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Abstract

Imaging neuronal networks provides a foundation for understanding the nervous system, but 

resolving dense nanometer-scale structures over large volumes remains challenging for light (LM) 

and electron microscopy (EM). Here, we show that X-ray holographic nano-tomography (XNH) 

can image millimeter-scale volumes with sub-100 nm resolution, enabling reconstruction of dense 

wiring in Drosophila melanogaster and mouse nervous tissue. We performed correlative XNH 

and EM to reconstruct hundreds of cortical pyramidal cells, and show that more superficial 

cells receive stronger synaptic inhibition on their apical dendrites. By combining multiple XNH 

scans, we imaged an adult Drosophila leg with sufficient resolution to comprehensively catalog 

mechanosensory neurons and trace individual motor axons from muscles to the central nervous 

system. To accelerate neuronal reconstructions, we trained a convolutional neural network to 

automatically segment neurons from XNH volumes. Thus, XNH bridges a key gap between LM 

and EM, providing a new avenue for neural circuit discovery.

Introduction

Mapping the structure of the nervous system provides a foundation for understanding 

its function. However, comprehensive mapping at the scale of neuronal circuits requires 

imaging with both high resolution and large fields of view (FOV). Electron microscopy 

(EM) has sufficient resolution, but obtaining 3D EM volumes of even small neural circuits 

requires collecting millions of EM images across thousands of thin sections, and therefore 

can be prohibitively costly in terms of time and resources1–4. Conventional light microscopy 

(LM) is limited in spatial resolution due to the diffraction limit (~250 nm, although super

resolution5,6 and expansion microscopy7,8 techniques can exceed this), and thus requires 

sparse fluorescent labeling to resolve individual cells. Furthermore, visible light does not 

easily penetrate tissue, requiring physical sectioning or tissue clearing for thick samples 

(> 1 mm). As a result, the comprehensive set of cells comprising most neural circuits 
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remains unknown. Thus, an imaging modality capable of resolving densely packed neurons 

over millimeter-scale tissue volumes could enable more complete characterization and 

understanding of neural circuits.

High energy X-rays (>10 keV) have the potential to image thick specimens with high 

spatial resolution due to their strong penetration power and sub-nanometer wavelength. 

Attenuation-based X-ray microscopy techniques offer volumetric imaging of millimeter

scale samples, but these techniques rely on sparse labeling due to limited contrast9. Phase

contrast imaging techniques, such as X-ray interferometry10–12, X-ray ptychography13,14, 

single distance free-space propagation imaging15,16, and X-ray holography17–21 have 

brought substantial improvements to image quality, but have yet to achieve the combination 

of resolution, FOV, and contrast required for reconstruction of densely-stained neuronal 

morphologies. Thus, until now, tracing of individual neuron morphologies from X-ray image 

data has been possible only through sparse labeling9,16,22.

Here, we demonstrate X-ray imaging of densely-stained neural tissue at resolutions down 

to 87 nm across millimeter-sized volumes, enabling reconstruction of the main branching 

patterns of neurons within the imaged volume. To achieve this, we employed X-ray 

holographic nano-tomography (XNH)23,24 and made improvements by customizing sample 

preparation, incorporating cryogenic imaging, and optimizing phase retrieval approaches. 

We show that targeted EM can be used to measure synaptic connectivity of neurons 

previously reconstructed via XNH. We used this correlative approach in mouse cortex to 

quantify how the balance of inhibitory and excitatory inputs onto apical dendrites varies by 

pyramidal cell type (i.e. layer). XNH imaging also allows reconstruction of structures that 

are difficult to physically section, such as the adult Drosophila leg. We present an XNH 

dataset of an intact leg in which we reconstructed internal structures, such as muscle fibers 

and sensory receptors, and traced their associated motor and sensory neurons back to circuits 

in the fly’s central nervous system. Finally, we applied a convolutional neural network to 

automatically reconstruct neurons from XNH data. These results establish XNH as a key 

technique for biological imaging, which bridges the gap between LM and EM (Fig. 1a) to 

enable dense reconstruction of neuronal morphologies on the scale of neuronal circuits.

Results

XNH imaging of central and peripheral nervous systems

We imaged samples of mouse cortex and adult Drosophila brain, ventral nerve cord, and 

leg at the ID16A beamline of the European Synchrotron (ESRF). The positioning of the 

sample relative to the focal spot and the detector allows the voxel size and field of view 

(FOV) to be flexibly adjusted (Fig. 1a). Figure 1b–e shows XNH imaging and the resulting 

3D rendering of the central brain of an adult Drosophila (120 nm voxels), in which large 

individual neuronal processes can be resolved (Extended Data Fig. 1a, Supplementary Video 

1, Methods). Figure 1f shows a rendering of an XNH scan from mouse cortex (100 nm 

voxels), in which cell bodies and larger dendrites can be resolved across multiple cortical 

layers. Figure 1g shows a virtual slice from a higher-resolution mouse cortex scan (30 

nm voxels, Supplementary Video 2). At this resolution, many ultrastructural features are 

resolved, including mitochondria, endoplasmic reticulum, dendrites, and myelinated axons 
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(Fig. 1g, insets, arrows). However, identification of these ultrastructural features depends 

in part on prior knowledge of their 3D structure – for example, the tubular shape of 

mitochondria and dendrites.

To quantify the spatial resolution of XNH image volumes, we used Fourier Shell Correlation 

(FSC)25 (Methods). We performed scans with voxel sizes between 30 and 120 nm, and 

measured spatial resolutions between 87 and 222 nm (Fig. 1h, Extended Data Fig. 1b–d,h 

Supplementary Data Table 1, Supplementary Videos 1–4). We verified these values using an 

independent edge-fitting measurement (Extended Data Fig. 1e–g).

To verify that XNH images faithfully reproduce tissue ultrastructure, we collected thin

sections of samples after XNH imaging and imaged the same regions at higher lateral 

resolution with EM (Fig. 1i). We found that the majority of the larger neurites (> 200 nm 

in diameter) in the EM image could be accurately identified from XNH (Extended Data 

Fig. 1i,j). This confirms that XNH image volumes contain sufficient membrane contrast 

and spatial resolution to resolve and reconstruct dense populations of large-caliber neurons 

(generally long-distance connections) without specific labeling. However, thin processes 

(such as axon collaterals and distal dendritic branches) are currently difficult to resolve 

with XNH alone. Although the focus of this study is densely stained tissue (i.e. label-free), 

we also demonstrated that XNH imaging is compatible with specific labeling of genetically

defined cell types (Extended Data Fig. 5a).

Correlative XNH and EM for connectomic analysis

Pyramidal cells constitute the majority of neurons in the cerebral cortex and are vital for 

cortical function, but mapping their synaptic inputs is challenging because their dendrites 

extend several hundreds of micrometers. In particular, apical dendrites (ADs) ascend to 

layer I, where they integrate long-range excitatory and local inhibitory inputs26 (Fig. 2a), 

but it is not known in detail how AD connectivity differs across pyramidal cell types. A 

recent study using large-scale EM revealed that ADs from superficial (layer II/III) pyramidal 

cells receive proportionally more inhibition than deep-layer (layer V) cells27. However, this 

study relied on relatively small sample sizes (n ≈ 20 cells per sample) due to the FOV 

limitations of EM. Here, we combined large FOV XNH (100 nm voxels) with targeted serial 

section transmission EM28 on the same sample to characterize hundreds of pyramidal cell 

ADs in posterior parietal cortex (PPC), an area known to be involved in perceptual decision

making29. We first acquired two partially-overlapping XNH scans of mouse PPC that span 

layers I-V (~8 hours of imaging time), then imaged a synapse-resolution EM dataset from 

the bottom of layer I that contains the initial bifurcations of pyramidal ADs (~150 hours 

of imaging time) (Fig. 2a–d, Extended Data Fig. 2a–b, Methods). All 3234 cells within the 

XNH volumes were identified as excitatory pyramidal cells, inhibitory interneurons, or glia 

based on morphology and subcellular features30 (Extended Data Fig. 2c). We observed a 

particularly high density of neuronal somata (both excitatory and inhibitory) concentrated at 

the top of layer II (designated layer IIa here) (Fig. 2e), which is consistent with histological 

data (Extended Data Fig. 2d).

We traced ADs in the XNH data from pyramidal cell bodies in layers II, III and V up to 

the layer I/II boundary and identified the same ADs in the aligned EM dataset (n = 261 
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cells, Extended Data Fig. 2e–f, Methods). We annotated all synaptic inputs onto the ADs 

within the EM volume (i.e. the bottom of layer I, near the initial bifurcations), labeling 

each as excitatory (targeting dendritic spines) or inhibitory (targeting dendritic shafts or 

spine necks) (Fig. 2d)26. We found that layer IIa cells receive more inhibitory synapses and 

fewer excitatory synapses near the initial bifurcations than do deeper layer cells (Fig. 2f), 

consistent with previous EM analysis27.

We hypothesized that the increased inhibitory synapse fraction onto ADs of layer IIa cells 

was due to the proximity of their somata to the initial AD bifurcations, since pyramidal cell 

bodies receive strong inhibitory input from basket cell interneurons and proximal AD trunks 

generally have fewer spines26. To test this, we measured the relationship between inhibitory 

fraction and distance from the soma (Fig. 2g–i, Methods). We found that over the first 

~100 μm of path length from the soma, the fraction of inhibitory input onto ADs dropped 

dramatically. Interestingly, this drop was steepest for layer IIa cells (Fig. 2i, Extended Data 

Fig. 2g,h), such that the transition from inhibition-dominated to excitation-dominated input 

was spatially compressed for layer IIa cells.

