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Abstract: In this work, Green Phosphorene (GP) monolayers are studied as an electronic sensing
element for detecting prostate cancer biomarkers from human urine. The adsorption of furan, C8H10

(p-xylene), and H2O on pristine GP and S- and Si-doped GP are investigated using the density
functional theory (DFT) calculation. Furan and C8H10 molecules have been considered as important
biomarkers of prostate cancer patients. First-principles DFT calculations are applied, and the results
divulged that pristine GP could be a promising candidate for furan and C8H10 detection. It is
manifested that furan and C8H10 are physisorbed on the S-, and Si-doped GP with small adsorption
energy and negligible charge transfer. However, the calculations disclose that furan and C8H10 are
chemically adsorbed on the pristine GP with adsorption energy of −0.73, and −1.46 eV, respectively.
Moreover, we observe that a large charge is transferred from furan to the pristine GP with amount of
−0.106 e. Additionally, pristine GP shows short recovery time of 1.81 s at room temperature under
the visible light, which make it a reusable sensor device. Overall, our findings propose that the
pristine GP sensor is a remarkable candidate for sensing of furan and other biomarkers of prostate
cancer in the urine of patients.

Keywords: prostate cancer; green phosphorene; sensor; DFT study; cancer biomarker

1. Introduction

The analysis of urine enables the observation of biochemical processes and metabolic
products in the human body, as a non-invasive method for screening disease states [1–3].
Human urine is composed of different molecules and analytes, and Volatile Organic Com-
pounds (VOCs) are a fraction of the molecules among them. The odor signature of urine
is produced by VOC substances, which carry information on physiological and metabolic
status [4–6].

Today, over 279 kinds of VOCs (Furan, p-Xylene, aldehydes, ketones, etc.) have been
identified in human urine that can be used as “urine-marks” to provide vital information
about dysfunction or metabolic disorders in the human body [7,8]. Detection of VOCs
in urine is a significant indicator for monitoring health conditions; hence, developing a
suitable platform for this purpose is necessary [9–11].

Many studies have reported that canines can be trained to detect breast, lung, and
ovarian cancers from breath, and urine samples [12–14]. It has been shown that variations in
the concentration of VOCs from the breath and urine are potentially correlated with various
types of diseases and cancers [15–17]. In this regard, scientists have demonstrated that
urinary VOC patterns in cancer patients are often different from those found in the urine
samples of control subjects, and these differences depend on cancer type and stage [18–20].
One of the leading types of cancer among men is prostate cancer, and furan and p-Xylene
(C8H10) are reported biomarkers for this cancer [21,22]. While 5-year survival rates are
nearly 100% for localized and regional prostate cancers, they are only 30% for distant
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prostate cancer. Sensors that could detect VOCs from breath and urine could indeed reduce
the mortality rate for prostate cancers.

Semiconductor sensor technology based on nanomaterials is one of the latest methods
in the field of urine analysis and detection of VOCs [21,23–25]. Since the introduction
of graphene as the first 2D material, nanomaterial-based sensors have provided new
opportunities in different fields, due to their unique properties [26,27]. Recently, Green
Phosphorene (GP), as a novel 2D material and new allotrope of black phosphorene, has been
theoretically proposed, and it has enticed considerable attention because of its exceptional
characteristics of energy stability, tunable direct bandgap, and strong anisotropy. These
properties have made it a great candidate in electronic, optical, catalysis, and sensing
applications [28,29].

There have been several studies on the sensing capabilities of black phosphorene in the
literature, but there are few theoretical studies regarding the molecule sensing application
of GP. It offers faster electronic transport at room temperature and higher directional
electronic anisotropy in comparison with the black phosphorene [30]. Inspired by these
advantages, Mao et al. [31] theoretically investigated the sensitivity of GP toward inorganic
compounds, such as NH3, SO2, HCN, and O3 molecules. They showed that GP could be a
potential candidate for O3 detection. Kaewmaraya et al. [32] utilized theoretical DFT-based
calculations to study interaction of GP with small molecules. They explored CO, CO2,
NH3, NO, NO2, and H2O as major environmental molecules. In another study, [33], the
interaction of GP with ethanol and methanol vapors based on theoretical DFT calculations
are investigated. They suggested that GP nanosheet could be used as a platform to detect
the existence of methanol and ethanol vapors. Very recently, our group theoretically
examined the sensing properties of GP toward dissolved gases in oil transformers such as
H2, CH4, and C2H2 and the findings manifested that GP could be used for the detection of
these molecules [34].

