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Background: Hepatocellular carcinoma (HCC) is ranked fifth among the most common
cancer worldwide. Hypoxia can induce tumor growth, but the relationship with HCC
prognosis remains unclear. Our study aims to construct a hypoxia-related multigene
model to predict the prognosis of HCC.

Methods: RNA-seq expression data and related clinical information were download
from TCGA database and ICGC database, respectively. Univariate/multivariate Cox
regression analysis was used to construct prognostic models. KM curve analysis, and
ROC curve were used to evaluate the prognostic models, which were further verified in
the clinical traits and ICGC database. GSEA analyzed pathway enrichment in high-risk
groups. Nomogram was constructed to predict the personalized treatment of patients.
Finally, real-time fluorescence quantitative PCR (RT-qPCR) was used to detect the
expressions of KDELR3 and SCARB1 in normal hepatocytes and 4 HCC cells. The
expressions of SCARB1 in hepatocellular carcinoma tissue in 46 patients were detected
by immunohistochemistry, and the correlation between its expressions and disease free
survival of patient was calculated.

Results: Through a series of analyses, seven prognostic markers related to HCC
survival were constructed. HCC patients were divided into the high and low risk group,
and the results of KM curve showed that there was a significant difference between the
two groups. Stratified analysis, found that there were significant differences in risk values
of different ages, genders, stages and grades, which could be used as independent
predictors. In addition, we assessed the risk value in the clinical traits analysis and found
that it could accelerate the progression of cancer, while the results of GSEA enrichment
analysis showed that the high-risk group patients were mainly distributed in the cell cycle
and other pathways. Then, Nomogram was constructed to predict the overall survival
of patients. Finally, RT-qPCR showed that KDELR3 and SCARB1 were highly expressed
in HepG2 and L02, respectively. Results of IHC staining showed that SCARB1 was
highly expressed in cancer tissues compared to adjacent normal liver tissues and its
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expression was related to hepatocellular carcinoma differentiation status. The Kaplan-
Meier survival showed a poor percent survival in the SCARB1 high group compared to
that in the SCARB1 low group.

Conclusion: This study provides a potential diagnostic indicator for HCC patients,
and help clinicians to deepen the comprehension in HCC pathogenesis so as to make
personalized medical decisions.

Keywords: HCC, hypoxia, gene signature, prognosis, bioinformatics

INTRODUCTION

Hepatocellular carcinoma (HCC), characterized by high
morbidity and mortality, poses a major challenge to global public
health (El-Serag, 2011). At the time of diagnosis, most patients
have lost the opportunity for curative treatment, including
transplantation, resection or ablation. In addition, due to the
high recurrence rate, patients receiving potential treatment still
have a poor prognosis (Yang et al., 2019). If patients are at higher
risk of recurrence, strict follow-up is required, and patients
may also benefit from adjuvant therapy after cure, although
no adjuvant therapy has hitherto been considered standard
treatment (França et al., 2004; Wang et al., 2013). There has
been no consensus on the exploitation to predict the prognosis
of HCC, though a slew of attempts and efforts have been made.
Previous studies have mostly used parametric prediction models
constructed with clinical baseline characteristics (such as tumor
size, cirrhosis, tumor number, and microvascular infiltration)
and single-molecule biomarkers (such as alpha-fetoprotein
[AFP] and Des-γ carboxyl-Carboxyl of enzyme) to predict the
prognosis of HCC (AlSalloom, 2016). But recently, with the
development of genome sequencing technology, the integration
of prognostic gene signatures and traditional parameters in the
prognosis of HCC has shown great advantages. Nevertheless, it
is still of great necessity to make endeavor for the application of
these neoteric genetic properties in clinical practice.