This multi-scale approach combining XNH and EM in the same tissue sample enabled us to 

identify three unique properties of layer IIa cells: higher soma density, inhibition-dominated 

synaptic balance near the initial bifurcations of the ADs, and spatially-compressed 

transitions from inhibition-dominated to excitation-dominated input on the apical dendrite 

tufts. These distinct structural properties likely underlie unique functional properties and 

suggest that association cortex has pyramidal cell specializations beyond the canonical layer 

structure. Future work will be needed to determine the computational role of these layer IIa 

cells and whether similar cells exist in other cortical areas.

Millimeter-scale XNH imaging of a Drosophila leg at single-neuron resolution

The Drosophila leg and ventral nerve cord (VNC) are model systems for studying limb 

motor control31–33, but we currently lack a detailed map of the sensory and motor neurons 

that innervate the fly leg. Leveraging the capability of XNH to penetrate mm-scale samples 

without physical sectioning, we imaged an intact Drosophila front leg (coxa, trochanter, 

femur, and first half of the tibia segments) and the region of the VNC that controls 

this leg’s movements (Fig. 3a–c, Extended Data Fig. 3a, Supplementary Data Table 2, 

Supplementary Video 4). By stitching 10 XNH scans together into a single 3D volume 

covering over 1.4 mm along the leg’s main axis (Fig. 3c, Extended Data Fig. 3b), we 

obtained a comprehensive, high-resolution view of the leg’s structure, revealing not only 

motor and sensory neurons but also muscle fibers and sensory organs.

First, we comprehensively mapped the sensory organs and their associated sensory neurons 

in the leg (Supplementary Data Table 3). Our count of organs on the surface of the leg 

was quantitatively consistent with previous studies that employed scanning EM to visualize 

these structures34 (Extended Data Fig. 3c–f). In contrast, we identified more internal sensory 

structures (Extended Data Fig. 3g) than were previously detected with genetic driver lines35. 

Since XNH is equally capable of resolving surface and internal structures, we were able 

to complete an exhaustive list of the mechanosensory organs in the fly’s coxa, trochanter, 

femur, and first half of the tibia (Supplementary Data Table 3).
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Next, we reconstructed axons of different classes of sensory neurons to map their projections 

into the VNC. In doing so, we found systematic variation in the axon diameter of different 

sensory neuron types, suggesting that some types of sensory signals (namely those from 

coxal hair plates and trochanteral campaniform sensilla) are conducted to the VNC faster36 

or more reliably37 than others (Fig. 3c, Extended Data Fig. 3h–k). Our reconstructions 

revealed that while most sensory axons enter the VNC through the main leg nerve, the three 

different coxal hair plates project their axons into the VNC through three different nerves 

(Fig. 3c, cyan, Extended Data Fig. 3c,e). These results reveal a topographic organization for 

how these differently positioned (and therefore differently tuned) mechanoreceptors project 

their signals into the central nervous system.

We then turned to motor structures, reconstructing muscle fibers, tendons, and motor 

neurons. Motor neurons and muscle fibers had large diameters (1–2 μm and 8–16 μm 

respectively), enabling straightforward reconstruction throughout the dataset (Fig. 3c–h, 

Extended Data Fig. 3l). We identified 97 muscle fibers in the femur (Fig. 3h), significantly 

exceeding the 33 to 40 fibers reported previously using fluorescence microscopy38. Because 

XNH imaging also resolves the tendons that connect the muscle fibers to the exoskeleton, 

we were able to unambiguously define muscle groups by identifying muscle fibers that 

attach to the same tendon (Fig. 3c,h). For example, we found that six muscle fibers in 

the femur attach to the long tendon, rather than three as previously reported38. Two of the 

six (light red fibers) attach at the proximal tip of the long tendon and are innervated by a 

single motor neuron (Fig. 3c,g, light green), whereas the other four (dark red fibers) attach 

more distally and are innervated by two different motor neurons (one shown in Fig. 3c,g, 

dark green). This demonstrates that these two muscle fiber groups are under distinct neural 

control despite connecting to the same tendon. By comparing our reconstructions of motor 

neuron axons to single-neuron LM images, we were able to identify individual neurons in 

this dataset that have previously been studied in functional39 or developmental contexts40 

(Extended Data Fig. 3m–n). These results highlight how a set of overlapping XNH scans can 

reveal the precise structural relationships between neurons, sensory receptors, and muscle 

fibers crucial for adaptive control of limb movements.

Automated Segmentation of Neuronal Morphologies using Convolutional Neural Networks

While XNH imaging of millimeter-sized circuits can be accomplished in timescales of 

hours, manual tracing of neurons can take months. To address this bottleneck, we applied 

machine-learning algorithms to accelerate neuron reconstruction from XNH image data. 

We adapted an EM segmentation pipeline41 and applied it to an XNH image volume 

of a fly VNC encompassing the majority of a T1 neuromere and part of the front leg 

nerve (Fig. 4a, Extended Data Fig. 4a, Supplementary Video 2, Methods). This pipeline 

uses a 3D U-NET convolutional neural network (CNN) (Extended Data Fig. 4b) to make 

membrane predictions (in the form of an affinity graph, Fig. 4b–c) from XNH image 

data. Subsequently, voxels are agglomerated into distinct neuron objects based on the 

predicted affinities (Fig. 4d–e). The resulting neuronal reconstructions (Fig. 4f) contain 

3D geometrical information, such as axon and dendrite caliber, that is usually absent from 

manual tracing.
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Accessing large populations of neuronal morphologies by segmentation of XNH data can 

reveal how circuits are organized. Leveraging this automated segmentation pipeline, we 

reconstructed 100 neurons that enter the VNC via the main leg nerve and identified them 

as motor or sensory neuron subtypes based on their axon caliber and main branching 

patterns31,40,42,43 (Fig. 4e–g, Supplementary Video 5, Methods). We observed that axons are 

spatially organized in the nerve, such that neurons of the same morphological subtype tend 

to also have their axons physically clustered within the nerve (Fig. 4e–f). Furthermore, these 

reconstructions constitute a database of neuron morphologies that can be corresponded with 

LM and EM data. For example, by examining the main branching patterns of the largest

diameter motor neuron, we were able to identify it as a fast tibia flexor motor neuron39 that 

is known to receive direct synaptic input from campaniform sensillum neurons28 (Extended 

Data Fig. 4c).

To quantify segmentation accuracy, we compared the segmentation to manual tracing of 

selected neurons, counting the number of split errors (in which different pieces of a neuron 

are erroneously labeled as separate neurons) and merge errors (in which two different 

neurons are erroneously joined) (Extended Data Fig. 4d–e). Tuning the segmentation 

parameters to minimize merge errors while still maintaining an acceptable number of split 

errors resulted in ~0.75 mergers and ~13 splits per neuron (Extended Data Fig. 4f, Methods). 

Generally, split errors were found in the most distal branches where the processes became 

thin, whereas the main branches were segmented with lower error rates. Nevertheless, we 

found that fixing segmentation errors via proofreading (merging ~13 fragments) was much 

faster than reconstruction via tracing (placing ~500 nodes).

These results suggest that automated segmentation of XNH data can be used to rapidly 

reconstruct morphologies for dense populations of neurons. Segmentation networks can also 

be transferred to different types of tissue; by adding a small amount of cortex-specific 

training data, we adapted the network to segment XNH data from mouse cortex (Extended 

Data Fig. 4g–k). Continued progress in neuron segmentation from EM data will likely also 

benefit segmentation of XNH data, and new approaches for automatic transfer learning 

may make it possible to generalize EM segmentation algorithms to XNH without needing 

substantial new training data44.

Discussion

Applications of XNH to neural circuits

We demonstrate that X-ray holographic nano-tomography (XNH) enables imaging of 

neural tissue with sufficient resolution and field of view (FOV) to densely reconstruct 

individual neurons across millimeter-sized volumes. The resolutions achieved here enable 

reconstruction of the main dendritic and axonal branches of neurons, but smaller branches 

are not yet resolved. That said, these resolutions are sufficient for many applications, 

because a neuron’s main branches often clearly indicate its cell type45. In this fashion, 

we were able to identify pyramidal neuron cell types in mouse cortex (Fig. 2) and to 

differentiate sensory and motor neurons in the fly VNC (Fig. 3–4).
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Given these results, XNH is poised to help address several fundamental questions in 

neuroscience. For instance, what are all the cellular components in a neuronal circuit, 

and how are those components arranged? Because heavy metals stain all cells, XNH 

represents an unbiased approach to mapping neural circuits that can reveal cell types that 

have previously gone undetected. Because genetic expression is not required, XNH can map 

millimeter-sized neural circuits in any animal, enabling comparative studies of neural circuit 

structure across species. With high imaging throughput, multiple samples can be imaged to 

reveal differences between individuals, developmental stages, or disease models. With the 

large FOV, projectomes (i.e. atlases of all large-caliber axonal projections between brain 

regions) can be rapidly mapped to provide a detailed framework for how information flows 

between brain regions. Projectomes have previously been painstakingly assembled using 

large-scale EM or built up from sparse fluorescent labeling46,47, but now the entire brain of 

smaller model organisms can be mapped in a typical beamline experiment (1–2 weeks) with 

XNH. Finally, compatibility with EM enables local synaptic connectivity to be studied in the 

same sample following XNH. This combined approach allows relatively small EM volumes 

to reveal new patterns of synaptic connectivity for different cell types.

