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Abstract

Hematopoiesis, or the process of blood cell production, is a
paradigm of multi-lineage cellular differentiation that has been
extensively studied, yet in many aspects remains incompletely
understood. Nearly all clinically measured hematopoietic traits
exhibit extensive variation and are highly heritable, underscoring
the importance of genetic variation in these processes. This review
explores how human genetics have illuminated our understanding
of hematopoiesis in health and disease. The study of rare muta-
tions in blood and immune disorders has elucidated novel roles for
regulators of hematopoiesis and uncovered numerous important
molecular pathways, as seen through examples such as Diamond-
Blackfan anemia and the GATA2 deficiency syndromes. Additionally,
population studies of common genetic variation have revealed
mechanisms by which human hematopoiesis can be modulated.
We discuss advances in functionally characterizing common vari-
ants associated with blood cell traits and discuss therapeutic
insights, such as the discovery of BCL11A as a modulator of fetal
hemoglobin expression. Finally, as genetic techniques continue to
evolve, we discuss the prospects, challenges, and unanswered
questions that lie ahead in this burgeoning field.

Keywords blood disorders; genetics; genome-wide association studies;

hematopoiesis

DOI 10.15252/emmm.201910316 | Received 27 April 2019 | Revised 1 July

2019 | Accepted 2 July 2019 | Published online 17 July 2019

EMBO Mol Med (2019) 11: e10316

See the Glossary for abbreviations used in this article.

Introduction

Every second, each one of us produces millions of diverse circulat-

ing blood cells—including erythrocytes, platelets, and leukocytes—

through the coordinated process of hematopoiesis (Fig 1A–C). This

dynamic cascade, by which self-renewing stem cells that originate

in the embryo go on to generate committed progenitors for the

erythroid, megakaryocytic, granulocytic, monocytic, basophilic,

eosinophilic, or lymphoid lineages over the course of a lifetime, is

one of the best characterized paradigms of cellular differentiation

(Orkin & Zon, 2008). However, our understanding of the regulation

of hematopoiesis, mediated by transcription factors (TFs), cytoki-

nes, and other molecules, remains incomplete and continues to

evolve (Jacobsen & Nerlov, 2019).

Early advances in the genetics of hematopoiesis were largely facil-

itated through the study of model organisms, including mice and

zebrafish. These animal models allowed us to characterize gene

function through reverse genetic approaches, with knockout experi-

ments having a particularly prominent role over many decades. For

example, much of our understanding of the Gata1 TF and its critical

role in erythropoiesis stem from initial studies in mice over two

decades ago, in which mice deficient in Gata1 were found to have

defective erythropoiesis (Pevny et al, 1991; Fujiwara et al, 1996). In

a similar fashion, mice lacking critical hematopoietic cytokine recep-

tors, such as the erythropoietin receptor (EpoR; Wu et al, 1995) or

the granulocyte colony-stimulating factor receptor (Csf3r; Liu et al,

1996), were shown to have defective production of erythrocytes and

neutrophils, respectively. This pattern of model organism-based

reverse genetic discovery has been observed for countless other

molecules critical for blood cell production (Orkin & Zon, 2008).

Although model organisms enable crucial insights into the func-

tions of specific genes, there are important limitations to translating

these findings to human biology and clinical impact. First, in contrast

to the binary outcome of knockout models, most human diseases

involve a diverse array of allelic variants that tune gene function or

expression across a continuous spectrum, thus enabling insights into

hypomorphic and other variant alleles. Second, model organisms are

usually bred under a homogeneous genetic background. While this is

useful for isolating the impact of specific genetic alterations, such

isogenic backgrounds can mask the impact of genome-wide genetic

variation upon phenotypes of interest. In light of these considerations,

a powerful way to gain additional insights is to examine the spectrum

of human genetic variation in health and disease. Indeed, studies of

human genetic variation have enabled a multitude of important

discoveries in hematopoiesis and have been applied to better under-

stand and treat a range of blood diseases.
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In this review, we discuss advances in the genetics of human hema-