Hypoxia is one of the markers of tumor microenvironment.
Due to insufficient blood supply, growing tumors often occur
in a hypoxia state (Lou et al., 2017). Unlike healthy cells,
tumors respond to low oxygen levels by initiating multiple
adaptive behaviors (for example, angiogenesis, proliferation, and
invasion) that ultimately promote a more aggressive tumor
phenotype. For example, glioblastoma can cause extensive tissue
hypoxia, which facilitates the induction and maintenance of
malignant phenotypes. For the glioma group, tumor hypoxia is
associated with anti-apoptosis, tumor recurrence, resistance to
chemotherapy and radiotherapy, invasion potential and reduced
patient survival (D’Alessio et al., 2019). In addition, previous
studies have shown that nearly 50% of locally advanced breast
cancers suffer from hypoxia, leading to failed chemoradiotherapy
resistance (Vaupel et al., 2002). However, despite considerable
efforts on the relationship between hypoxia and tumor, the
prediction of the correlation between hypoxic-related gene

Abbreviations: TCGA, the cancer genome atlas; ICGC, international cancer
genome consortium; KM, Kaplan–Meier; qRT-PCR quantitative reverse
transcription polymerase chain reaction; HCC, hepatocellular carcinoma;
GSEA, gene set enrichment analysis; ROC, receiver operating characteristic

expression and overall survival rate in HCC patients has
not been reported.

In this study, seven hypoxia gene signatures associated
with HCC prognosis were constructed using TGCA dataset
and validated in the ICGC dataset. Through GSEA functional
enrichment analysis, we examined the important role of the
prognostic marker gene in the development and progression
of HCC. The final results showed that the model had high
reliability in predicting the prognosis of HCC patients, and could
help clinicians better carry out individualized treatment. After
these bioinformatics analyses, two genes not previously reported
in HCC, KDELR3 and SCARB1, were selected to study their
expression levels in normal hepatocytes L02, HCC cells SMMC-
7721, HepG2, huh7, and SK-Hep-1, respectively.

TABLE 1 | Major demographic and clinicopathological characteristics of
hepatocellular carcinoma cases (n = 50).

Patients characteristic Frequency (n) Percentage (%)

Age (years)

<65 years 18 36%

≥65 years 32 64%

Sex

Male 36 72%

Female 14 28%

Tumor size (cm)

≤5 13 26%

>5 37 74%

Tumor number

Single 37 74%

Multiple 13 26%

AFP (ng/ml)

≤200 28 56%

>200 22 44%

Liver cirrhosis

No 26 52%

Yes 24 48%

Grade

G1–2 29 58%

G3–4 21 42%

TNM stage

Early (Stage I and II) 23 46%

Advanced (Stage III and IV) 27 54%

DFS (Median and range) 590 (0-28.0)

Values are expressed as median (range) or n (%). TNM, tumor-nodes-metastasis;
AFP, α-fetoprotein; DFS, disease-free survival.
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MATERIALS AND METHODS

Sample Collection
RNAseq data of this sample mainly comes from TCGA cancer
database1 and ICGC international cancer database2, including
TGCA dataset as a training set, and ICGC dataset as a verification
set. In order to ensure the accuracy and reliability of the

1https://portal.gdc.cancer.gov/
2https://ICGC.org/

data results, the samples with incomplete clinical information
and TCGA samples with survival time less than 30 days were
eliminated, and finally retained 343 TCGA liver cancer samples
and 231 ICGC samples. The 200 hypoxia-related genes were
retrieved from Molecular Signatures Database (MSiDb v7.1) and
named as HALLMARK_HYPOXIA.

Prognostic Model Construction
In order to establish a reliable prognosis signature, we first use
Univariate Cox regression analysis to screening the prognostic

FIGURE 1 | Gene signature selection using the forest analysis. (A) The distribution of the error rate (B) The importance of the signature genes was ranked through
the random forest analysis in HCC.

FIGURE 2 | The risk score distribution for each patient was showed in the training dataset (A) and external validation dataset (B). The upper panel represent the risk
score distribution, the middle panel showed the cases distribution and the lower panel. Exhibited the gene expression.
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genes. We then using the random forest algorithm to make a
feature selection using the “randomForestSRC” R package. We
also applied the randomSurvivalForest algorithm to screening
the importance of prognostic-related genes. The genes with
a relative importance >0.4 as the final signature. We then
using the multivariate cox regression analysis to established
an prognostic model based on these genes, and the risk
score for each patients was calculated according to therisk
formula =

∑
Coefgene × Expgenes, where Coefgene represent the

coefficient of each prognostic gene, the Expgenes represents
each gene expression (Dong and Mingjun, 2019). The patients
were further divided into high-risk and low-risk groups
based on the median risk score in the TCGA and ICGC
dataset, respectively.