Approaches for volumetric imaging

The penetration power and sub-nanometer wavelength of high-energy X-rays makes them 

an ideal illumination probe for imaging thick (mm scale), metal-stained tissue samples with 

nanometer resolution. For neural tissue, phase contrast imaging at X-ray energies above 

17 keV provides over a thousand-fold increase in contrast over attenuation contrast48. The 

technique we utilize here, XNH, combines the advantages of phase contrast with today’s 

smallest and brightest high-energy X-ray focus23 to reach resolutions needed for resolving 

individual neurons.

XNH imaging is much faster than volumetric EM in part because EM is typically 

performed at ~100x smaller voxel size. In principle, low-resolution serial blockface EM 

(with voxel sizes comparable to XNH) can achieve imaging rates only ~2–3 times slower 

than XNH27,49. However, EM imaging of large samples is fundamentally limited by the 

need for physical sectioning, requiring either destructive sectioning (serial blockface EM) 

or painstaking collection of thousands of thin sections (serial section EM). With destructive 

sectioning it is not feasible to survey large volumes quickly at lower resolution, followed 

by high resolution imaging of subregions of interest, but this is possible with a combined 

XNH-EM approach (Fig. 2). Furthermore, not all samples can be reliably thin-sectioned 

– for example, the fly leg (Fig. 3) sections poorly due to the material properties of the 

exoskeleton. Thus, XNH offers unique capabilities for non-destructive mapping of large 

circuits in both the central and peripheral nervous systems.

Since XNH is a wide-field imaging technique, teravoxel-sized datasets can be rapidly 

acquired within days of imaging, enabling a range of applications requiring high-resolution 

imaging of large FOVs. This aspect sets XNH apart from X-ray ptychography, another 

phase contrast technique capable of high resolution imaging of biological tissues13,50. 

Ptychography is a scanning technique – thus data collection is slower. Furthermore, samples 

typically need to be smaller than ~100 μm in thickness for ptychography.
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In all wide-field imaging modalities, the ratio of FOV to voxel size is determined by the size 

of the detector (effectively 2048 × 2048 for this work), but this ratio can be increased by 

using larger detectors or detector arrays. XNH offers additional flexibility because samples 

can be larger than the FOV of a single scan, and multiple sub-volumes can be imaged 

and stitched together to extend tissue coverage at high resolution. This allows users to 

select the optimal voxel size to ensure sufficient resolution for neuron reconstruction while 

maximizing imaging throughput.

Outlook

Although XNH imaging can be implemented using a commercial X-ray source19, 

synchrotron sources are more suitable for obtaining high quality data. Access to these 

facilities is usually granted via research proposals and thus is free for academic researchers. 

There are more than 50 synchrotron sources worldwide and an increasing number of these 

are developing coherent imaging beamlines that could support XNH imaging.

It is worth noting that the resolutions achieved here (87–222 nm) are still far from the 

theoretical limits for hard X-rays, which have sub-nanometer wavelengths. In practice, 

XNH resolution is limited by focusing optics, mechanical stability and precision of stage 

movements, sample warping and performance of reconstruction algorithms, rather than 

by fundamental physical limits. Similarly, we expect continued improvements in imaging 

speed. Data collection can be accelerated by using faster and larger detectors, faster 

actuators, and increased coherent photon flux. The upgrade of the European Synchrotron (to 

be completed in mid-2020), along with planned improvements to X-ray optics and detectors, 

may enable faster imaging with the ability to resolve the thinnest neuron branches and 

the synapses between them, opening an array of applications in mapping neuronal circuit 

connectivity.

Accession codes

Raw XNH data is available in publicly-accessible repositories under the following accession 

codes:

1. BossDB (https://bossdb.org/)

https://bossdb.org/project/kuan_phelps2020

1. WebKnossos (https://webknossos.org/)

XNH_ESRF_mouseCortex_30nm

XNH_ESRF_mouseCortex_40nm

XNH_ESRF_drosophilaBrain_120nm

XNH_ESRF_drosophilaVNC_50nm

XNH_ESRF_drosophilaLeg_75nm

1. 3. ESRF (https://data.esrf.fr/public/10.15151/ESRF-DC-217728238)
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DOI: doi.esrf.fr/10.15151/ESRF-DC-217728238

Methods

Experimental Animals

Experimental procedures were approved by the Harvard Medical School Institutional 

Animal Care and Use Committee and performed in accordance with the Guide for Animal 

Care and Use of Laboratory Animals and the animal welfare guidelines of the National 

Institutes of Health. Mice (Mus musculus) used in this study were C57BL/6J-Tg(Thy1

GCaMP6s)GP4.3Dkim/J, male, 32 weeks and C57BL/6, male, 28 weeks, ordered through 

Jackson Laboratory (The Jackson Laboratory, Bar Harbor, ME). Mice were housed up to 4 

per home cage at normal temperature and humidity on reverse light cycle, and relocated to 

clean cages every two weeks.

Flies (Drosophila melanogaster) used in this study were 1–7 day old female adults with the 

w1118 genetic background. The transgenic approach for labeling GABAergic nuclei (used 

in Fig. 3 and Extended Data Fig. 5) is described below.

See Life Sciences Reporting Summary for more details.

Sample preparation

Tissue samples were prepared for XNH imaging using protocols for electron microscopy 

(EM), including fixation, heavy metal staining, dehydration, and resin embedding4,51. For 

heavy metal staining, we used an enhanced rOTO protocol51 for all mouse samples and 

some of the fly samples. For other fly samples, we modified the protocol to increase4 or 

decrease heavy metal staining, but these variations did not have a large effect on XNH 

image quality. Following staining, samples were dehydrated in a graded ethanol series and 

embedded in either TAAB Epon 812 (Canemco) or LX112 (Ladd Research Industries) resin. 

Resin-embedded samples were polymerized at 60ºC for 2–4 days. Polymerized samples 

were trimmed down to a narrow (1 to 2 mm diameter) rod using either an ultramicrotome or 

a fine saw, then glued to an aluminum pin. To smooth rough surfaces on the samples, which 

introduce noise into the XNH images, mounted samples were covered in a small droplet of 

resin, and the droplet was polymerized at 60ºC for 2–4 days.

For labeling APEX2-expressing cells (see below), we performed 3,3’-diaminobenzidine 

(DAB) staining after fixation and before heavy metal staining. Briefly, the nervous system 

from an adult female was dissected, fixed (2% glutaraldehyde, 2% formaldehyde solution in 

100mM sodium cacodylate buffer with 0.04% CaCl2) at room temperature for 75 minutes 

then moved to 4ºC for overnight fixation in the same solution. The following day, the sample 

was washed in cacodylate buffer, then 50mM glycine in cacodylate buffer, then cacodylate 

buffer again. To stain APEX2-expressing cells, the sample was incubated with 0.03% DAB 

in cacodylate buffer for 30 minutes, then H2O2 was added directly to the incubating samples 

to reach an H2O2 concentration of 0.003%52. The reaction was allowed to continue for 

30 minutes, after which the sample was washed in cacodylate buffer and inspected for 

visible staining product. Clusters of small brown puncta corresponding to the labeled nuclei 

were faintly visible (Extended Data Fig. 1g, top panel). The DAB and H2O2 incubations 
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were repeated once more to increase the staining intensity. The sample was subsequently 

stained with 3-amino-1,2,4-triazole-reduced osmium4 and uranyl acetate, then dehydrated 

and embedded in LX112 resin.

We found that heavy-metal staining, typical for EM studies51, improves membrane contrast 

in XNH images. However, heavy-metal staining also increases X-ray absorption, causing 

heating and warping of the sample and thereby degrading image resolution. To counteract 

sample warping, we imaged in cryogenic conditions and optimized X-ray dosage to 

maximize signal but avoid excessive heating53. Samples that had major alignment artifacts 

due to warping or damage during X-ray imaging were excluded from further analysis.

We determined that with optimal imaging conditions even unstained tissue can generate 

sufficient contrast to trace large neurons (Extended Data Fig. 1h, Supplementary Video 

6). The unstained sample (Extended Data Fig. 5b, Supplementary Video 6) was fixed in 

Karnovsky’s fixative, dehydrated in ethanol, cleared with xylene, and embedded in paraffin. 

The embedded sample was trimmed down to a narrow (1 to 2 mm diameter) rod using a 

scalpel, and inserted into a hollow aluminum pin with a 0.8 mm inner diameter for imaging.

Generation of Nuclear-APEX2 Flies

Based on the similarity between XNH and EM images, we reasoned that genetic labeling 

strategies previously developed for EM such as APEX252,54 could be adapted for XNH. We 

developed a fly reporter line that targets the peroxidase APEX254 to cell nuclei (Methods), 

and demonstrated that labeled neurons could be identified in XNH datasets (Extended Data 

Fig. 5a).

To target APEX2 to the nucleus, we fused a targeting sequence 

consisting of a methionine and 38 amino acids of the Stinger sequence 

(MSRHRRHRQRSRSRNRSRSRSSERKRRQRSRSRSSERRR) to APEX2. The targeting 

sequence was first cloned into the pENTR vector and subsequently cloned by recombination 

using the Gateway system into a destination vector (gift from Dr. Frederik Wirtz-Peitz) 

containing UAS-attR-sbAPEX2–3xMyc. The resulting UAS-NLS-APEX2-Myc construct 

was used to generate a transgenic line by direct injection using φC31 site-specific integration 

at the attP40 docking site on chromosome two.

