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Engineered regulatory T cell (Treg cell) therapy is a promising strategy to treat patients
suffering from inflammatory diseases, autoimmunity, and transplant rejection. How-
ever, in many cases, disease-related antigens that can be targeted by Treg cells are not
available. In this study, we introduce a class of synthetic biosensors, named artificial
immune receptors (AIRs), for murine and human Treg cells. AIRs consist of three
domains: (a) extracellular binding domain of a tumor necrosis factor (TNF)-receptor
superfamily member, (b) intracellular costimulatory signaling domain of CD28, and (c)
T cell receptor signaling domain of CD3-ζ chain. These AIR receptors equip Treg cells
with an inflammation-sensing machinery and translate this environmental information
into a CD3-ζ chain–dependent TCR-activation program. Different AIRs were gener-
ated, recognizing the inflammatory ligands of the TNF-receptor superfamily, including
LIGHT, TNFα, and TNF-like ligand 1A (TL1A), leading to activation, differentiation,
and proliferation of AIR–Treg cells. In a graft-versus-host disease model, Treg cells
expressing lymphotoxin β receptor–AIR, which can be activated by the ligand LIGHT,
protect significantly better than control Treg cells. Expression and signaling of the cor-
responding human AIR in human Treg cells prove that this concept can be translated.
Engineering Treg cells that target inflammatory ligands leading to TCR signaling and
activation might be used as a Treg cell–based therapy approach for a broad range of
inflammation-driven diseases.
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Regulatory T cells (Treg cells) are a pivotal T cell population with various functions in
the body. Treg cells foster tolerance against self-antigens, allergens, and commensals,
thereby limiting self-reactivity of immune cells and excessive inflammation (1). In the
last years, it became evident that Treg cells exert additional functions in safeguarding
tissue homeostasis and tissue regeneration (2–5). Therefore, Treg cells are a promising
candidate to be used as “living drugs” against autoimmune disorders and in transplanta-
tion, and first clinical trials have already proven the safety and efficacy of Treg-based cel-
lular therapies (6–8). Concepts applying the chimeric antigen receptor (CAR) technology
to Treg cells are being developed to enhance the potency of adoptive Treg cell therapy
(9). Preclinical studies have demonstrated the superiority of engineered Treg cells with a
CAR-guided antigen specificity over Treg cells with only a natural polyclonal T cell recep-
tor (TCR) repertoire in reducing alloimmune reactions in graft-versus-host disease
(GvHD) and graft rejection after transplantation (10–14). CAR–Treg cells were also
effectively tested for the treatment of asthma, hemophilia A, experimental autoimmune
encephalitis (EAE), and inflammatory bowel disease (IBD) in preclinical models (15–18).
However, in human autoimmune diseases, the implicated autoantigens, which could

serve as potential targets for CAR–Treg cells, are often unknown or vary strongly
between individual patients. In addition, in many autoimmune and alloreactive diseases,
multiple organs and tissues are affected without a uniform antigen that could be targeted
by CAR–Treg cells. In contrast to this, the mediators of inflammation show a high
redundancy as well as functional importance for the development of various inflamma-
tory diseases, including autoimmunity and alloreactivity. Especially, cytokines of the
tumor necrosis factor (TNF) superfamily are involved in many different inflammatory
and autoimmune diseases. For example, therapeutic intervention with TNF receptor
(TNFR) activation is an important treatment option for several inflammatory diseases
(19). These considerations led us to develop a concept for engineered Treg cell therapy
by generating artificial immune receptors (AIRs) that target these inflammatory media-
tors instead of tissue-specific antigens.
We focused on targets of the TNF superfamily and chose receptors of the ligands

LIGHT and LTα1β2, TNFα, and TNF-like ligand 1A (TL1A), as these cytokines have
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pleiotropic roles in numerous autoimmune diseases (19) and
are expressed as membrane-bound inflammatory ligands. Pre-
clinical disease models and patient data indicate that LIGHT
and LTα1β2 signaling through their corresponding receptors
lymphotoxin β receptor (LTBR) and herpesvirus entry media-
tor (HVEM/TNFRSF14) enhance pathology in IBD, autoim-
mune hepatitis, asthma, rheumatoid arthritis, multiple sclerosis,
and GvHD (20). A role for TL1A and its receptor death recep-
tor 3 (DR3) has been described in a variety of inflammatory
diseases. Studies with DR3- or TL1A-blocking antibodies or
TL1A- and DR3-deficient mice demonstrated a critical involve-
ment for this receptor–ligand system in the induction and main-
tenance of chronic inflammation in IBD, arthritis, and EAE
(21). Moreover, patient data and genome-wide association stud-
ies point to a fundamental impact of TL1A-DR3 in human dis-
ease (22). The most prominent member of the TNF family,
TNFα itself, has been studied extensively since its discovery in
1984. Its proinflammatory function was revealed in multiple dis-
eases, among them ankylosing spondylitis, IBD, rheumatoid
arthritis, psoriasis, systemic lupus erythematosus, and juvenile idio-
pathic arthritis (23).