topoiesis in three main sections. We first discuss genetic studies of

inherited rare blood disorders, which have provided complementary

insights as model organisms into this process through major perturba-

tions. We next review more recent studies of common genetic variation

impacting hematopoiesis which have further refined our understanding

of this process. Finally, we discuss emerging efforts to combine rare

and common genetic studies to achieve a more holistic understanding

of hematopoiesis. We describe several clinically relevant vignettes to

illustrate how human genetic studies have revealed new knowledge

about human hematopoiesis. However, we note that we cannot

comprehensively cover every example and instead highlight represen-

tative examples. Finally, we look ahead and discuss outstanding ques-

tions that will guide the next decade of research in this field.

Framework of human genetic studies

Human genetic studies can be broadly divided into common (allele

frequency > 1%) and rare (allele frequency < 1%) variant associa-

tion studies, each employing different approaches to work up their

variants of interest. Common variant association studies (CVAS)

usually take the form of genome-wide association studies (GWAS),

in which individuals are genotyped using arrays that capture mostly

higher-frequency variants. Statistical analyses can then be used to

determine whether each variant is associated with a continuous or

binary phenotype of interest. CVAS focus on traits with polygenic

architectures comprised of many variants with small individual

effects and usually include a large proportion of healthy individuals

in the study population. Notable current limitations of CVAS include

Glossary

Cis-regulatory element
Genomic regions of transcription factor binding sites and
other non-coding DNA that can influence transcription of a
nearby gene. Examples include promoters, enhancers, and
silencers.
Common variant association studies (CVAS)
Genetic studies which aim to identify common variants (usually
defined as minor allele frequency > 1%) associated with a
phenotype of interest.
Congenital dyserythropoietic anemia type II (CDA II)
The most common subtype of a group of rare hereditary disorders
characterized by congenital anemia, ineffective erythropoiesis, the
development of secondary hemochromatosis, and uniquely among
CDA II, an abnormal glycosylation of erythrocyte membrane
proteins.
Diamond-Blackfan anemia (DBA)
A rare inherited bone marrow failure syndrome characterized by
normochromic macrocytic anemia, limited cytopenias of other
lineages, low reticulocytes, and decreased erythroid precursor cells in
the bone marrow.
Eosinophil
A type of white blood cell that plays important roles in fighting
certain parasitic infections, and is also implicated in conditions
such as allergies and asthma.
Epistasis
Interactions between genetic loci in their effect on a trait, such
that the impact of a particular genotype depends on the genotype
at other loci in a non-independent manner.
Expression-quantitative trait locus (eQTL)
Associations of DNA sequence variation with changes in gene
expression.
Familial platelet disorder with predisposition to myeloid leukemia
(FPDMM)
A rare inherited blood disorder caused by mutations of the RUNX1
gene, clinically characterized by low platelet count, abnormal platelet
function, and an increased risk of developing other blood disorders or
cancers such as myelodysplastic syndrome (MDS) and acute myeloid
leukemia (AML).
Fanconi anemia (FA)
A heterogeneous genetic syndrome associated with risk of
congenital malformations, bone marrow failure, and cancer.
Genome-wide association study (GWAS)
A genetic analysis that tests for genome-wide associations
between genetic variants and a phenotype of interest.
Haploinsufficiency
The phenomenon in which a single functional copy of a gene is
insufficient to maintain normal function.