To test whether APEX2 labeled cells could be identified via XNH imaging, we labeled 

GABAergic nuclei with APEX2. Fly lines containing the transgenes Gad1-p65AD, UAS

CD8-GFP and elav-Gal4DBD, UAS-CD8-GFP (gifts from Dr. Haluk Lacin) were crossed 

with the nuclear-APEX2 fly described above to generate flies with genotype w; elav

Gal4DBD, UAS-CD8-GFP / UAS-NLS-APEX2-Myc; Gad1-p65AD, UAS-CD8-GFP / +. 

The nervous system from a 5–6 day old adult female fly was prepared for XNH imaging as 

described above.

To automatically detect APEX2-labeled cell nuclei in XNH images, a 3D random forest 

pixel classifier was created, trained, and deployed using ilastik55. For training, a sparse set of 

pixel labels was interactively annotated for background pixels and labeled cell body pixels.

See Life Sciences Reporting Summary for more details.
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Experimental setup and data acquisition

XNH imaging was performed at beamline ID16A at the European Synchrotron in Grenoble, 

France. The end-station of the beamline is placed 185 m from the undulator source for 

improved coherence. The X-ray beam was focused using fixed curvature, multilayer coated 

Kirkpatrick-Baez mirrors into a spot measuring about 15 nm at X-ray energy of 33.6 keV23 

and 30 nm at 17 keV. The photon flux was on the order of 1–4 × 1011 ph/s.

The sample stage and X-ray focusing optics were placed in a vacuum chamber (pressure 

~10−8 mbar) and a liquid nitrogen based cryogenic system was integrated inside the stage, 

keeping the sample at 120 K during imaging. For cryogenic imaging, the samples were 

transferred into the vacuum chamber with a Leica cryo-shuttle. The samples were placed on 

a high-precision rotation stage56 downstream of the beam focus, and intensity projections 

(i.e. holograms) were recorded using a FReLon 4096 × 4096 pixel CCD detector57 with 2x 

binning, lens-coupled to a 23 μm thick GGG:Eu scintillator.

After traversing the sample, the beam was allowed to propagate and generate self

interference patterns (i.e. holograms). The resulting intensity was recorded on the 

detector placed 1.2 m downstream of the sample. The divergent beam gives geometrical 

magnification M = (z1 + z2)/z1 with z1 = focus-to-sample distance and z2 = sample-to

detector distance. Therefore, the pixel size and the corresponding FOV are proportional to 

z1 when the detector position is fixed (Fig. 1b). For each scan, four tomographic series of 

projections (rotations of the sample over 180º) were recorded at different focus-to-sample 

distances. To eliminate ring artifacts in tomographic reconstructions, the samples were 

laterally displaced at each rotation angle by a randomly-determined distance of up to 25 

pixels using high-precision piezoelectric actuators24. For each tomographic scan of the 

mouse cortex, 1800 projections were recorded with exposure times of 0.1 s at X-ray energy 

17 keV and 0.35 s at 33.6 keV. For the Drosophila scans at 17 keV, 2000 projections were 

collected with 0.2 s exposure times.

Image reconstruction

The recorded holograms were initially preprocessed to compensate for distortions and 

noise specific to the optics and detector, and normalized with the empty beam24. For each 

rotation angle, the four holograms corresponding to different propagation distances were 

aligned and brought to the same magnification. Normally, the holograms are cropped to 

the smallest FOV, corresponding to the targeted pixel size. In order to obtain an extended 

FOV, the information from the three larger FOVs at lower resolutions was integrated in the 

reconstruction as well.

From these sets of aligned holograms, phase maps were obtained through an iterative 

algorithm21,58–60. The initial approximations of the amplitude and phase were obtained 

through a method based on61, adapted for multiple propagation distance holograms59. For 

regularization we used the ratio between the refractive index decrement δ and the absorption 

index β corresponding to Osmium (δ/β = 27 for X-ray energy 33.6 keV and δ/β = 9 for 17 

keV). This regularization was used only to obtain the starting point of the iterative approach 

and only affects low spatial frequencies. At each iterative step, the amplitude term was kept 
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constant and the phase term was updated. Typically, 10 iterations were sufficient for the 

phase term to converge. Computation time was approximately 15 minutes per phase map 

(single CPU node). Computation of the phase maps was done in parallel by treating the 

holograms for each rotation angle independently.

Lastly, a 3D image volume of the tissue was generated by combining the phase maps from 

all angles into a tomographic reconstruction using filtered back-projection62. Iterative CT 

approaches and regularization were not used here. Since we acquire and combine four sets 

of angular projections at four different geometrical magnifications, we can use the lower 

resolution – larger FOV information to reconstruct extended FOV tomograms. In this case 

the reconstructed volume is larger than the detector size (Supplementary Data Table 1), 

however, the image quality degrades gradually towards the edges of the extended field since 

less information is available (Extended Data Fig. 1d).

Resolution Measurements

While the voxel size is directly determined by the sample positioning, the effective 

resolution depends on multiple factors, including the focal point size and the coherence 

properties of the X-ray beam, mechanical stability, detector characteristics, sample 

composition and image reconstruction approach. To measure the effective resolution, we 

used Fourier Shell Correlation and Edge-Fitting independently (see below), and found the 

results to be consistent.

Fourier Shell Correlation

To perform Fourier Shell Correlation (FSC)25, we split the data into two independently

acquired image volumes (see below) and measured the normalized cross-correlation 

coefficient between the two volumes over corresponding shells (size 6) in Fourier space. 

The intersection between the FSC line and the ½-bit threshold63 was used to determine the 

resolution (Extended Data Fig. 1c).

The two image volumes were generated independently from half of the phase maps (even 

and odd phase projections were separated). FSC was applied by comparing chunks from the 

two image volumes at corresponding locations. The size of these chunks was varied to find 

a size at which the FSC metric was stable, which occurred at chunk sizes of ~2003 voxels 

or larger. Measurements on larger chunks (up to 10003 voxels) remained stable, but took 

longer to compute. Computation was performed on evenly spaced chunks across the volume, 

excluding the regions containing only empty resin. Once the resolutions for all chunks were 

measured, the median and IQR were calculated (Fig. 1h, Extended Data Fig. 1b).

For characterization of resolution within a single scan (Extended Data Fig. 1d), FSC was 

performed on image cubes containing 1003 voxels, and each cube was plotted separately.

Edge-Fitting

For measuring resolution by edge-fitting, line paths perpendicular to sharp edges in the 

image volumes were annotated manually using CATMAID (Extended Data Fig. 1e,f, 

left)45,64. The image intensity along these line paths were then calculated using the pyMaid 
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python API (https://github.com/schlegelp/pyMaid). The points along the line paths were fit 

to the sigmoid function:

p3 +
p0
2 1 − tanℎ

x − p1
p2

Where x is the length along the line path and p1–4 are free parameters determined by 

nonlinear regression. (Extended Data Fig. 1e,f, middle).

Given a fit to an edge, the measured resolution is given by:

res = asecℎ 2
2 p2

The fits to each line path were inspected and poor fits were refit with different initial 

parameters or removed. Edge-fitting was used in the 30 nm mouse cortex dataset (Extended 

Data Fig. 1e) and the 50 nm Drosophila VNC dataset (Extended Data Fig. 1f). For each 

dataset, 30 measurements were taken (Extended Data Fig. 1e,f, right). For purposes of 

comparison, we also applied edge-fitting measurements to electron microscopy images of 

thin-sections of Drosophila VNC (Extended Data Fig. 1g, 4 nm pixels, 45 nm thick section).

Variability in Measured Resolution

In XNH data, resolution is generally better for scans with smaller voxel size (Fig. 1h). 

However, measured resolution was significantly larger than the voxel size, between 1.5 to 

3.5 times the voxel size. In EM images of nervous tissue, the ratio of measured resolution to 

pixel size is similar (Extended Data Fig. 1g). As the voxel size is reduced, the resolution per 

voxel deteriorates (Extended Data Fig. 1b). This is due to a combination of factors, such as 

more challenging conditions for phase retrieval and tomographic reconstruction and higher 

risk of sample warping during the scan. The photon flux density increases with smaller voxel 

sizes, so limiting the radiation dose and imaging at cryogenic temperatures are more critical.

Sample to sample differences also affect the resolution. Sample density can affect beam 

absorption and heating, and the location of the field of view relative to the mounting pin 

can affect heat dissipation. For one sample (fly leg), we imaged the same field of view with 

different voxel sizes, and found that the measured resolution improved monotonically with 

smaller voxel size (Extended Data Fig. 1h).

We found that the measured resolution is approximately uniform across the scan volumes 

(i.e. the tomographic reconstruction does not introduce major anisotropy in the image 

quality) (Extended Data Fig. 1d). However, the resolution near the axis of rotation (the 

center of the cylinder) appears slightly better. Also, areas in extended field of view (areas 

outside the detector size, beyond red line in Extended Data Fig. 1d) exhibit slightly 

degraded resolution. There may also be variation in measured resolution intrinsic to the 

evaluation method. For example, regions of empty resin (devoid of structure) within a 

sample exhibit poor resolution when measured by FSC. These regions were excluded from 

FSC calculations (Fig. 1h, Extended Data Fig. 1b, Supplementary Data Table 1).
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Post-Hoc EM imaging

After completing XNH imaging, samples were re-embedded in a block of resin and trimmed 

for thin-sectioning. Serial thin sections (45–100 nm) were cut using a 35 degree diamond 

knife (Diatome) and collected onto LUXFilm-coated copper grids (Luxel Corp.). Sections 

were imaged on a JEOL 1200EX transmission electron microscope (80 kV accelerating 

potential, 1500x mag), and images were acquired with a 20 MPix camera system (AMT 

Corp.) at 4–12 nm pixels.