Prognostic Model Evaluation
Kaplan-Meier (KM) curve was used to analyze and compare the
survival differences between the high-risk and low-risk groups
in the prognostic model. Then, ROC curve was used to evaluate
the specificity and sensitivity of the prognostic model by using
the “survivalROC” R package. In addition, the KM curve was
also used to assess the association between prognostic model
risk values and clinical traits. To further assess whether the
prognostic model could be used as an independent predictor,
univariate and multivariate Cox regression analyses were used to
evaluate clinical traits and risk values in training sets and external
validation sets, and it was found that the prognostic model
could be used as an independent predictor. Furthermore, we
constructed a nomogram and calibration curve related to these

FIGURE 3 | Prognostic value of the hypoxia risk signature in HCC. (A) Kaplan-Meier curve analysis of the hypoxia risk signature in the TCGA dataset.
(B) Kaplan-Meier curve analysis of the hypoxia risk signature in the ICGC dataset. (C) ROC curve analysis of the hypoxia risk signature of the 1-, 3-, and 5-year in the
TCGA dataset. (D) ROC curve analysis of the hypoxia risk signature of the 1-, 3-, and 5-year in the ICGC dataset.
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independent predictors for personalized independent survival
prediction through the “rms” R package.

GSEA Enrichment Analysis
In order to assess the metabolic pathways involved in the
prognostic model, we used GSEA enrichment analysis to assess
the enrichment pathways of patients in the high-risk and low-
risk groups. We are going to use c2.cp.kegg.v7.1.symbols.gmt
as background. The screening of significant pathways was
considered to be statistically significant with p-value < 0.05 and
error discovery rate FDR < 0.05.

Cell Culture
Human normal cell line L02, HCC cell lines SMMC-7721, Hep
G2, huh7 and SK-Hep-1 were purchased from Cell Resource
Center,PMUC (Beijing China). All cells were maintained
in Dulbecco’s modified Eagle’s medium (DMEM; Gibco,
United States) supplemented with 10% fetal bovine serum (FBS;
Gibco), 1% penicillin and streptomycin (Gibco). The cells were
cultured in a 5% CO2-humidified atmosphere at 37◦C.

RNA Extraction, Reverse-Transcription
RNA, and Quantitative Real-Time
Polymerase Chain Reaction
The total RNA was extracted from cell lines by using the TRIzol
reagent (Invitrogen), reverse transcription was performed by
using the PrimeScript RT reagent Kit (Takara, Japan) and cDNA

was synthesized according to the manufacturer’s instructions.
The qPCR assay was performed by LightCycler480 system
(Roche, Switzerland) and SYBR Green (Takara).

SCARB1: Primer name(F): GGAGATCCCATCCCCTTCTAT,
Primer name(R): CTGAACTCCCTGTACACGTAG.

KDELR3: Primer name(F): GAGGCTGAGACCATAACTA
CTC, Primer name(R):AGAAATTCTCAGTCTGGTACCG.

Patients and Specimens
A total 46 formalin-fixed and paraffin-embedded HCC tissue
samples from patients who underwent curative surgical resection
at the Lanzhou University Second Hospital (LanZhou, China),
from 2016 to 2020, were included. The study protocol was
approved by the Institutional Ethics Committee of Lanzhou
University Second Hospital (Lanzhou, China) and the patients
provided written informed consent regarding the use of their
tissues. The main clinicopathological features of these patients are
listed (Table 1). All patients underwent radical surgery. Median
follow-up was 32 months. Disease free survival (DFS) was defined
as time interval from operation date to recurrence.

Immunohistochemical (IHC) Staining
Procedure
Tissue microarray samples were cut into 4 um serial sections
and then were placed in an oven at 67◦C for 30 min, and
further dewaxing in xylene and alcohol. Then tissue samples
were treated with TE buffer (pH 9.3, 1 mM EDTA, and 10 mM
Tris) at 98◦C for 30 min. Next, tissue samples were immersed

FIGURE 4 | The independence identification of the risk model. Univariate cox regression analysis and multivariate cox regression analysis was performed in the
TCGA dataset (A,B) and ICGC dataset (C,D), respectively.
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FIGURE 5 | The correlations between the risk model and clinical factors. (A) Age. (B) Gender. (C) Grade. (D) Stage.