Motivated by the fascinating structural and electronic properties of GP, in this paper,
the interaction of GP with furan and p-Xylene, along with H2O as main interfering molecule
in the urine are investigated. We utilize GP monolayer for detection of the targeted
molecules, based on the first-principles method (DFT). Different structures of GP, such as
pristine and doped GP, are systematically researched and we scrutinize the adsorption
behaviors of the molecules with the GP-based nanosensor. Our results demonstrate the
promising future of GP-based sensors in the development of high-performance room
temperature VOC analyzers for detection of prostate cancer.

2. Computational Details

During this work, all DFT calculations were performed employing Atomistix ToolKit
(ATK) package, associated with Non-Equilibrium Green’s Function (NEGF) [35–37].

The exchange-correlation functional was approximated using the Perdew–Burke–
Ernzerhof (PBE) formalism. Additionally, the Van der Waals (VdW) and long-range in-
teractions were considered by adopting Grimme (DFT-D2) algorithm. The adsorption of
the molecules upon pristine or doped GP was found by adsorption energy, where the
adsorption energy was calculated by:

Ead = EDoped−GreenP+molecule − (EDoped−GreenP + Emolecule) (1)

where EDoped−GreenP+molecule, EDoped−GreenP, and Emolecule represent the energies for the
pristine or doped GP-molecule system, pristine or doped GP, and the corresponding
single molecule, respectively. The negative adsorption energy means that the process is
exothermic, and its most negative value indicates that the adsorption process is energetically
favorable. It is generally believed that chemisorption occurs when the absolute value of
adsorption energy is greater than 0.8 eV [38,39].

The optimized lattice parameters of the bulk of GP were determined to be 10.62, 3.26,
7.93 Å along x, y, and z directions, respectively, and are in reasonable accordance with
previous studies [32,33]. The supercell extended with a vacuum space size of 20 Å along
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the z-direction is considered to prevent image–image interactions. All the modeling was
implemented on the sufficient supercell GP with dimensions of 13.82 × 13.25 Å2.

The basis set of Fritz-Haber-Institute (FHI) pseudopotentials with double-ζ polar-
ized was employed for the calculations. In these calculations, 45 Hartree was set for the
kinetic energy mesh cut-off. The convergence criteria of maximum force and maximum
stress were set to 0.01 eV/Å and 0.001 eV/Å3, respectively. For sampling of the Brillouin
zone, Monkhorst–Pack k-point was set as 20 × 20 × 1. The electronic properties of the
configurations are investigated by the analysis of DOS and a 21 × 21 × 1 k-point was used.

Moreover, using Hartwigsen–Goedecker–Hutter (HGH) pseudopotentials with Tier
3 basis set, the charge transfer (Q) after adsorption of the molecule on the pristine or doped-
GP sheet was calculated by employing Mulliken population analysis, where a negative Q
demonstrates a charge conveyed from the molecule to the GP sheet, whereas a positive Q
shows that the molecule extracts electrons from the sheet.

3. Results and Discussions

First, the optimized geometries of the molecules and the GP monolayer were obtained,
and the results are depicted in Figure 1. It can be observed that the monolayer GP is a
semiconductor and has an energy band gap of 1.06 eV [40–42]. Additionally, the optimized
geometry of the considered molecules furan, C8H10 (p-Xylene), and H2O are shown in
Figure 1. The full relaxation of the geometry of isolated furan gives C:C~1.37 Å, C:H~1.10 Å,
and C:O~1.36 Å, which is in accordance with the experimental data [43]. Moreover, the
optimized geometry of isolated C8H10 gives C:C~1.40 Å (on the benzene ring), C:H~1.10 Å,
and C:C~1.51 Å (on the two sides), which is in good agreement with previous studies [44].
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Figure 1. Illustration of (a) monolayer GP (top and side views), (b) band structure of the GP, and
(c) structures of p-Xylene (C8H10), furan, and H2O molecules.

It is well known that nanomaterials such as GP prepared by the available fabrication
methods are likely to have many defects. Additionally, they could be deliberately or
accidentally doped with elements like S, and Si. Next, the interactions of S, and Si dopant
upon GP were investigated. Two dopants (S, and Si) were introduced to the host material’s
(GP) surface [32], and different potential points were examined; the most energetically
optimized configurations are demonstrated in Figure 2.
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Interestingly, it can be seen from Figure 2 that after doping the GP with the S atom, the
structure underwent a distortion due to the comparable atomic sizes of the dopants with the
phosphorus atom, while the bond of S with one of the adjacent P atoms was deteriorated.