For the fly VNC sample, several thin sections including the main leg nerve were collected 

and imaged with TEM (Fig. 1i). The XNH image volume was rotated to match the 

orientation of the transmission EM (TEM) sections using Neuroglancer (https://github.com/

google/neuroglancer). The TEM image of the leg nerve was elastically aligned to a 

single matching image taken from the XNH dataset using AlignTK (https://mmbios.pitt.edu/

aligntk-home). Neurons in corresponding images from XNH and EM were independently 

segmented using the manual annotation software ITK-snap65 (www.itksnap.org) (Fig. 1i, 

Extended Data Fig. 1i). The segmentation generated from the EM image was taken as 

ground truth, and the accuracy of the XNH segmentation was calculated by comparing it to 

the EM segmentation. For each neuron, segmentation was considered correct if the number 

of overlapping pixels shared between the EM and XNH segmentation was greater than half 

of the number of pixels for the neuron in both XNH and EM segmentations (Extended Data 

Fig. 1i, right). The size of each neuron was approximated as the diameter of the largest circle 

centered at the neuron’s center of mass that could fit entirely within the neuron (Extended 

Data Fig. 1j). Note that this analysis used only 2D image data – additional 3D information 

would likely improve performance.

For the posterior parietal cortex sample, a 3D EM dataset in posterior parietal cortex (Fig. 

2) was collected and imaged using the GridTape pipeline for automated serial section 

transmission EM66. To find the region of tissue imaged with XNH, 1 μm thick histological 

sections were collected and compared with XNH virtual slices. 250 thin sections (~45 nm 

thick) were collected onto GridTape for a total of 11 μm total thickness. For each section, 

an ROI overlapping with the XNH imaged region was imaged using a customized JEOL 

1200EX TEM outfitted with a reel-to-reel GridTape stage. Total EM imaging time was 

approximately 150 hours. In the EM images, the tissue ultrastructure, including chemical 

synapses, remained well-preserved after XNH imaging (Extended Data Fig. 2b, inset, 

arrows). The EM images also contained small cracks (orange arrows) and bubbles (inset, 

pink arrows), which may have resulted from XNH imaging. These minor artifacts did not 

affect our ability to analyze the data, but it is possible that they can be reduced or eliminated 

by modifying XNH imaging protocols. However, more correlative XNH-EM data is needed 

to understand the origin of microcracks and nanobubbles.

The EM images were stitched together and aligned into a continuous volume using 

the software AlignTK (https://mmbios.pitt.edu/software#aligntk). The XNH datasets 

were aligned to the EM volume via an affine transformation based on manually 

annotated correspondence points (annotated using BigWarp https://imagej.net/BigWarp). 

Data annotation (tracing of apical dendrite morphologies and annotation of synapses) was 

done with CATMAID45,64.
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Image Volume Stitching

For each pair of XNH scan volumes with overlapping FOVs, correspondence points 

identifying the same feature in each scan were annotated manually using the ImageJ 

plugin BigWarp67 (https://imagej.net/BigWarp). Translation-rotation-scaling matrices were 

calculated based on least-squares fitting of these correspondence points (~10–20 pairs per 

image volume) using custom MATLAB code, then applied to each image volume using 

the ImageJ plugin BigStitcher68. To avoid blurring from misalignments in regions where 

two scans overlap, image volumes were combined without blending in overlapping regions 

(custom Python code).

Data analysis – Posterior Parietal Cortex

Manual tracing of neurons was performed by a team of 2 annotators using CATMAID45,64. 

All cell somata within the XNH volume were identified manually and classified as non

neuronal, pyramidal neuron, or inhibitory neuron (Fig. 2e, Extended Data Fig. 2c)30,69,70. 

For a subset of pyramidal neurons distributed across layers II, III, and V, the apical dendrites 

were traced in the XNH volume up towards the superficial layers until they intersected the 

EM volume (Fig. 2b, Fig. S2e). The same apical dendrites were then identified in the EM 

volume based on their location and shape (Fig. S2b). Within the EM volume, all incoming 

synapses to the apical dendrite were annotated as excitatory (targeting dendritic spines) or 

inhibitory (targeting dendritic shafts or spine necks) (Fig. 2d). Presynaptic axons, which 

were resolvable in the EM data but not the XNH data, were not traced. Pyramidal cells were 

classified as layer II, III, or V based on the distance of their cell body from the layer I/II 

boundary, which was estimated as a plane above which the density of cell somata drops 

dramatically (Fig. 2b, Extended Data Fig. 2a). All tracing was reviewed independently by a 

second annotator to ensure accuracy.

To calculate synapse densities, we wrote custom python code utilizing the pyMaid python 

API (https://github.com/schlegelp/pyMaid) to access the CATMAID database. The calculate 

synapse densities for a given AD (Fig. 2f), the total number of inhibitory or excitatory 

synapses found in the EM volume was divided by the total pathlength of the AD within the 

EM volume. For these analyses the location of the excitatory synapses was defined as the 

location of the base of the spine neck, and only the dendrite trunk (excluding the spines) was 

used for calculating the dendrite pathlength. The inhibitory synapse fraction was defined as 

(# inhibitory synapses / total # of synapses). To calculate synapse densities as a function of 

AD pathlength (Fig. 2h–i, Extended Data Fig. 2g–h), each AD was split into fragments 10 

μm in length, and the synapse densities were calculated for each fragment individually. The 

AD pathlength was defined as the along-the-arbor distance from the center of the dendrite 

fragment to the soma (Fig. 2h–i) or initial bifurcation (Extended Data Fig. 2g–h).

Data analysis – Drosophila leg and VNC

Sensory receptors, muscle fibers, and neurons were annotated manually using 

CATMAID45,64. Sensory receptors and muscle fibers were large enough to be clearly 

resolved in the XNH volume (50–75 nm voxels). Larger axons were also clearly resolved 

throughout the leg and VNC (motor neurons, coxal hair plate neurons, trochanteral 

campaniform sensilla neurons), but other smaller axons (bristle neurons in particular) were 
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too small to be accurately traced. 3D visualizations were produced using ITK-SNAP (Fig. 

2c), the 3D viewer widget in CATMAID (Fig. 3, Extended Data Fig. 2e, Extended Data 

Fig. 3e,f,g,m,n, Extended Data Fig. 4d, ), Neuroglancer (Fig. 4, Extended Data Fig. 4j,k), 

Paraview (Fig. 1e, Extended Data Fig. 3a) or Fiji (Fig. 1f, Extended Data Fig. 3c).

Automated Segmentation

We used an automated segmentation workflow based on a segmentation pipeline for TEM 

data41. The pipeline consists of two major steps: affinity prediction and agglomeration. In 

the affinity prediction step, a 3D U-Net convolutional neural network (CNN) was used to 

predict an affinity graph from the image data. The value of the affinity graph at any given 

voxel represents a pseudo-probability that adjacent voxels (in the x, y, and z axes) are part of 

the same object. Adjacent voxels crossing object boundaries should have low affinity values, 

whereas voxels within neurons should have high affinity to the voxels surrounding them 

(including voxels contained in organelles or other subcellular structures).

Network Training

To expedite training a CNN on XNH data, we leveraged a CNN first trained on ground 

truth EM volumes from the CREMI challenge (https://cremi.org/), followed by training 

augmentation with corrected segmentation predicted on XNH data. We began by training 

an initial network on the CREMI ground truth data (4 nm x 4 nm x 40 nm) downsampled 

to match the voxel size of the XNH data (50 nm x 50 nm x 50 nm). We deployed this 

CREMI-trained network on a training volume of XNH data (320 × 320 × 300 voxels) and 

used Armitage/BrainMaps (Google) to correct the voxelwise segmentation for a sparse set of 

neurons. The network was then deployed on two more training volumes (200 × 200 × 200 

voxels, one in the main leg nerve, one in the T1 neuropil) which were densely traced (via 

skeletonization, not voxel-wise) by human annotators (using CATMAID). Skeleton tracing 

was used in lieu of voxel-wise error-correction because it can be completed in much less 

time and is less likely to introduce human errors in the training volumes. The tracing in these 

training volumes was used to correct errors in the candidate segmentation, and the corrected 

training volumes were then used to train the network further, resulting in the final network. 

The final network was then deployed on the entire dataset. Deploying the network on a 

server that has 40 CPU cores and ten NVIDIA GTX 2080 Ti’s across the full dataset (1792 × 

3584 × 3200 voxels) took less than 10 minutes.

Neuron reconstruction and proofreading

We developed a proofreading workflow based on Neuroglancer (https://github.com/google/

neuroglancer) to rapidly reconstruct and error correct neurons from automated segmentation. 

Although split and merge errors exist in the automated segmentation, such errors are 

usually easy for humans to recognize in 3D visualizations of reconstructed neurons. Thus, 

proofreading automated segmentation results is much faster than manual tracing.