FIGURE 6 | Kaplan-Meier survival curves for the high- and low-risk groups stratified by clinical factors. (A,B) Age. (C,D) Gender. (E,F) Grade. (G,H) Stage.

Frontiers in Genetics | www.frontiersin.org 6 April 2021 | Volume 12 | Article 637418

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-637418 April 12, 2021 Time: 13:46 # 7

Bai et al. Hypoxia Signature, HCC, Prognosis

FIGURE 7 | Construction of the nomogram and calibration curve plot. (A) Nomogram construction based on the independent clinical factors including stage and risk
score. (B) Calibration curve plot for predicting 1-year OS in TCGA dataset. (C) calibration curve plot for predicting 3-year OS in TCGA dataset. (D) Calibration curve
plot for predicting 5-year OS in TCGA dataset. (E) ROC curves analysis of the nomogram in 1-, 3-, and 5-year OS.

in 3% H2O2 in order to eliminate the endogenous peroxidase
activity. Then samples were incubated with primary antibodies
(SCARB1, 1:100, ABclonal, United States) in phosphate-buffered
saline+Tween-20 (PBST) containing 3 mg/ml goat globulin
(Sigma, St. Louis, MO, United States) for 60 min at room
temperature (RT). Then anti-mouse/rabbit antibody (Envision
plus, Dako) were used to incubated with tissue samples for 30 min
at RT. Lastly, chromogenic agent 3, 3′-diaminobenzidine (Dako)
was used to stain tissue samples.

We were examined and scored the IHC results. According to
the positive cells’ proportion and the staining intensity, scores
were assigned: [score 0], no or less than 5% positive cells;
[score 1], 6–20% positive cells; [score 2], 21–50% positive cells;
[score 3], more than 50% positive cells. The staining scores of 2
or 3 were considered as high expression, the staining results were
scored as high and low.

Statistical Analysis
Statistical software SPSS 20.0 was used for data analysis.
Wilcoxon rank test analysis was used to compare different groups.
P < 0.05 was considered statistically significant. The survival
difference was analyzed using the Kaplan-Meier curve analysis
and log-rank test analysis.

RESULTS

Establishment and Validation of
Hypoxia-Related Prognostic Models
343 patients with liver cancer and 200 genes associated with
hypoxia were used to identify the prognostic model. Using
univariate cox regression analysis, 79 survival-related hypoxic
genes were selected forest and then the random forest algorithm
was used for feature selection. We identified the genes of
the relative important gene >0.4 was identified as the final
feature (Figures 1A,B). In view of these characteristics, we
used multivariate Cox regression analysis to construct the
prognosis model containing seven hypoxic gene-related genes.
Through the correlation coefficient, the risk formula was
constructed, as follows: r risk score = LDHA × 0.000812695+
KDELR3 × 0.000649537+ CDKN1C × 0.002057653+
SLC2A1 × 0.004190531+ NDRG1 × 0.001235623+
VHL × 0.023669962+ SCARB1 × 0.00060351. Through
the risk formula, the risk values of each patient in the training
set and external validation set were calculated, and the patients
were further divided into high-risk group and low-risk group
on the basis of the median risk value. We found the number of
death toll from the high-risk group of patients is significantly
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FIGURE 8 | Gene Set Enrichment Analysis (GSEA) of the hypoxia risk signature in the high risk group of TCGA (A) and ICGC (B) dataset, respectively.

FIGURE 9 | Relative expression of KDELR3 (A) and SCARB1 (B) 7721 represent SMMC-7721,G2 represent Hep G2,SK1 represent SK-Hep-1
(**p < 0.0016,****p < 0.0001).
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higher than low-risk group (Figures 2A,B), moreover, the KM
curve analysis that according to the results of the survival of high
and low risk group has obvious differences, the survival rate of
patients with low risk is far higher than the risk group (P < 0.05)
(Figures 3A,B), in addition, the results show that the training
sample set and validation set outside the ROC curve prognosis is
of high accuracy (Figures 3C,D).

Independent Assessment of Prognostic
Model
To assess the prognostic independence of this prognostic model
in both the training set and the external validation set samples.
We then performed the univariate cox regression analysis and
multivariate cox regression analysis in both data sets. As showed
in Figures 4A,B, we could discovered that the risk model can
serve as an independent prognostic factor in HCC. In addition,
we also observed that the risk model could act as an independent
prognostic factor in the external validation dataset by performing
univariate cox regression analysis (Figure 4C) and multivariate
cox regression analysis (Figure 4D).

