of experiment results with multiInput and single input classification
with fuzzy (mean values by network).
Multi input AUC Acc Precision Recall

VGG16 0.97 0.90 0.90 0.96
ResNet152V2 0.99 0.94 0.95 0.94
InceptionV3 0.99 0.96 0.96 0.97
EfficientNetB3 0.95 0.88 0.88 0.93

Single Input AUC Acc Precision Recall

VGG16 0.90 0.60 1.00 0.19
ResNet152V2 0.95 0.78 0.69 1.00
InceptionV3 0.91 0.88 0.83 0.94
EfficientNetB3 0.99 0.74 1.00 0.47

COVID-19. COVID-19 and pneumonia are both respiratory dis-
orders that share many of the same symptoms. However, they
are much more intimately connected. As a result of the viral
infection that causes COVID-19 or the flu, some patients acquire
pneumonia. Many times, pneumonia develops in both lungs in
COVID-19 patients, putting the patient at serious danger of res-
piratory problems. Even if you do not have COVID-19 or the
flu, you can get pneumonia from bacteria, fungus, and other
microorganisms. However, COVID-19 pneumonia is a unique in-
fection with unusual characteristics [44]. Some studies attempt
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def create_model(weights,dropout_var ,network):

input_shape=(256,256,3)

model1 = VGG16(include_top=False, input_shape=(256, 256, 3))
if network[0]==’VGG16’:

model1 = VGG16(include_top=False, input_shape=(256, 256, 3))
if network[0]==’ResNet152V2’:

model1 = ResNet152V2(include_top=False, input_shape=(256, 256, 3))
if network[0]==’InceptionV3’:

model1 = InceptionV3(include_top=False, input_shape=(256, 256, 3))
if network[0]==’Xception’:

model1 = Xception(include_top=False, input_shape=(256, 256, 3))
if network[0]==’EfficientNetB3’:

model1 = EfficientNetB3(weights= " imagenet " ,
include_top=False, input_shape=input_shape)

flat1 = Flatten() (model1.output)
dropout1 = Dropout(dropout_var)(flat1)
dense1 = Dense(weights, activation=’relu’)(dropout1)
batch1 = BatchNormalization()(dense1)
dense12 = Dense(weights, activation=’relu’)(batch1)
dropout12 = Dropout(dropout_var)(dense12)
model1 = Model(inputs=model1.input, outputs=dropout12)
model2 = Net7(weights= " imagenet " ,

include_top=False, input_shape=input_shape)
if network[1]==’VGG16’:

model2 = VGG16(include_top=False, input_shape=(256, 256, 3))
if network[1]==’ResNet152V2’:

model2 = ResNet152V2(include_top=False, input_shape=(256, 256, 3))
if network[1]==’InceptionV3’:

model2 = InceptionV3(include_top=False, input_shape=(256, 256, 3))
if network[1]==’Xception’:

model2 = Xception(include_top=False, input_shape=(256, 256, 3))
if network[1]==’EfficientNetB3’:

model2 = EfficientNetB3(weights= " imagenet " ,
include_top=False, input_shape=input_shape)

flat1_ = Flatten() (model2.output)
dropout_ = Dropout(dropout_var)(flat1_)
dense1_ = Dense(weights, activation=’relu’)(dropout_)
batch_ = BatchNormalization()(dense1_)
dense2_ = Dense(weights, activation=’relu’)(batch_)
dropout_ = Dropout(dropout_var)(dense2_)
model2= Model(inputs=model2.input, outputs=dropout_)

modeld = Sequential()
modeld.add(Dense(14, input_dim=4, activation= " relu " ))
modeld.add(Dense(28, activation= " relu " ))
modeld.add(Dropout(dropout_var))
modeld.add(Dense(4, activation= " relu " ))

model2.trainable = False
combinedInput = concatenate([model1.output,model2.output])

x = Dense(4, activation= " relu " )(combinedInput)
x = Dense(1, activation= " sigmoid " )(x)
modelall = Model(inputs=[model1.input,model2.input], outputs=x)

return modelall

Listing 6. Method to create Multi-Input Model
o distinguish between common pneumonia and COVID-19 pneu-
onia [45][46][47]. Some datasets with X-ray pictures of cases

pneumonia or COVID-19) and controls have been made accessi-
le in order to develop machine-learning-based algorithms to aid
n illness diagnosis. These datasets, on the other hand, are pri-
arily made up of different sources derived from pre-COVID-19
15
and COVID-19 datasets. Some studies have discovered significant
bias in some of the publicly available datasets used to train and
test diagnostic systems, implying that the published results are
optimistic and may overestimate the approaches’ real predic-
tive capacity [48][49][50]. This study does not intend to vali-
date the differences or distinguish between usual pneumonia and
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networks=[’VGG16’,’ResNet152V2’,’InceptionV3’,’EfficientNetB3’]
networks2=[’VGG16’,’ResNet152V2’,’InceptionV3’,’EfficientNetB3’]
best_auc=-10