For reconstruction/proofreading, a blocked segmentation methodology (in which the volume 

was divided into independent blocks of 2563 voxels) was used. Neurons were seeded by 

selecting a neuron fragment (contained within a single block) in the main leg nerve, and 

sequentially grown by adding neuron fragments in adjacent blocks. During each growth step, 
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the 3D morphology of the neuron was visualized and checked for errors. When merge errors 

occur, the blocks containing the merge are “frozen” to prevent growth from the merged 

segment. When a neuron branch stops growing (has no continuations), the proofreader 

inspects the end of the branch to check from missed continuations (split errors). In this way, 

both split and merge errors can be corrected. In the fly VNC XNH dataset, neurons took 

about 10–30 min each to reconstruction/proofread.

Neuron classification

Neurons were classified as motor neurons or sensory neuron subtypes by based on their 

location in the nerve and 3D morphology40,42,43,71. The reconstructed neurons are likely 

missing branches or continuations where they become too small to be resolved XNH. 

However, in most cases, the large-scale branching patterns were sufficient to classify the 

neurons. 166 neurons were reconstructed from seeds within the main leg nerve, out of 

which 66 were not clearly classified into a subtype and were excluded from Fig. 4f and 

Extended Data Fig. 4c. These unclassified neurons tended to be small fragments that do not 

extend significantly into the VNC, typically because they became too small to be reliably 

segmented (see also Extended Data Fig. 1i–j).

Segmentation error quantification

To access the accuracy of automated segmentation, we manually traced 90 neurons from 

the XNH data (CATMAID) and compared them to the automated segmentation results. 

For each neuron, a list of all skeleton node (manually placed) – segmentation fragment 

ID (automatically generated) pairs was generated. In a perfect segmentation, all skeleton 

nodes for a given skeleton would correspond to the same segmentation ID. For each 

manually-generated skeleton (neuron), a split error was counted for each extra segmentation 

ID associated with nodes in that skeleton. Split errors that did not change the topology of 

the neuron were not counted. For each segmentation ID, a merge error was counted for 

each segmentation fragment that was paired with skeleton nodes from multiple different 

neurons. To accuracy the count the number of such merge errors, the blocked segmentation 

was used (see Neuron Reconstruction and Proofreading above). This way, if two neurons 

are merged in two different places, it will count as two merge errors. It is worth noting that 

in this calculation, merge errors are only counted between the subset of neurons for which 

we performed manual skeletonization. Therefore, if portions of nearby un-skeletonized 

neurons were merged into the segmentation of a skeletonized neuron, that error would not 

be detected here. Visual inspection of the segmentation results suggest that this type of error 

is not overly common, but nevertheless the counts of merge errors reported here are likely 

an underestimate of the true rate of merge errors. It is important to note that in the neurons 

shown in Fig. 4f and Extended Data Fig. 4c, most split and merge errors were corrected via 

reconstruction/proofreading.

Statistics and Reproducibility

The quality of XNH reconstructions depended on imaging settings and sample 

characteristics, and was generally reproducible for a given set of parameters. For example, 

8 XNH scans of the same fly leg sample were recorded with the same imaging parameters 

with similar results (Supplementary Data Table 2). The 11 datasets reported in Fig. 1h, 
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Supplementary Data Table 1, and Supplementary Videos are a representative sample of 

XNH reconstruction quality over a range of imaging and sample parameters. Scans acquired 

during exploratory experiments which yielded poor quality data were not included for data 

analysis.

For statistical analysis in Fig. 2, the number of annotated neurons (n = 261) was calculated 

to ensure that a large number of sample points (> 30) exist in each of the 4 sublayers (IIa, 

IIb, III, V). No a priori statistical power calculations were performed to determine sample 

size but our sample sizes are larger than those reported in previous publications (ref. 27). 

For bootstrap analysis of variance (Fig. 2f), 1000 synthetic samples were generated from 

each layer (layer IIa, layer IIb, layer III, and layer V) by randomly selecting datapoints 

with replacement until the number matched the original dataset size. Then the mean synapse 

density or inhibitory synapse fraction was calculated for all 1000 synthetic samples. The 

plotted 95% confidence intervals plotted in Fig. 2f are the 2.5th and 97.5th percentile values 

from this distribution of synthetic sample means. This bootstrap analysis is a non-parametric 

test and does not assume normality or equal variances.

EM micrographs shown in Fig. 1i and Extended Data Fig. 1i are representative images. 10 

similar thin-sections were prepared and imaged with similar quality, although some sections 

showed physical damage sustained during the sectioning process. EM micrographs shown in 

Fig. 2d and Extended Data Fig. 2b are representative images. More than 2 million images 

with similar quality were recorded from this sample using automated EM, although some 

regions exhibited small cracks and bubbles, which may have been caused by prior XNH 

imaging.

This study involved detailed anatomical analysis of nervous tissue samples. In most 

analyses, were examined fundamental organizational principles of neuronal morphology 

and connectivity, rather than comparing experimental and control samples. Therefore, 

randomization was not necessary. Our data was not allocated into groups, thus blinding 

was not applicable; Data collection and analysis were not performed blind to the conditions 

of the experiments.

See Life Sciences Reporting Summary for more details.
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Extended Data

Extended Data Figure 1: X-ray Holographic Nano-Tomography (XNH) Technique and 
Characterization.
(a) Overview of XNH imaging and preprocessing. Left: Holographic projections of the 

sample (a result of free-space propagation of the coherent X-ray beam) are recorded for 

each angle as the sample is rotated over 180°, then normalized with the incoming beam. 

Center left: Phase projections are calculated by computationally combining four normalized 

holograms recorded with the sample placed at different distances from the beam focus. 
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Center right: Virtual slices through the 3D image volumes are calculated using tomographic 

reconstruction. Right: The resulting XNH image volume can be rendered in 3D and analyzed 

to reveal neuronal morphologies. (b) Quantification of resolution of XNH scans measured 

using Fourier Shell Correlation (FSC), normalized by each scan’s pixel size. At larger 

pixel sizes, the resolution per pixel improves, though the resolution itself is worse (see 

Fig. 1h). Datapoints and error bars show mean ± IQR of subvolumes sampled from each 

XNH scan. Number of subvolumes used for each scan is shown in Supplementary Data 

Table 1. (c) Representative FSC curve shown with the half-bit threshold. The intersection 

between the FSC curve and the threshold is the measured resolution. (d) Quantification of 

resolution within the 30 nm mouse cortex scan. Each dot represents an FSC measurement 

of a 100 voxel3 cube. Blue line and shaded band represent binned averages and standard 

deviation, respectively. The x-axis is the radial position of the center of the cube (distance 

from the axis of rotation). The red dotted line indicates the boundary of the scan – data 

points to the right of the line are from extended field of view regions (Methods). (e-f) Edge

fitting measurements of spatial resolution. Although FSC is commonly used to quantify 

resolution in many imaging modalities including X-ray imaging, its implementation is 

somewhat controversial63. To ensure that FSC measurements were accurate, we also used an 

independent measure of resolution based on fitting sharp edges in the images (see Methods), 

which produced values consistent with those measured via FSC. Left: Example features 

used for edge-fitting resolution measurement. For both (e) mouse cortex and (f) fly central 

nervous system, mitochondria were primarily selected because they have dark contrast and 

sharp boundaries. Center: Example line scan (image intensity values along the orange lines 

in the feature images). The measured resolution is parameterized from a best-fit to a sigmoid 

function (Methods). Right: Distribution of edge-fitting resolution measurements for many 

features distributed throughout the image volumes. n = 30 features measured as shown; 

boxes shows median and IQR and whiskers show range excluding outliers beyond 1.5 IQR 

from the median. The median resolution measured via FSC is shown for comparison. (g) 
Comparison of edge-fitting resolution measurements for two XNH scans and high-resolution 

transmission EM images. EM data was acquired from a ~40 nm thick section of Drosophila 
VNC tissue, imaged with 4 nm pixels. Resolution is plotted in units of pixels. n = 30 features 

for each dataset; boxes shows median and IQR and whiskers show range excluding outliers 

beyond 1.5 IQR from the median. (h) Comparison of XNH images acquired from the same 

FOV in the same sample (fly leg) at different voxel sizes. Within this range, the resolution 

improves monotonically, but not linearly, with voxel size. (i) Comparison of XNH and EM 

segmentations. The XNH and EM images shown in Fig. 1i were independently segmented. 

Colored patches in the left two images represent different neurons in the segmentation. The 

EM segmentation was taken as ground truth, and the XNH segmentation for each neuron 

was evaluated. The right-most image shows correct and incorrectly segmented neurons. (j) 
Quantification of XNH segmentation accuracy. The proportion of correctly segmentation 

neurons is plotted as a function of neuron size. Neurons larger then 200 nm diameter were 

segmented correctly more than 50% of the time. Note that this analysis used only 2D image 

data – additional 3D information would likely improve performance. In addition to the size 

of the neurons, the membrane contrast is also an important factor in accurately segmenting 

neurons in XNH. In a few cases, membranes between two axons were not clearly visible in 

XNH, causing them to be erroneously merged (i). Motor neurons in the leg nerve were also 
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challenging to segment because they contain complex glial wrappings that are not always 

clearly resolved in XNH (i, right size of images).