Association Between Prognostic Models
and Clinical Cause Groups
In order to explore the association between prognostic models
and clinical traits, we first assessed the distribution of risk
values in clinical traits. As showed in Figures 5A,B, the risk
score distribution have no significantly difference in age and
gender. While risk values for G3-4 were significantly higher than
G1–2 (P < 0.05) (Figure 5C). In addition, the risk values for
stage III–IV were significantly higher than that of Stage I-II
(Figure 5D). These results suggest that a higher risk score is
associated with a higher degree of HCC malignance. Therefore,
this prognostic model can accurately predict the progression of
HCC. In addition, in order to study the prognostic value of
the model stratified by clinicopathological variables for HCC
patients, stratified analysis was conducted for HCC patients
according to age (Figures 6A,B), gender (Figures 6C,D), grade
(Figures 6E,F), and stage. For all the different stratifications, the
Overall Survival (OS) time was significantly shorter in the high-
risk group than in the low-risk group (Figure 6). These results
suggest that the prognostic model can predict the prognosis of
HCC patients without considering clinicopathological variables.

The Construction and Verification of
Nomogram in TCGA Data Set and ICGC
Data Set
In order to establish quantitative prognostic methods for HCC,
nomogram was established by independent prognostic factors
and prognostic models of two data sets. Based on multivariate
Cox analysis, point ratios in nomogram were used to assign
points. We drew a horizontal line to determine the points for each
variable, calculated the total points for each patient by adding the
points for all variables, and normalized it to a distribution of 0 to
100. By drawing a vertical line between the total point axis and
each pre-posterior axis, we can calculate the estimated 1-, 3-, and
5-year survival rates of HCC patients, which may be helpful for

TABLE 2 | The correlation between SCARB1 and clinicopathological
characteristics in HCC.

SCARB1

Patients characteristic Low (n = 17) High (n = 29) P-value

Age (years) 0.232

<65 5 9

≥65 12 20

Sex 0.232

Male 12 20

Female 5 9

Tumor size (cm) 0.265

≤5 9 14

>5 8 15

Tumor number 0.568

Single 13 24

Multiple 4 5

AFP (ng/ml) 0.075

≤200 11 14

>200 6 15

Liver cirrhosis 0.156

No 8 15

Yes 9 14

Grade <0.001

G1–2 10 2

G3–4 7 27

TNM stage <0.001

Early (Stage I and II) 13 6

Advanced (Stage III and IV) 4 23

Values are expressed as n (%). TNM, tumor-nodes-metastasis; AFP, alpha-
fetoprotein.

practitioners to conduct clinical decisions about the prognosis
of HCC patients. In addition, we evaluated the accuracy and
consistency of the nomogram by performing the ROC curve and
the calibration curve, respectively (Figure 7).

Functional Enrichment Analysis of
Prognostic Model
In order to further explore the potential function and role of
prognostic models in HCC, GSEA enrichment analysis was
used for enrichment analysis of high and low risk groups.
The results showed the cell cycle, MTOR signaling pathways,
OOCYTEMEIOSIS and UBIQUITINMEDIATESPROTEOLYSIS
pathway were significantly enriched in the high-risk
group (Figure 8).

Expression Levels of kdelr3 and SCARB1
To better explain the biological function of these genes in the
pathogenesis and development of HCC, we selected two genes not
reported in HCC studies for RT-qPCR to study the differences in
their expression levels. We found that the expression of KDELR3
was the highest in G2, while the lowest in 7721, L02 was the
highest in SCARB1, and SK-Hep-1 was the lowest (p < 0.05;
Figure 9).
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FIGURE 10 | Immunostaining of SCARB1 in HCC or the control tissue. (A) Negative staining of SCARB1 in normal tissue adjacent to HCC (400 magnification);
(B) Positive staining of SCARB1 in well differentiated HCC tissue (400 magnification); (C) Expression of SCARB1 in moderate differentiated HCC tissue (400
magnification); and (D) Expression of SCARB1 in poor differentiated HCC tissue (400 magnification). SCARB1 = scavenger receptor class B member 1.