AIRs as a synthetic tool for cellular therapy allow Treg cells to
sense and target these environmental inflammatory signals and
translate them into a CD3-ζ chain–dependent TCR program,
enabling Treg cells to fulfill their suppressive and tissue-protective
functions, independent of a CAR- or TCR-specific antigen.

Results

Generation and Expression of AIRs. We aimed to engineer syn-
thetic receptors for Treg cells that bind ligands of the TNF
superfamily and translate their signal into a TCR-activating
program. Therefore, complementary DNA (cDNA) sequences
encoding the extracellular and transmembrane domains of the
corresponding TNFR family member followed by intracellular
signaling domains of CD28 and the CD3-ζ chain were cloned
into retroviral vectors, which were used for Treg transduction
(Fig. 1A). We selected three members of the TNFR superfam-
ily: LTBR, DR3, and TNFR2, all based on the expression of
their cognate ligands in inflammatory diseases as described in
detail above. As intracellular signaling domains to induce a
TCR-like Treg cell activation, the CD3-ζ chain and the CD28
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Fig. 1. The concept of artificial immune receptor (AIR) and their expression in primary Treg cells. (A) Schematic representation of AIR construct design (Left)
and of corresponding ligands that induce AIR signaling in a membrane-bound version (Right). (B) Representative flow cytometric analysis of murine Treg cul-
tures 6 d after sorting. (C) Representative flow cytometric analysis of transduction efficiency (CD90.1 expression) and LTBR expression on Treg cells 3 d after
transduction with LTBR-AIR, α-CD19 CAR, or on untransduced control Treg cells. (D) Representative flow cytometric analysis of transduction efficiency
(CD90.1 expression) and DR3 expression on Treg cells 3 d after transduction with DR3-AIR, α-CD19 CAR, or on untransduced control Treg cells. (E) Represen-
tative flow cytometric analysis of transduction efficiency (CD90.1 expression) and TNFR2 expression on Treg cells 3 d after transduction with TNFR2-AIR,
α-CD19 CAR, or on untransduced control Treg cells.
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signaling domain were combined as previously reported (10). A
self-cleaving P2A peptide linked the AIR protein to truncated
CD90.1, which served as reporter for transduction. Murine
Treg cells were isolated from spleen and lymph nodes of wild-
type C57/BL6 mice or Foxp3-hCD2 reporter mice, sorted to
high purity via flow cytometry and transduced during expan-
sion with α-CD3/CD28 stimulation and interleukin-2 (IL-2).
Treg cells could be stably expanded under these conditions
(Fig. 1B). For all three AIR constructs, transduction rates of
about 90% were achieved (Fig. 1 C–E). Treg cells transduced
with a retroviral vector expressing an α-CD19 CAR that con-
tained the same intracellular signaling domains as the AIRs
were used as a control Treg population. AIR surface expression
correlated with CD90.1 marker expression and was detected
for LTBR-AIR (Fig. 1C), DR3-AIR (Fig. 1D), and TNFR2-
AIR (Fig. 1E). In accordance with literature, expanded and
nontransduced Treg cells expressed TNFR2 as well as low
amounts of endogenous DR3 (Fig. 1 D and E), while no
LTBR expression was detected (Fig.1C), since the LTBR is
physiologically expressed by stromal cells, such as fibroblasts,
and not by T cells (24).