Extended Data Figure 2: Correlative XNH - EM analysis of the connectivity statistics of 
pyramidal apical dendrites in posterior parietal cortex (PPC).
(a) 3D rendering of two aligned and stitched XNH datasets in mouse posterior parietal 

cortex. Cell somata are colored in green (based on voxel brightness). Magenta plane 

indicates location of serial EM dataset. (b) Aligned XNH virtual slice (left) and EM image 

(right) of the same region of cortical tissue (horizontal section). After XNH imaging and thin 
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sectioning, the ultrastructure of the tissue remains well preserved, allowing identification of 

synapses (inset right, arrows). The EM images also showed small cracks (orange arrows) 

and bubbles (inset, pink arrows), which may have been caused by XNH imaging. (c) 
Examples of pyramidal neurons (top), inhibitory interneurons (middle) and glia (bottom) 

from the XNH data. Cells types were identified by classic ultrastructural features30,69,70. 

Pyramidal cells were identified by their prominent apical dendrites, while glia were 

identified from the relative lack of cytoplasm in the somata and the presence of multiple 

darkly stained chromatin bundles near the edges of the nuclei. Images are 40 × 40 μm 

virtual coronal slices (100 nm thick). (d) Histological slice of Nissl stained coronal section 

including posterior parietal cortex from the Allen Brain Atlas (http://atlas.brain-map.org/). 

Higher density of cells is evident at the top of layer II (consistent with Fig. 2e). (e) 
Rendering of cells included in connectivity analysis. Apical dendrites were traced in the 

XNH data (yellow) from somata (colored spheres) up to the layer I/II boundary where 

we collected an EM volume (cyan). Although the EM volume only contains short (< 50 

μm) fragments of each AD, combining data across hundreds of neurons allowed us to map 

synaptic I/E balance over hundreds of micrometers of path length (Fig. 2h–i). (f) Histogram 

of locations (cortical depth) of traced cells used for analysis of synaptic inputs onto apical 

dendrites. (g) Synapse densities (excitatory in blue, inhibitory in red) plotted as a function 

of pathlength to the initial bifurcation (as opposed to cell soma in Fig. 2i–j). Each marker 

corresponds to one dendrite fragment 10 μm long. Lines and shaded areas indicate binned 

average (20 μm bins) and interquartile range (mean ± SE). (h) Inhibitory synapse fraction 

plotted as a function of pathlength to the initial bifurcation. Each marker corresponds to one 

dendrite fragment colored based on the soma type. Lines and shaded areas indicate binned 

average and interquartile range (mean ± SE) for each soma type individually.
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Extended Data Fig. 3: Millimeter-scale imaging of a Drosophila leg at single-neuron resolution.
(a) 3D rendering of the dataset after individual scans were stitched together to form a 

continuous volume. (b) The image volume was computationally unfolded (ImageJ) to reveal 

the entire 1.4mm length of the main leg nerve. (c) Volume rendering of the three hair 

plates that sense the thorax-coxa joint. The clusters are positioned differently within the 

joint, implying that they are sensitive to different joint angle ranges. (d) Cross-section 

through the group of eight campaniform sensilla on the trochanter, revealing the underlying 

sensory neurons and their axons (blue, see Fig. 3c). (e-g) Locations of sensory receptors 
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in the leg. See also Supplementary Data Table 3. (e) Anterior view of external sensory 

structures. TiCSv1 and TiCSv2 are on the reverse (ventral) side of the tibia. (f) Posterior 

view of the trochanter, where large number of external mechanosensory structures reside. (g) 
Partially-transparent view of the leg revealing internal sensory structures (see Supplementary 

Data Table 3). Coxal stretch receptor: a previous report identified stretch receptor neurons 

in each of the distal leg segments (femur, tibia, and tarsus) that sense joint angles 

and are required for proper walking coordination35. We identified a neuron in the coxa 

whose morphology is consistent with the other stretch receptors and was possibly missed 

previously due to incomplete fluorescent labeling. This demonstrates that each major joint in 

the fly leg, and not only the distal joints, are monitored by a single stretch receptor neuron. 

Coxal strand receptor: we identified a single strand receptor in the coxa, innervated by a 

single sensory axon for which no cell body was visible in the leg. Strand receptor neurons 

are unique sensory neurons that have a cell body in the VNC instead of the leg72, but 

this type of neuron has only been previously identified in locusts and other orthopteran 

insects73. In this reconstruction, the strand receptor neuron’s axon enters the VNC through 

the accessory nerve, but could not be reconstructed back to its cell body in the VNC. 

(h-k) Axons of some sensory neurons were large enough to reconstruct at the 150–200 nm 

resolution achieved here. Sensory neurons innervating coxal hair plates (cyan) and some 

trochanteral campaniform sensilla (blue) had axons with large diameters, similar in size 

to motor neuron axons (yellow). In contrast, axons of all chordotonal and bristle neurons 

were narrower. (h) Cross-section through the main leg nerve at the location indicated in (b). 

Axons from different sensory clusters bundle together. Two TrCS8 neurons have unusually 

large diameters (1050 nm and 850 nm, white circles; see Fig 3c for full reconstruction of 

these axons). The remaining TrCS neurons have axon diameters of 430 ± 140 nm. Motor 

neurons (yellow) have diameters of 1–2 μm. The unresolved axons (areas indicated by red 

arrows) are chordotonal neurons and bristle neurons. (i) Cross-section through the ventral 

prothoracic nerve at the location indicated in (e). Axons from CoHP8 sensory neurons 

(blue, axon diameters of 1030 ± 90 nm) travel in this nerve, which also contains seven 

motor neuron axons (yellow), five of which innervate muscles in the coxa (left, axon 

diameters of 1140 ± 130 nm), and two of which innervate muscles in the thorax (left, 

axon diameters of 1880 and 2150 nm). The unresolved axons (red arrows) are likely bristle 

neurons. (j) Cross-section through the prothoracic accessory nerve at the location indicated 

in (e). Axons from CoHP4 sensory neurons (cyan, axon diameters of 1140 ± 240 nm) travel 

in this nerve. Shown here is a cross-section through one of two major branches of the 

prothoracic accessory nerve. This branch also contains five motor neuron axons (yellow, 

axon diameters 1610 ± 240 nm). (k) Cross-section through the dorsal prothoracic nerve at 

the location indicated in (e). Axons from CoHP3 sensory neurons (cyan, axon diameters 

of 1380 ± 20 nm) enter the VNC through this nerve. Shown here is the branch of the 

dorsal prothoracic nerve containing only the CoHP3 axons. Panels (h-k) are slices through 

reconstructed XNH volumes with 75nm pixel size, subsequently Gaussian blurred with an 

0.3 pixel radius. Axon diameters are reported as mean ± SD. (l) Cross-section through the 

tibia. The nerve is substantially smaller than in Fig. 3d–g as only a subset of leg neurons 

extend into the tibia. (m) Top: Morphology of a single motor neuron axon (green dye fill) 

innervating muscle fibers (red phalloidin stain ) in the femur (image from Azevedo et al.39). 

Each fly has a single motor neuron with this recognizable morphology39,40. Bottom: XNH 
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reconstruction of a motor neuron axon having the same recognizable morphology as the 

neuron as shown in the top panel. Red cylinders represent individual muscle fibers. (n) Left: 

Morphology of the motor neuron LinB-Tr2 (image from Baek & Mann 200940, Copyright 

1999 Society for Neuroscience). This motor neuron is born from Lineage B, the second 

largest lineage of motor neurons. Right: XNH reconstruction of motor neuron axon having 

the same recognizable morphology as the neuron shown in the left panel. The thin terminal 

branches were not resolved in the XNH reconstruction.

Kuan et al. Page 26

Nat Neurosci. Author manuscript; available in PMC 2021 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Figure 4: Automated Segmentation of Neuronal Morphologies using 
Convolutional Neural Networks (CNNs).
(a) Overview of XNH image volume encompassing the anterior half of the VNC and the 

first segment of a front leg of an adult Drosophila (200 nm voxels). A smaller, higher 

resolution (50 nm voxels) volume centered on the prothoracic (T1) neuromere of the VNC 

and including the initial segment of the leg nerve was used for automatic segmentation. 

(b) Schematic of U-NET CNN architecture used for automated segmentation (adapted 

from 41). Each blue arrow represents two successive convolutions. (c) Morphological 

comparison of the motor neuron with the largest-diameter branches out of all front leg motor 

neurons, reconstructed from three different flies using different modalities. Arrows indicate 

the largest-diameter branches, which match well across the three reconstructions. Left: 

Reconstruction using automated segmentation of XNH images. Gray segment indicates a 

merge error that was corrected during proofreading (Methods). Middle: Reconstruction from 

LM images of a dye-filled motor neuron labeled by 81A07-Gal4. This motor neuron controls 

the tibia flexor muscle and produces the largest amount of force of any fly leg motor 

neuron yet identified39. Adapted from Azevedo et al.39. Right: Skeleton reconstruction from 

EM images. Adapted from Maniates-Selvin et al71. (d) Population of 90 neurons used for 

evaluating segmentation error rates. Skeletons were categorized based on their morphologies 

(as in Fig. 4f) 40,42,43. White circle indicates the boundary of the T1 neuropil. A, anterior; 

P, posterior. (e) Examples of merge and split errors. True membrane locations are shown 

in black. Errors usually result from incorrect prediction of which voxels correspond to 

membranes. (f) Average error rates of segmentation for the 90 neurons shown in (f). 

Automated segmentation is parametrized by an agglomeration threshold amounts to a 

trade-off between split and merge errors. Data points indicate split and merge error rates 

for different agglomeration thresholds (Methods). The ideal segmentation minimizes the 

time needed to identify and fix split and merge errors during proofreading (red arrow). 