for weights in range(1,20,1):
for network in networks:

for network2 in networks2:
if network!=network2:

print(’Testing with {} and {} and {} ’
.format(network,weights,network2))

print(’Creating model’)
model=create_model(weights ,0.5,[network,network2])
opt = Adam(lr=1e-3, decay=1e-3 / 100)
print(’Model created’)
losses = tf.keras.losses.BinaryCrossentropy()
model.compile(loss= " binary_crossentropy " ,

optimizer=opt,metrics=[
tf.keras.metrics.Precision(name=’precision_2’),
tf.keras.metrics.Recall(name=’recall_2’)
,tf.keras.metrics.AUC(name=’auc’),’accuracy’])

print(’Model compiled’)
history=model.fit(

x=[train_images ,np.array(images_fuzzy)], y=y,
validation_data=([valid_images ,

np.array(images_valid_fuzzy)],y_valid),
epochs=10, batch_size=10,callbacks=callbacks)

auc=max(history.history[’val_auc’])
if auc>best_auc:

best_auc=auc
best_network=network
best_weight=weights

print(’val_auc’,auc)
if (auc)>0.98:

print(’find’)

df_history=pd.DataFrame.from_dict(history.history)
df_history.to_csv(’History to {} and {} with weight of {} ’

.format(network,network2,weights)+’.csv’)

Listing 7. Run experiments with Multi-Input networks and Fuzzy data
#Make predictions
predictions=model.predict([valid_images ,valid_images])

#Apply threshold on predictions
ypred=[1 if x>0.5 else 0 for x in predictions]

from sklearn.metrics import classification_report

print(classification_report(y_valid,ypred))

Listing 8. Make predictions and classification report
neumonia caused by COVID at this time, but that is a goal for
uture research.

This research presents an approach where transfer learning in
onjunction with fuzzy filters allows the classification of CXRs.
his study has an AUC value more significant than the pre-
ented researches in the literature review. Jin et al. show an
UC value of 0.979. Zheng et al. obtained an AUC value of 0.959.
16
Chouhan achieved a recall value of 99.62%. Abdul et al. get an
accuracy of 85%. However, the given solution must be validated
in a more extensive sample set and clinical tests before using
it in the clinical environment. A fuzzy filter improves the AUC
and precision results. Future research developments must apply
the techniques presented in this study in the segmentation of
computed tomography scans.
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from skimage import transform ,io
import skfuzzy as fuzz
import cv2

def fuzzy(image,a,b,c,d):

mfx = fuzz.trapmf(image.flatten(), [0.4, 0.6,200,200])
return mfx.reshape(256,256,3)

images_fuzzy=[]
for image,name in zip(train_images ,filenames):

fuzzy_image=fuzzy(image,best_a,best_a+best_b,best_c,best_d)
images_fuzzy.append(fuzzy_image)

images_valid_fuzzy=[]
for image in valid_images:

fuzzy_image=fuzzy(image,best_a,best_a+best_b,best_c,best_d)
images_valid_fuzzy.append(fuzzy_image)

Listing 9. Apply fuzzy transformation for each image
Table 8
F1 score of the ResNet152V2-VGG16 model.
Class Precision Recall F1-score Support

0 1 0.94 0.97 36
1 0.95 1 0.97 36
accuracy 0.97 72
macro avg 0.97 0.97 0.97 72
weighted avg 0.97 0.97 0.97 72

Finally, we quantized the model with the quantize_model
ethod (tfmot. quantization. keras .quantizemodel) in the Ten-
orFlow framework, with an accuracy of 0.95.

. Conclusion

In this paper, we show that by using transfer learning and
everaging pre-trained models, we can achieve very high accuracy
n detecting COVID-19. Also, together with the fuzzy filter, this
tudy shows that it is possible to achieve a recall of 1.0 with more
han one pre-trained model. The best model was a combination of
GG16 and ResNet152V2. Finally, using quantization technology,
e achieve an accuracy of 0.95. Despite the fact that we achieved
ood COVID-19 detection accuracy, sensitivity, and specificity,
his does not imply that the solution is ready for production,
specially given the small number of photos currently accessible
bout COVID-19 cases. The aim of this analysis is to provide
adiologists, data scientists, and the research community with a
ulti-input CNN model that may be used to diagnose COVID-19
arly, with the aim that it will be expanded upon to speed up
esearch in this area.
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