CD3-ζ Chain–Dependent TCR-like Activation of AIRs. AIRs were
designed to bind their respective inflammatory ligands and to
translate this into a TCR-like program. To test this, LTBR-AIR
Treg cells were coincubated with cells expressing the LTBR-
ligand LIGHT. As expression of the transcription factor gene
Nr4a1 is an indicator of immediate-early response of TCR signal-
ing (25), NR4A1 protein expression was measured in LTBR-AIR
Treg cells coincubated with endogenously LIGHT-expressing
EL-4 cells (26). Intracellular antibody staining revealed NR4A1
upregulation upon LTBR-AIR activation, but not in control Treg
cells expressing the irrelevant α-CD19 CAR (Fig. 2A). LTBR-
AIR–induced NR4A1 expression could be blocked by adding
soluble LTBR–immunoglobulin fusion protein, confirming the
specificity of the LTBR-AIR-LIGHT interaction (Fig. 2A).
To further support these findings, Treg cells from Nr4a1.eGFP

reporter mice were engineered to express AIRs. AIR signaling
capacity was elucidated in coculture experiments with human
embryonic kidney (HEK) cells that expressed membrane-bound
murine LIGHT (mLIGHT), TL1A, or TNFα (schema in Fig.
2B). In order to elaborate the necessity of the CD3-ζ chain for
the TCR-like signal in AIR-Treg cells, a mutant version of the
LTBR-AIR was generated, lacking the CD3-ζ domain (Fig. 2C).
AIR-mediated Nr4a1.eGFP expression in Treg cells transduced
with the CD3-ζ domain mutant and the full-length LTBR-AIR
were tested via flow cytometry. Nr4a1.eGFP upregulation was
found in full-length LTBR-AIR–expressing Treg cells (CD90.1+)
after coincubation with HEK-LIGHT cells, but not in Treg cells
transduced with LTBR-AIR lacking the CD3-ζ chain (Fig. 2D).
CD90.1-negative nontransduced Treg cells of the same cocul-
tures or Treg cells transduced with the irrelevant α-CD19 CAR
did not upregulate Nr4a1.eGFP expression (Fig. 2D). Similar to
the LTBR-AIR, also TNFR2-AIR and DR3-AIR binding to their
corresponding ligands upregulated Nr4a1.eGFP expression only
in the transduced Treg fraction (SI Appendix, Fig. S1 A and B).
TCR activation can induce expression of transforming growth
factor (TGF)-β, which remains associated with its propeptide,
the latency-associated peptide (LAP), as membrane-bound LAP
in Treg cells (10). Therefore, we analyzed whether LAP expres-
sion was induced in LTBR-AIR–activated Treg cells. LTBR-AIR
coculture with LIGHT-expressing cells induced the expression of
LAP (Fig. 2E). LAP was not induced in Treg cells transduced
with the LTBR-AIR lacking the CD3-ζ chain and the irrelevant

α-CD19 CAR Treg cells (Fig. 2E). These data indicate that AIR-
Treg cells can sense their respective ligands, and this signal is
translated into a CD3-ζ chain–dependent TCR-like activation
program.

Profound AIR-Mediated Activation of Treg Cells. To analyze
AIR-induced changes on gene expression in detail, RNA-
sequencing experiments were performed. To this end, LTBR-AIR,
DR3-AIR, TNFR2-AIR, or α-CD19 CAR expressing Treg cells
from Nr4a1.eGFP mice were sorted after coculture with parental
or ligand-expressing HEK cells for CD90.1+Nr4a1.eGFP+LAP+