Survival Analysis
For the 46 HCC cases, the median DFS was 9.0 months
(range, 28 days-28.0 months). As expected, several clinical
factors were associated with the DFS of HCC patients, including
tumor Grade, TNM stage (p < 0.001 for all)(Table 2).
Furthermore, SCARB1 was highly expressed in cancer tissues
and the positive expression rate increased with the degrade
of differentiation (Figure 10). The Kaplan-Meier survival was
analyzed to study the effect of SCARB1 on HCC patient
survival; it revealed that a poor percent survival in the SCARB1
high group compared to that in the SCARB1 low group
(P < 0.001) (Figure 11).

Univariate and Multivariate Analysis
In Univariate and Multivariate analysis, traditional
clinicopathological features (including tumor size, Grade
and TNM stage), SCARB1 were associated with DFS. The
results show that Grade, TNM stage and SCARB1 are correlated
with DFS respectively (P = 0.001, P = 0.036, P < 0.001)
(Table 3).

DISCUSSION

Hepatocellular carcinoma is one of the major health threats
around the world, particularly in East Asia. Even after radical
resection, the long-term outcome of HCC patients remains
depressed (Mazzanti et al., 2016). Therefore, it is very important

to develop a prognostic model suitable for HCC patients.
Recently, with the improvement of genome sequencing, biochip
and high-throughput sequencing technologies, more and more
studies have applied bioinformatics methods to chip dataset
analysis, which provides an effective new method for the
diagnosis, treatment and prognosis of HCC. In this study, a
total of 574 HCC samples were downloaded from TCGA and
ICGC databases, using TCGA as the training set and ICGC
as the test set. Through bioinformatics analysis, a prognostic

FIGURE 11 | Kaplan-Meier analysis of the survival rate of patients with HCC.
Disease-free survival of all patients in relation to SCARB1 expression
(p < 0.0001).
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TABLE 3 | Multivariate analyses of factors associated with DFS.

Univariate analysis Multivariate analysis

Clinicopatho
logical
factor

P-value HR 95% CI P-value HR 95% CI

Age (<605
vs.
≥65 years)

0.348 1.004 0.981-1.020

Sex (female
vs. male)

0.281 0.768 0.540–1.198

Tumor size
(≤5 vs. >5)

0.679 0.789 0.343-2.160 0.281 1.452 0.712-2.654

Tumor
number
(single vs.
multiple)

0.310 0.378 0.131-1.418

AFP (≤200
vs. >200)

0.097 1.812 0.891-3.189

Liver cirrhosis
(no vs. yes)

0.058 0.813 0.514–0.868

Grade(G1–2
vs. G3–4)

0.041 1.177 0.850-1.530 0.036 1.102 0.618-1.890

TNM stage
(early vs.
advanced)a

0.038 1.755 1.465–2.437 <0.001 1.812 0.944–3.828

SCARB1
expression
(low vs. high)

0.005 1.002 1.001-1.006 0.025 1.870 1.082–3.233

aEarly, TNM stage I/II; advanced, TNM stage III/IV. DFS, disease-free survival;
SCARB1, scavenger receptor class B member 1; TNM, tumor-nodes-metastasis;
HR, hazard ratio; CI, confdence interval.

model of HCC with seven genes associated with hypoxia
was constructed for the first time. Our prognostic model can
effectively stratify the survival of patients. We found the efficacy
of our prognostic model in both the training set and the external
validation set, suggesting that the model has strong prognostic
value. In addition, the prognostic model showed a significant
correlation with clinicopathological factors, further supporting
the robustness of the prognostic role of our model. In addition,
univariate and multivariate Cox regression analysis were used
to validate our prognostic model as an independent predictor.
Nomogram of independent predictors (staging and prognostic
models) were constructed and showed that the model performed
well in predicting 1-, 3-, and 5-year OS, which may be useful
for planning short-term follow-up for individual treatment. In
summary, the predictive prognostic value of our signatures is
greatly reflected in these results, but it is worth noting that
only two databases were selected. To validate the model on
a large scale, the signatures need to be validated in a more
independent queue.