Merge error calculations based on comparisons to sparse manual tracing are likely an 

underestimate of the true number of merge errors. Note that the human-annotated, ground 

truth segmentation of XNH data excludes some areas where features are too small to 

resolve; thus these error metrics for XNH segmentation may not be directly comparable 

to what has been reported for EM. (g-j) Automated segmentation of XNH data in mouse 

cortex (primary somatosensory, layer 5, 30 nm voxels). (g) Raw data (h) Affinities (zyx 

corresponding to RGB colors). (i) selected segmentation labels corresponding to (e). (j) 
Selected 3D renderings of segmented neuron fragments. (k) Large FOV segmentation of 

myelinated axons in the white matter below mouse parietal cortex. Segmentation of such 

myelinated axons can enable tracing of long-range inputs between brain areas at single-cell 

resolution.
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Extended Data Figure 5: Additional staining approaches for XNH imaging.
(a) Top: Photograph of fly brain with GABAergic nuclei labeled with APEX2 (arrows). 

Middle: XNH images (120 nm pixels, 15 μm thick minimum intensity projection) of 

the same fly brain after heavy metal staining, showing clusters of dark, APEX2 labeled 

GABAergic cell nuclei (arrows). Bottom: XNH virtual slice (120 nm thick) and output from 

an automated Random Forest image classifier trained to detect labeled cells (green). (b) 
XNH data (105 nm voxels) of a Drosophila brain that did not undergo heavy metal staining. 

Even in unstained soft tissue, phase-contrast imaging provides enough signal that single 

neurons can still be resolved. FOV encompasses the optic lobe and half of the central brain. 

See Supplementary Video 6 and Methods.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: X-ray Holographic Nano-Tomography (XNH) Technique and Characterization.
(a) Schematic depicting pixel and FOV sizes for XNH imaging, along with comparisons 

to other modalities (assumes a 4 Mpixel detector). Note that EM imaging is generally 

performed on thin sections or surfaces, while XNH, LM, and micro computed tomography 

(μCT) can penetrate thicker tissue samples. (b) A Drosophila brain (blue arrow) embedded 

in resin and mounted for XNH imaging. (c) Imaging setup: the X-ray beam is focused 

to a spot using two Kirkpatrick-Baez mirrors and traverses the sample before hitting the 

detector. Holographic projections of the sample (a result of free-space propagation of the 

coherent X-ray beam) are recorded for each angle as the sample is rotated over 180° 

(see Extended Data Fig. 1a, Methods) (d) Phase map of the sample shown in Fig. 1b, 

calculated by computationally combining holograms recorded at 4 different distances from 

the beam focus. Computed pixel values indicate phase in radians. (e) 3D rendering of XNH 

volume of the central fly brain (120 nm voxels). The tissue outline is shown in blue, while 

neurons are highlighted in orange. (f) 3D rendering of an XNH volume of mouse posterior 

parietal cortex (100 nm voxels). Boundaries between cortical layers are shown in red. (g) 
Virtual slice through a higher-resolution XNH volume of mouse primary somatosensory 

cortex (30 nm voxels). Insets: detailed views showing ultrastructural features including 

mitochondria (magenta arrowheads), endoplasmic reticulum (magenta arrows), nucleolus 

(magenta asterisk), large dendrites (cyan) and myelinated axons (red). Insets are 10 μm 

in width. (h) Measured resolution (obtained using Fourier Shell Correlation, see Methods, 

Supplementary Table 1) for different XNH scans plotted as a function of voxel size and 

FOV. Datapoints and error bars show mean ± IQR of subvolumes sampled from each XNH 

scan. Number of subvolumes used for each scan is shown in Supplementary Data Table 1. (i) 
Comparison of XNH (50 nm voxels) and transmission electron microscopy (12 nm pixels, 
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100 nm section thickness) images of the same sample, the prothoracic leg nerve of an adult 

Drosophila.
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Figure 2: Correlative XNH - EM analysis of the connectivity statistics of pyramidal apical 
dendrites in posterior parietal cortex (PPC).
(a) Experimental approach: XNH imaging covers superficial and deep layers of PPC with 

sufficient resolution to resolve cell bodies and apical dendrites (ADs). Targeted 3D EM 

volume captures the layer I/II interface region, enabling analysis of synaptic inputs onto the 

apical dendrites near their initial bifurcations. (b) Virtual slice of XNH data (4 μm coronal 

section, max projection). Cell somata and apical dendrites are visible. Example layer II/III 

(green) and V (magenta) pyramidal cells are highlighted. (c) 3D EM reconstruction of an 

AD bifurcation with excitatory (targeting spines, blue) and inhibitory (targeting shafts or 

spine necks, red) synaptic inputs. (d) Example EM images of inhibitory (red) and excitatory 

(blue) synapses onto the apical dendrite. (e) Density of cell somata as a function of soma 

depth (μm below the layer I/II interface), classified as excitatory pyramidal cells (blue), 

inhibitory interneurons (red) or glia (yellow) (see Extended Data Fig. 2c). The top of 

layer II (~30 μm) contains a high density of both excitatory and inhibitory neurons. n = 

3234 neurons. (f) Left: Synapse density plotted as a function of soma depth (μm below 

the layer I/II boundary). Excitatory and inhibitory synapses densities shown in blue and 

red, respectively. Right: Inhibitory synapse fraction plotted as a function of soma depth. 

Small markers correspond to one neuron. Large markers and error bars indicate mean and 

95% confidence interval for each layer calculated via bootstrap analysis. n = 39, 99, 75, 

38 neurons for layer IIa, IIb, III and V, respectively. (g) Schematic of dendrite-fragment 

connectivity analysis. Apical dendrites within the EM volume were divided into fragments 

10 μm in length. For each fragment, the density of synapses was recorded along with the 

pathlength distance from the soma (AD pathlength). (h) Synapse densities (excitatory in 

blue, inhibitory in red) plotted as a function of pathlength to soma. Each marker corresponds 

to a 10 μm-long dendrite fragment. Lines and shaded areas indicate binned average (20 

μm bins) and interquartile range. (i) Inhibitory synapse fraction plotted as a function of 

pathlength to soma. Each marker corresponds to one dendrite fragment, colored based on 
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soma type. Lines and shaded areas indicate binned average and interquartile range (mean ± 

SE) for each soma type.
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Figure 3: Millimeter-scale imaging of a Drosophila leg at single-neuron resolution.
(a) Schematic of XNH imaging strategy. Ten partially-overlapping XNH scans 

(Supplementary Data Table 2) were used to capture a front leg’s coxa, trochanter, femur, 

and half of the tibia, plus the prothoracic neuromere (T1) of the VNC that controls this 

leg’s movements. The final leg segment, the tarsus, contains no muscles and was not 

imaged. (b) Photograph of a leg sample after heavy-metal staining, resin embedding, 

and mounting for XNH imaging. (c) Rendering of reconstructed leg segments, sensory 

neurons, motor neurons, and muscle fibers. Individual neurons were reconstructed from 

their target structures in the leg (sensory receptors or muscle fibers) into the VNC. (d-g) 

Cross-sections through the coxa and femur at locations indicated by dotted lines in (c). 

Color code is the same as in (c). (d) The arrangement of neurons, muscle fibers, and fat 

cells in the coxa. (e) Detailed view of nerve from (d). (f) The six long tendon muscle 

fibers in the femur are organized as a group of two and a group of four, which attach to 

the long tendon at different locations (see (c)). Asterisk indicates the femoral chordotonal 

organ, a proprioceptive sensory structure (see Extended Data Fig. 3g)31. (g) Detailed view 

of nerve from (f). Arrowheads indicate swellings of motor neuron axons, likely sites of 

neuromuscular junctions. Visible here are two swellings from the only motor neuron that 

innervates these two fibers (light green, see (c)). A different motor neuron (dark green, see 

(c)) branches off of the leg nerve, traveling past the proximal fibers to innervate the distal 

fibers. (h) Muscle fibers of the femur. The 97 fibers identified in the femur using XNH is 

nearly triple that reported previously using fluorescence microscopy38.
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Figure 4: Automated Segmentation of Neuronal Morphologies using Convolutional Neural 
Networks (CNNs).
(a-b) Raw XNH image data, recorded from the T1 neuromeres of an adult Drosophila 
VNC. V, ventral; D, dorsal; R, right; L, left. (c) Predicted affinities output by a 3D U-NET 

(Extended Data Figure 4b) corresponding to the region shown in (b). The affinities quantify 

how likely it is that each voxel is part of the same neuron as neighboring voxels in z, y 

and x directions (plotted as RGB). In isotropic XNH data, affinities in different cardinal 

directions are usually similar, leading to images that appear mostly grayscale. The dark (low 

affinity) voxels are the basis for membrane predictions. (d) Segmentation corresponding 

to data shown in (b) and affinities shown in (c). Each neuron is agglomerated into a 3D 

morphology based on the affinities. In this visualization, each neuron has a unique color. 

(e) Cross-section of the main leg nerve showing motor and sensory axons reconstructed via 

automated segmentation. Coloring corresponds to neuron type, revealing spatial organization 

of neurons within the nerve. (f) 3D visualization of 100 automatically segmented neurons 

in the Drosophila VNC. Coloring corresponds to neuron types determined based on 3D 

morphology. Dotted circle indicates boundary of the T1 neuropil associated with control 

of the front leg. (g) Example morphologies of VNC neuron subclasses (only four example 

neurons per type shown for clarity).
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