or bulk CD90.1+ (Fig. 3A and SI Appendix, Figs. S2A and S3A).
Unbiased principal-component analysis and differential gene
expression analysis revealed profound changes in gene expression
in LIGHT-activated LTBR-AIR Treg cells, with 3,709 genes
being differentially expressed (Fig. 3 B and C). LIGHT signaling
also induced some changes in gene expression in α-CD19 CAR
Treg cells, presumably via the HVEM receptor, which is endoge-
nously expressed on Treg cells (Fig. 3C). The LIGHT-induced,
LTBR-AIR–specific changes included well-known TCR target
genes like Egr1, Egr2, Egr3, Nr4a1, Nr4a2, Nr4a3, and Irf8 and
many genes involved in Treg function, like Ccr8, Ccr6, TGFβ1,
Pdgfβ, Tnfrsf9, Cx3cr1, Lag3, and Tigit (Fig. 3D and SI Appendix,
Fig. S4A). Cell sorting and RNA sequencing was also performed
for Treg cells activated by DR3-AIR (SI Appendix, Fig. S2A),
revealing specific differential expression of 1,580 transcripts (SI
Appendix, Fig. S2 B and C). DR3-AIR signaling included the
upregulation of TCR downstream target genes, like of the Egr
and Nr4a family, as well as functional Treg genes that we also
detected with the LTBR-AIR construct (SI Appendix, Figs. S2D
and S4B). Comparative analysis of TNFR2-AIR to endogenous
TNFR-mediated signaling (in α-CD19 CAR Treg cells) on
membrane-bound TNFα stimulation revealed a predominant sig-
naling of endogenous TNFR in murine Treg cells (SI Appendix,
Fig. S3 A–C), most likely due to high endogenous TNFR2 surface
expression. Although a clear discrimination between the RNA
profiles was detectable (SI Appendix, Fig. S3B) and TCR down-
stream targets like Nr4a1, Nr4a3, Irf8, and Egr3 were found spe-
cifically in the TNFR2-AIR–activated Treg cells (SI Appendix,
Figs. S3 C and D and S4 C), the artificial TNFR2-AIR signaling
and the endogenously expressed TNFR appeared to compete for
TNFα, leading to decreased TNFR2-AIR output compared with
signals triggered by DR3-AIR and LTBR-AIR in Treg cells. High
surface expression of TNFα was detected on the cell membrane of
transfected HEK cells, ruling out enzyme-mediated cleavage of
membrane-bound TNFα as a possible reason for decreased
TNFR2-AIR output (SI Appendix, Fig. S3E).

As suggested by the dependency of the AIR signaling on the
CD3-ζ-domain and the induction of Nr4a1 expression, the
RNA-sequencing (RNA-seq) data confirmed the AIR-induced
TCR-like activation program, as many TCR downstream tar-
gets were also found in α-CD3/CD28–mediated Treg activa-
tion, such as the Egr and Nr4a family members (SI Appendix,
Fig. S2 E and F). From the 2,102 LTBR-AIR upregulated genes,
1,199 (57%) were also found in α-CD3/CD28–stimulated Treg
cells (SI Appendix, Fig. S2G).

AIR Activation Supports Treg Program and Mediates
Proliferation. Activation of Treg cells via AIRs led to consider-
able changes in gene expression, including induction of activa-
tion marker, such as Tnfrsf9 (Cd137) and Cd69, as well as Treg
functional genes, like TGFβ1, Fgf2, Penk, Tigit, and Irf8, and
chemokine receptor genes, such as Ccr8, Ccr2, and Ccr6 (Fig.
4A and SI Appendix, Fig. S4 A–C and Fig. S5 A and C). Flow
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cytometry analysis of Treg cells, activated via LTBR-AIR (Fig.
4 B and C) or DR3-AIR (SI Appendix, Fig. S5 B and C), con-
firmed protein expression of several of these molecules, includ-
ing CD137, LAP, CD69, TIGIT, and IRF8. Importantly,
LTBR-AIR was only stimulated by membrane-bound and not
by soluble LIGHT (Fig. 4D and SI Appendix, Fig. S6A). Simi-
larly, also TNFR2-AIR only induced CD137, TIGIT, and
Nr4a1 upregulation after binding to its membrane-bound
ligand (SI Appendix, Fig. S6 B and C). This quality is prerequi-
site for Treg activation at the site of inflammation and indicates
a local and not systemic mode of action.
The AIR-triggered program illustrated by protein expression of

CD137, TIGIT, LAP, and CD69 in Treg cells might resemble a
CAR-induced program, as Treg cells transduced with an α-HLA-
A2 CAR (containing the same intracellular signaling domains as
AIRs) exhibited comparable expression of aforementioned proteins

after coculture with HLA-A2-positive PANC-1 cells (SI Appendix,
Fig. S6E).

As TCR or CD3-ζ chain–dependent signaling can initiate T
cell proliferation, we tested for the proliferation-inducing capacity
of the AIRs. To this end, AIR-Treg cells were generated, labeled
with carboxyfluorescein succinimidyl ester (CFSE) and rested
without TCR stimulation for 24 h. Labeled, rested AIR-Treg cells
were incubated with the respective ligand expressing HEK cells
for 72 h, and CFSE dilution was analyzed via flow cytometry. All
three AIR constructs led to cell division in response to the corre-
sponding ligand (Fig. 4E and SI Appendix, Fig. S6 F and G).