Doping considerably impacts DOS, particularly the states close to the Fermi level. The
DOS values for two dopant cases are shown in Figure 2. These changes are justified by the
fact that GP possesses the sp3 hybrid character, and each P atom consists of a non-bonding
lone pair of electrons that may engage with the frontier p-states of the dopants, and the S
and Si doping cause the GP to convert to n-, and p-type semiconductors, respectively.

With the aim of obtaining the preferential adsorption sites of the molecules on the
pristine GP, the molecules were placed at a distance of 2 Å above different locations of the
sheet with diverse molecular orientations. Various adsorption sites on the GP surface, such
as above the P hexagon, the P-P bond, and above the P atom, were studied.

The interaction strength between the sensing material and analytes was evaluated by
calculating the adsorption energies, and the most optimized structures are presented in
Figure 3. Upon exposure of furan, it adopts a vertical direction, where its O atom is on top
of the P atom with a minimum distance of 3.07 Å and an adsorption energy of −0.73 eV
(Figure 4). From the electronic band structure calculations (Figure 3), it can be observed
that the energy bandgap of the GP (1.06 eV) upon furan adsorption changes to 1 eV.
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Moreover, after interaction of the GP with C8H10, it was adsorbed in a tilted parallel
orientation with respect to the plane, with a minimum distance (H-P) of 3.09 Å. Energy of
−1.46 eV is emitted after adsorption, and the energy bandgap changes to 0.978 eV. Finally,
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H2O is preferentially adsorbed in this manner, tilted from the horizontal orientation with
respect to the GP surface and with the minimum distance of (H-P) 2.92 Å.

The adsorption energy value for H2O upon interaction with GP, as shown in Table 1,
was found to be −0.5 eV. From the electronic band structure, it was determined that the
energy bandgap changed to 0.997, and 1 eV, respectively. In addition, all the molecules
provided electrons to the surface, so that a total net charge of 0.106 e was achieved for
furan. Additionally, GP accepted a total net charge of 0.073 and 0.055 e from C8H10 and
H2O molecules, respectively.

Table 1. The calculated adsorption energy (Ead), interaction distance (D)—i.e., the distance between
the molecule and the GP sheet, charge transfer (Q), where negative values of charge indicate a charge
transfer from the molecule to the surface, and recovery time (τ).

System Ead (eV) D (Å) Q (e) τ sec @ T = 300 K (Visible Light) τ sec @ T = 300 K (UV Light)

Pristine GP - - - - -
Pristine GP-Furan −0.73 3.07 −0.106 1.81 1.81 × 10−4

Pristine GP-C8H10 −1.46 3.09 −0.073 3.3 × 1012 3.3 × 108

Pristine GP-H2O −0.5 2.92 −0.055 2.45 × 10−4 2.45 × 10−8

S-doped-GP - - - - -
S-doped-GP-Furan −0.07 2.59 0.027 1.49 × 10−11 1.49 × 10−15

S-doped-GP-C8H10 −1.05 3.50 −0.083 4.3 × 105 43.02
S-doped-GP-H2O −0.31 2.53 0.003 1.6 × 10−7 1.6 × 10−11

Si-doped-GP - - - - -
Si-doped-GP-Furan −0.31 2.82 0.007 1.6 × 10−7 1.6 × 10−11

Si-doped-GP-C8H10 −0.33 3.04 −0.03 3.48 × 10−7 3.48 × 10−11

Si-doped-GP-H2O −0.16 2.42 0.03 4.86 × 10−10 4.86 × 10−14

All of this information, such as net charge transfer and interaction distances for
different systems, is detailed in Table 1. To gain a better understanding of molecule
adsorption on the GP, the density of states (DOS) of the GP sheet was plotted along with
different molecules in Figure 4.

It can be seen that the DOS of the H2O molecule disappears at around the Fermi level,
which indicates that the molecule does not alter the electronic properties of GP, supporting
the weak interaction between them. However, in the case of furan and C8H10, there are
overlap peaks between the molecules and the GP, and the nearest peaks to the vicinity of
the Fermi level are within the energy spans of −1.5 to −1 eV and −2 to −1.5 eV for furan
and C8H10 adsorption, respectively.

To track the adsorption mechanism and to shed light on the adsorption of the molecules
upon the GP, recovery time (τ), as a critical factor for the evaluation of the sensor, has to be
studied [25,45]. The recovery time τ captures the time cost for the desorption of a target
molecule from the sensing material’s surface. The τ could be obtained according to the
transition state theory and Van’t Hoff–Arrhenius explanation:

τ = A−1 exp
(
−Ead
BT

)
(2)

where A represents the apparent frequency factor, T is the working temperature, and B
is constant of Boltzmann (8.318 × 10−3 kJ/(mol·K)). The ambient temperature (300 K) is
considered to gain a full understanding of the desorption properties of the sensor system.
The frequency factor was determined to be 1012 and 1016 Hz, under visible and UV light
conditions, respectively [46,47]. Parameter τ for different conditions is tabulated in Table 1.