Among the seven genes in the prognostic model that we
constructed, LDHA (lactate dehydrogenase A) is A crucial
REDOX enzyme in the glycolysis pathway in organisms, which
can reversely catalyze the oxidation of lactic acid to pyruvate,
and this catalytic reaction is the final product of anaerobic
glycolysis (Guo et al., 2019). In addition, LDHA can be used

as a possible prognostic marker for lung adenocarcinoma
survival, and the high expression of LDHA is associated
with poor prognosis (Yu et al., 2020). NDRG1 is a known
metastasis inhibitor in a variety of cancers, participating in
embryogenesis, cell growth, lipid biogenesis, stress response,
and immunity. During metastasis, tumor growth and invasion
require angiogenesis, and overexpression of NDRG1 is associated
with a decrease in pro-angiogenic factors, resulting in a
decrease of angiogenesis in pancreatic cancer (Hosoi et al.,
2009). The expression levels of NDRG2 and LDHA are closely
related to the prognosis of HCC patients and can be used as
prognostic markers (Guo et al., 2019). KDELR3 is the third
confirmed member in the KDEL familys, which encodes proteins
associated with the endoplasmic reticulum (ER). Reports have
shown previously that KDELR3 expression in arteriosclerosis
macrophages could be obviously differ from that in non-
arteriosclerosis tissues, and the higher expression level in
non-arteriosclerosis tissues, which can be used as a potential
prognostic factor (Huang et al., 2019). CDKN1C, DKN1C, also
known as p57Kip2, are cyclin-dependent kinase inhibitors.
The gene encoding CDKN1C is located on chromosome
11p15.5.CDKN1C belongs to the kinase inhibitor protein /CDK
interacting protein (Kip/Cip) family, which consists of three
members, namely CDKN1A/p21Cip1, CDKN1B/p27Kip1, and
CDKN1C/p57Kip2. Previously, CDKN1C was identified as a
tumor suppressor gene with decreased expression in various
cancers including HCC, colorectal cancer and ovarian cancer
(Peng et al., 2015). Thus, upregulation of CDKN1C leads to
inhibition of markers involved in cell growth, differentiation,
cell death, and angiogenesis in malignant tumors. SLC2A1
has been extensively studied as a major glucose transporter
and has been identified as a possible prognostic factor for
several cancers, including HCC and NSCLC et al. (Shang
et al., 2020). The absence of von Hippel-Lindau (VHL), a
tumor suppressor gene, is a hallmark of clear cell renal
carcinoma. In addition, VHL inactivation leads to constitutive
activation of hypoxia-inducing factor (HIF) HIF-1 and HIF-
2 and their downstream targets (including pro-angiogenic
factors VEGF and PDGF), while the activation of HIF and
its downstream targets induces tumor formation (Gossage
et al., 2015). SCARB1 (Scavenger receptor class B member
1) is a protein-coding gene. The related pathways include
lipoprotein metabolism and folic acid metabolism. Studies have
also found that SCARB1 can be a potential target for prostate
cancer (Gordon et al., 2019).

The relationship between cell cycle and malignancy is
now fully established, and our GSEA results show that the
associated pathways are enriched in high-risk patients. The
activation of mTOR related pathways can promote the vitality
and motility of HCC cell lines (Wu et al., 2018). Enrichment
of The OOCYTEMEIOSIS pathway was found in bladder
cancer and cervical cancer (Gao et al., 2018; Wu et al., 2019).
UBIQUITINMEDIATESPROTEOLYSIS related pathways plays
an important role in the disease progression of colorectal
cancer and non-small cell lung cancer (Lu et al., 2018; Wu
et al., 2020). These three pathways were enriched in our high-
risk patient group.
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Although we have made a lot of efforts to study the prognostic
model, there are still many defects. The clinical information of
external validation set and test set is not fully matched, leading
to the omission of partial clinical information and the inability
to fully understand the correlation between the prognostic model
and clinical practice. Moreover, none of genes have been verified,
because some of them have been studied in HCC. In view of
this, two genes, KDELR3 and SCARB1, have not been studied
in HCC, laying a foundation for further studies in the future. In
the present study, we have verified the RNA expression level of
KDELR3 and SCARB1, protein expression level of SCARB1 and
its percent survival, which verified our prognostic model. And
more research is needed.

In conclusion, a prognostic model consists of seven genes
associated with hypoxia was constructed to provide potential
biomarkers for the prognosis of HCC, which contributed to the
understanding of the underlying HCC pathogenesis.
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