In contrast to the full-length LTBR AIR, the LTBR-AIR
lacking the CD3-ζ chain was unable to induce the abovemen-
tioned proteins CD69, TIGIT, LAP, and CD137 (Fig. 4F and
SI Appendix, Fig. S6D), reconfirming the CD3-ζ chain depen-
dency of the AIR signaling.
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In summary, AIRs can activate Treg cells in a TCR-like man-
ner in response to binding to their cognate membrane-bound
ligands, leading to cell proliferation and induction of molecules
relevant for Treg cell function. Those molecules included, for
example, the transcription factor IRF8, which is important for
the suppressive Treg function (27, 28), or TGFβ1, which can
support tissue regeneration as well as suppressive Treg func-
tion (29).

LTBR-AIR Improves Adoptive Treg Cell Therapy in a GvHD
Model. GvHD is a frequent complication after allogeneic bone
marrow or hematopoietic stem cell transplantation induced by
cotransferred alloreactive donor T cells. Several preclinical stud-
ies illustrate a promising perspective for GvHD therapy through
the administration of Treg cell products (30, 31). LIGHT inhi-
bition significantly ameliorated GvHD in preclinical models
(32, 33), and additionally, upregulation of LIGHT was
described in patients suffering from acute GvHD (34). There-
fore, as a proof of principle, the potency of AIR-Treg cells for
the treatment of an inflammatory disease was tested with the
LTBR-AIR construct in a complete major histocompatibility
complex (MHC) mismatch model of GvHD as depicted in Fig.
5A. To this end, Treg cells (C57BL/6, Foxp3-hCD2 reporter,

and congenic CD45.2) expressing the LTBR-AIR or a truncated
form of the LTBR-AIR as control, in which the extracellular
domain had been deleted, were transplanted into lethally irradi-
ated BALB/c mice together with bone marrow (BM) cells and
splenocytes, which included a pool of alloreactive T cells. Qual-
ity control of the transduced Treg cells revealed high Treg cell
purity (over 95% hCD2/FOXP3 positive) and a transduction
rate of over 95% before adoptive transfer (Fig. 5B). Blood sam-
ples were taken on day 20 after transplantation to analyze B cell
frequencies, because failure to reconstitute the B cell compart-
ment is a sensitive indicator for GvHD and Treg-mediated pro-
tection from GvHD is reflected in higher B cell counts (31, 35).
The B cell compartment was strongly reduced in animals receiv-
ing BM and splenocytes (GvHD group) in comparison to
animals receiving BM cells only. Control Treg cell–receiving ani-
mals showed a tendency for B cell recovery, but only the LTBR-
AIR Treg group reconstituted significantly B cells as compared
with the GvHD group (Fig. 5C and SI Appendix, Fig. S7A).
The survival of mice was monitored, and a clinical GvHD score
considering body weight, activity, fur appearance, and other
parameters was assessed. Treatment of mice with LTBR-AIR
Treg cells resulted in a significantly prolonged survival (Fig. 5D)
and lower GvHD score, including less-pronounced weight loss,
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compared with mice receiving no Treg cell therapy or control
Treg cells (Fig. 5 E and F).
Interestingly, transferred AIR-Treg cells (CD45.2+) retained

stable FOXP3 expression (SI Appendix, Fig. S7B, Left) and addi-
tionally upregulated the expression of KLRG1 (SI Appendix,
Fig. S7B, Right), a marker of tissue Treg cell differentiation
(5, 36). Both FOXP3 as well as KLRG1 protein expression in

engineered AIR-Treg cells was detectable on a similar level as
compared with Treg cells originating from the transplanted BM
(CD45.1+), indicating differentiation into a tissue-Treg–specific
phenotype. This differentiation ability could be relevant,
because, among the LTBR-AIR Treg treatment group, those
mice that survived until the end of the experiment showed sig-
nificantly higher frequencies of KLRG1+ LTBR-AIR Treg cells
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compared with mice that had to be sacrificed because of GvHD
severity (Fig. 5G). The intestine is a strongly affected organ in
GvHD. LTBR-AIR Treg cells migrated to the colon, were
detectable in the colon even 47 d after transfer (end of experi-
ment), and showed stable hCD2/FOXP3 expression (over
90%), as well as KLRG1 expression, again indicating a stable
tissue-Treg phenotype of LTBR-AIR Treg cells (Fig. 5H and

SI Appendix, Fig. S7C). Compared with the control Treg cell
group, we have seen a tendency toward higher total Nos. of
LTBR-AIR Treg cells in the colon (Fig. 5H, Right). In addition,
transferred engineered Treg cells isolated from spleen and colon
retained high surface expression of the LTBR-AIR receptor,
even at day 47 posttransplantation (Fig. 5I and SI Appendix,
Fig. S7D). In summary, these data show that LTBR-AIR Treg
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cells are functional and protect mice from GvHD, validating
the AIR concept in vivo.