From Equation (2), it can be observed that sensor devices with a lower value of τ
were associated with lower Eads at a given temperature. Thus, the recovery time τ at
room temperature (300 K) and under visible light was determined to be 1.81, 3.3 × 1012,
and 2.45 × 10−4 s for furan, C8H10, and water, respectively. It is important to highlight
that both values of τ that are too long and too short are unfavorable for detection in
real experiments [47]. As a result, GP is considered to be an option for the detection of
furan molecules.
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Subsequently, the optimized preferential adsorption configurations for the molecules
on the S-, and Si-doped GP were investigated, and the results displayed in Figure 5. After
adsorption of furan with S- and Si-doped GP, it was observed that furan adopts a vertical
orientation with its H atom pointed toward the surface. There was a minimum distance of
2.59, and 2.82 Å between the H atom of furan and the S and Si atoms, respectively.
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Furthermore, in the case of H2O on both S-, and Si-doped GP, it is adsorbed approxi-
mately vertically with respect to the surface of the monolayer, in which there is a minimum
distance of 2.53, and 2.42 Å between the H atom and S, and Si atoms, respectively. Nonethe-
less, C8H10 displays a more complicated adsorption mechanism than other molecules, in
such a way that it tends to be adsorbed on the S-doped GP horizontally, with a minimum
distance of (H-S) 3.5 Å, and upon Si-doped GP, it is preferentially adsorbed vertically, where
its H atoms face down to the Si atom and the surface with a minimum distance of 3.04 Å.

By comprehensively comparing the values of adsorption energy for the configurations,
final adsorption energies of −0.07, −1.05, and −0.31 eV were obtained for the adsorption
of furan, C8H10, and H2O on the S-doped GP, respectively. Additionally, Ead values of
−0.31, −0.33, and −0.16 eV were obtained for furan, C8H10, and H2O upon Si-doped
GP, respectively.

DOS analysis was performed on the doped GP molecules structures, as shown in
Figure 6, to further help reveal the nature of the interaction between the molecules and the
structures. It can be seen that after adsorption of the molecules upon S- and Si-doped GP,
there were no changes around the Fermi level, which suggests that the molecules did not
alter the electronic properties of the substrate, supporting the weak interaction between
them and the S- and Si-doped sheet.
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Considering results obtained for the S- and Si-doped GP, all the molecules were
weakly adsorbed onto the doped GP systems. When calculating the recovery time for the
corresponding configurations, it can be observed that τ is either too short or too long for
desorption of the molecules.

Eventually, the obtained results suggest that pristine GP is a promising factor in
molecule sensing. Conversely, the findings show that by introducing atoms (S, and Si) to
the GP, its sensitivity toward the prostate biomarkers is not improved, and there is low
adsorption energy and negligible charge transfer between the doped GP and the molecules.
However, pristine GP appears to be a good candidate for capturing furan and C8H10, with
a moderate adsorption energy of −0.73, and −1.46 eV, large charge transfer, and a quick
recovery time.

4. Conclusions

In brief, we employed first-principles computations to analyze the adsorption ge-
ometry, adsorption energy, charge transfer, and electronic band structure of GP with the
adsorption of several molecules (furan, C8H10, and H2O). The results showed that pristine
GP could be deployed as a base substrate for adsorbing prostate cancer biomarkers, such
as furan and C8H10. While furan and C8H10 molecules were weakly adsorbed onto the
surface of S-, and Si-doped GP, the results indicated that the adsorption energy was low
and the charge transfer trivial. The adsorption energy for furan and C8H10 detection by
pristine GP was determined to be −0.73 and −1.46 eV, respectively. Additionally, there was
high transfer of charges, in an amount of 0.106 and 0.073 e, donated by furan and C8H10 to
the GP’s surface. Furthermore, it was found that at room temperature and under visible
light, pristine GP had a quick recovery time of 1.81 s, making it a reusable sensor for the
detection of biomarkers. It is worth mentioning that biological probes are typically water
solutions, and the content of water is superior. Therefore, chemical potential of molecules
all competing for adsorption sites is concentration dependent. All in all, this study supports
GP as a prominent adsorbing substrate for the diagnosis of prostate cancer biomarkers
from exhaled breath, and deserves further attention.
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