Expression and Functionality of Human LTBR-AIR Treg Cells.
To translate the AIR concept into the human setting, a human
LTBR-AIR was designed analogous to the mouse version, contain-
ing extracellular and transmembrane domains from human LTBR
and intracellular signaling domains from human CD28 and
CD3-ζ chain (Fig. 6A). Naive human Treg cells were isolated
from peripheral blood as described before (37) and retrovirally
transduced. Human Treg cells efficiently expressed the human
LTBR-AIR (hLTBR-AIR) on the cell surface after expansion for 7
d (Fig. 6B). Coculture of hLTBR-AIR Treg cells with HEK cells
expressing human membrane-bound LIGHT (hLIGHT) induced
upregulation of CD137 (4-1BB) and GARP, similar to α-CD3/
CD28–stimulated Treg cells (Fig. 6 C and D). Such an activation
was neither detectable in the hLTBR-AIR-negative Treg fraction

(CD90.1�) of the same coculture (SI Appendix, Fig. S8A) nor in
Treg cells expressing an irrelevant CAR (α-carcinoembryonic anti-
gen [CEA] CAR) after coculture with HEK-hLIGHT cells (Fig. 6
C and D). LTBR-AIR Treg cells stimulated with hLIGHT further
showed induced expression levels of the activation markers CD69
and CD134 (OX40), as well as of the chemokine receptor CCR8
and LAP (Fig. 6E). These results reveal a comparable activation
potential of human LTBR-AIR-expressing Treg cells as we dem-
onstrated for murine AIR-Treg counterparts.

These data illustrate that our AIR-Treg concept is translatable
to the human system and a viable option for a class of engi-
neered Treg therapies.

Discussion

In this study, we generated artificial receptors that translate an
inflammatory ligand signal into a TCR-activating signal. TNF
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superfamily ligands are involved in virtually all autoimmune
and chronic inflammatory disease situations. By targeting these
ligands, our strategy is to create smart Treg cells that are
responsive to inflammation, rather than specific disease-driving
antigens, and can therefore be used as a Treg cell–based therapy
approach for a broad range of inflammatory diseases.
The interest in engineering Treg cells for therapy is growing

rapidly. Biotech and pharmaceutical companies have realized the
potential of engineered Treg therapy, and considerable invest-
ments are launched in this field (38). For example, Treg cells are
engineered specifically against alloantigens to prevent graft rejec-
tion after solid-organ transplantation by expression of CARs.
Recent reports using xenogeneic/humanized mouse models have
thus demonstrated that α-HLA-A2 CAR Treg cells show supe-
rior protection in transplant situations when compared with
nonengineered polyclonal Treg cell products (11–13). Treg cells
equipped with CARs or TCRs are found in organs affected by
autoimmunity and inflammation, e.g., the gut (17, 39) or the
central nervous system (15); however, focusing on one specific
epitope may not be favorable to address autoimmune diseases,
which are driven by a large and sometimes even unknown reper-
toire of autoantigens affecting various organs.
Our AIRs act as environment sensors that trigger TCR-like

activation and proliferation of Treg cells in response to TNF
ligands independently of their TCR. LTBR-AIR expression and
signaling in Treg cells improves protection against GvHD
development compared with Treg cells having a polyclonal
TCR repertoire only. As LIGHT is mainly expressed by acti-
vated B and T cells, especially by transferred donor T cells dur-
ing GvHD (32), LTBR-AIR Treg activation could occur in
both the draining lymphoid organs as well as in the inflamed
tissues. That could be an advantage over CAR Treg approaches,
where the recognized antigen is mainly expressed at one site,
e.g., in a transplant, and not in the draining LNs (11).
Our data also indicate that the choice of the AIR should con-

sider endogenous expression of the receptor, as competition for
the ligand or potentially new pairing of AIRs and the endoge-
nous receptor may occur, which might have negative consequen-
ces for the Treg activation, as we have seen for the TNFR2-AIR
in the RNA-seq data. Therefore, AIRs based on receptors that
are not endogenously expressed by the engineered cell type, such
as the LTBR-AIR, might be advantageous in this respect.
AIR-mediated conversion of inflammatory signal information

provides major advantages over CARs or transduced TCRs: first,
the negative effect of proinflammatory cytokines, such as LIGHT
and TL1A, can reduce the suppressive capacity of Treg cells
(40–44) via endogenous signaling, and this can be reversed into
Treg activation by the AIRs. Second, AIR-induced Treg cell acti-
vation occurs only at the sites and at the time of inflammation, as
AIR signaling cannot be triggered by soluble ligands but only by
membrane-bound ligands. Third, a No. of extracellular receptor
domains interact with more than one ligand, as, for example,
LTBR can bind two ligands LTα1β2 and LIGHT, and this obvi-
ously can additionally broaden the functional efficiency. Fourth,
advantages of natural receptor domains, such as the ones used
here for the AIRs, show a higher stability as compared with CARs
that are prone to aggregation via their single-chain variable frag-
ment (scFv). Thereby, CARs can cause a tonic signal in the T cells
independently of specific ligand binding (45). Finally, the scFv of
the CAR or the interface between scFv and the hinge/transmem-
brane region may cause immunogenicity, leading to reduced long-
term persistence of the CARs (45).
We focused on three members of the TNFR superfamily: LTBR,

TNFR2, and DR3. In principle, one could generate additional

AIRs targeting a variety of other membrane-bound inflammatory
ligands of the TNFR superfamily. Beyond the members of the
TNFR superfamily, there are other inflammation-associated receptor
families and their respective ligands, which fulfill similar require-
ments and could be the bases of further AIR constructs, e.g., AIRs
recognizing membrane-bound ligands of the epidermal growth fac-
tor family or adhesion molecules. Thus, we provide here a synthetic
immune receptor concept for engineering Treg cells that are acti-
vated by the inflammatory environment, opening therapy options to
address various diseases with (multiorgan) inflammation.

Materials and Methods

Ethics Statement. Peripheral blood mononuclear cells for T cell enrichment were
isolated from leukocyte reduction chambers from healthy donors donating thrombo-
cytes. Collection of immune cells from donors was performed in compliance with
the Helsinki Declaration after ethical approval by the local ethical committee
(Regensburg University, reference No. 19-1614-101) and signed informed consent.

Mice. Female BALB/c mice, C57BL/6 Nr4a1-eGFP mice (JAX stock No. 016617,
C57BL/6-Tg(Nr4a1-EGFP/cre)820Khog/J) and C57BL/6 CD45.1+ mice (JAX stock
No. 002014, B6.SJL-PtprcaPepcb/BoyCrl) were obtained from Charles River
Breeding Laboratories (Wilmington, MA, USA) or the Jackson Laboratory (Bar
Harbor, ME, USA). B6N.129(Cg)-Foxp3tm3Ayr mice (Foxp3.IRES-DTR/GFP) were
bred to C57BL/6 CD45.1+ mice and served as BM donors for GvHD experiments.
C57BL/6 Foxp3-hCD2 (Foxp3tm1(CD2/CD52)Shori) was a gift from S. Hori (46).

Design of AIRs. Murine and human AIRs were designed according to published
nucleotide sequences (https://www.ensembl.org/). Extracellular and transmem-
brane domains of LTBR, DR3, and TNFR2 were fused to the intracellular signaling
domains of CD28 and the CD3-ζ chain. Two point mutations were introduced into
the murine CD3-ζ chain, as they were shown to increase expression of CARs (47).
As negative control, an open reading frame (ORF) was used, coding for transmem-
brane and signaling domain of CD28 and the signaling domain of the CD3-ζ
chain. The α-CD19 CAR as well as the α-CEA CAR have been described previously
(48, 49). The HLA-A2 CAR construct is based on published sequence (GenBank:
MP143507.1). ORFs coding for the AIRs as well as the α-CD19 CAR, the α-HLA A2
CAR, and the α-CEA CAR were fused to the congenic marker CD90.1 by ligating to
a self-cleaving P2A sequence. cDNAs were synthesized by ThermoFisher/Life Tech-
nologies and cloned into the pMSCV-Thy1.1 retroviral backbone (Addgene, cat No.
17442) via NotI/Mlu. Nucleotide sequences are depicted in SI Appendix.

Digestion of Murine Tissues for Flow Cytometric Analysis, Fluorescence-
Activated Cell Sorting (FACS) of Cells and Transplantation. To isolate cells
from colon tissue, colons were isolated, cleared of feces, and prepared according
to manufacturer’s instructions with the lamina propria dissociation kit (Miltenyi
Biotec) and gentleMACS device (Miltenyi Biotec, program 37C_mLPDK_1).
More-detailed protocols about T cell isolation from murine tissues are published
(50) and described in SI Appendix.

Flow Cytometry and FACS. Flow cytometry samples were acquired on a BD
FACSymphony, a BD FACSCelesta, or a BD LSRII flow cytometer. Cell sorting was
performed with a BD FACSAriaII or BD FACSFusion cell sorter with 70-μm nozzle
(details in SI Appendix).

Culture and Retroviral Transduction of Treg Cells. Retroviruses in the
pMSCV-Thy1.1 system were manufactured in Phoenix-Eco cells, a pCLEco (pack-
aging plasmid)-carrying variant of HEK293 cells (details in SI Appendix).

Treg Proliferation Assay. α-CD3/CD28 beads were removed from transduced
Treg cultures via MACSiMAG separator magnet. Treg cells were rested for 18 h in
fresh medium supplemented with 100 U/mL rhIL-2. Treg cells were labeled with
CellTrace CFSE Cell Proliferation dye (1 μM) and added onto HEK293 cells
expressing mTNF, mTL1A, or mLIGHT. rhIL-2 (2,000 U/mL) was added to the cell
cultures. After 72 h of coincubation, proliferation of transduced CFSE-labeled
Treg cells was analyzed via flow cytometry.

RNA-Seq and Bioinformatics. Total RNA was isolated using the Qiagen RNeasy
Micro Kit, and RNA was eluted in 14 μL RNase-free water. RNA quality was assessed
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using the Tapestation system 4200 and High-Sensitivity RNA screentape (Agilent).
Seven microliters of the RNA was used for generating RNA-seq libraries using the
SMART-seq Stranded Kit from Takara. Indexed libraries were pooled in an equimolar
ratio and sequenced on an Illumina NextSeq 550 machine with NextSeq 500/550
High Output Kit v2.5 (75 cycles). Quality control and read mapping to the mouse
reference genome (GRCm38, gencode, release23) was performed using an adapted
version of the SnakePipes analysis pipeline (v1.2.2 including rDNA removal). Map-
ping was performed using STAR, and gene counts are based on featureCounts.

Quality control of the count matrix and differential expression gene calling
was performed with DESeq2. Gene counts were imported and prefiltered with
edgeR:filterByExpr, and the false discovery rate (FDR) was set to 0.05. gene ontol-
ogy analysis was performed with genes upregulated with a log2 fold change > 1
and FDR < 0.05 using goseq. Gene set enrichment analysis was performed using
fgsea. Plots were created with ggplot2 and EnhancedVolcano (51).

GvHD Model. BALB/c (H-2Kd) recipients were irradiated (8 Gy) and trans-
planted retrobulbar with 2.5× 106 BM cells with or without (BM control)
5× 105 splenocytes from C57BL/6 CD45.1+ donors (H-2Kb). The animals in the
therapy groups received 2.5× 105 in vitro expanded and transduced C57BL/6
Treg (Foxp3-hCD2 reporter, CD45.2+). Recipients were monitored daily and
body weight and GvHD symptoms assessed two or three times weekly by non-
blinded investigators applying standardized scoring protocols (approved by
Committee on Ethics of Animal Experiments at the Bavarian Government,
details in SI Appendix).

Statistical Analysis. Data were analyzed with Prism software or algorithm. Sta-
tistical details are indicated in the figure legend. For survival differences,

Kaplan–Meier analysis was performed and the log-rank test was used. Statistics
for RNA-seq is as described in SI Appendix, Materials and Methods. P < 0.05
was considered significant (*P< 0.05; **P< 0.01; ***P< 0.001).

Data, Materials, and Software Availability. Correspondence and requests
for materials should be addressed to Markus Feuerer.

The main data supporting the results in this study are available within the
paper and its supplementary material. The accession No. for the RNA-seq data
reported in this paper is Gene Expression Omnibus GSE197477.

[RNA-seq data] data have been deposited in [Gene Expression Omnibus]
(GSE197477) (52).
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