Heritability
The proportion of variation in a particular trait that is attributable
to genetic factors.
Imputation
The use of linkage patterns in a more densely sequenced reference
panel to predict unobserved genotypes in a study dataset.
Linkage
The nonrandom association of alleles at different loci.
Myelodysplastic syndrome (MDS)
A heterogeneous group of malignant hematopoietic stem cell
disorders characterized by dysplastic and ineffective blood cell
production and a risk of transformation to acute leukemia.
Neutropenia
A decrease in circulating neutrophils.
Pleiotropy
A phenomenon in genetics whereby a DNA mutation or variant
has an effect on multiple traits.
Polycythemia
An increased hemoglobin concentration and/or hematocrit in
peripheral blood.
Polygenic risk score
A weighted sum of the number of risk alleles for a phenotype
carried by an individual, where the risk alleles and their weights
are usually defined by association loci and their effect sizes
detected from genome-wide association studies.
Population stratification
Sample structure due to differences in genetic ancestry among
samples.
Rare variant association studies (RVAS)
Genetic studies which aim to identify rare variants (usually
defined as minor allele frequency < 1%) and their effects on a
phenotype of interest.
Sickle cell disease (SCD)
A monogenic blood disease caused by a glutamic acid to valine
substitution in the b-globin chain of normal adult hemoglobin,
which causes polymerization of mutated sickle hemoglobin and
deformation of red blood cells under conditions of deoxygenation.
Thrombocytopenia-absent radius (TAR) syndrome
A rare congenital syndrome primarily characterized by limb
anomalies and low platelet counts.
Thrombocytopenia
A low number of platelets in the blood.
b-Thalassemia
A group of autosomal recessive hereditary anemias characterized
by reduced or absent beta-globin chain synthesis, leading to
alpha- and beta-chain imbalances that cause clinical
manifestations of hemolytic anemia and impaired iron handling.

2 of 13 EMBO Molecular Medicine 11: e10316 | 2019 ª 2019 The Authors

EMBO Molecular Medicine Erik L Bao et al



its high multiple testing burden from evaluating millions of variants,

its inability to capture a substantial portion of heritability, and

the difficulty of functionally characterizing association signals

(Tam et al, 2019).

Rare variant association studies (RVAS) often require alternative

analytical methods, since single-variant analysis can be underpowered

to detect associations if the individual mutation is too rare in the study

population. To counteract this, burden tests have been developed,

which collapse many variants within a gene or region into a single risk

score. This approach thus performs a per-gene or per-region associa-

tion study as opposed to per-variant association tests in GWAS (Lee

et al, 2012; Zuk et al, 2014). Another important difference is that

GWAS typically employ single nucleotide polymorphism (SNP) arrays

to directly genotype up to a few million common variants. Millions of

additional variants can then be inferred via imputation, which is the

process of using linkage patterns in a more densely sequenced refer-

ence panel to predict unobserved genotypes in the study dataset.

However, these methods are ineffective for identifying extremely rare

variants, especially when the variants are previously unreported or in

low linkage with other variants (preprint: Van Hout et al, 2019).

Therefore, RVAS typically use targeted sequencing, whole-exome

sequencing (WES), or whole-genome sequencing (WGS), which allow

for unbiased variant calling to identify rare or novel variants that

would not have been included on genotyping arrays or that are not

confidently imputed (preprint: Wainschtein et al, 2019). In addition,

RVAS study populations are usually smaller than in CVAS and are

more enriched for disease cases. Finally, some limitations of RVAS are

that they usually miss non-coding associations due to exclusion

(WES) or low sequencing depth (WGS), and they require assumptions

about the underlying genetic model when aggregating variants (Lee

et al, 2014). Keeping in mind this broad framework of CVAS and

RVAS, we now dive into how these approaches have been applied to

study hematopoiesis in health and disease.

Genetic studies of rare blood disorders

In the early years of human genetics, prior to the advent of high-

throughput sequencing technologies, most efforts revolved around

studying rare blood diseases displaying Mendelian or monogenic

inheritance patterns, and this continues to be a powerful approach

today. What have such studies of rare blood disorders taught us? On
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Figure 1. Overview of hematopoiesis.

(A) Schematic of the human hematopoietic hierarchy. Dashed lines indicate
recently discovered differentiation paths. mono, monocyte; gran, granulocyte;
ery, erythroid; mega, megakaryocyte; CD4, CD4+ T cell; CD8, CD8+ T cell; B, B cell;
NK, natural killer cell; mDC, myeloid dendritic cell; pDC, plasmacytoid dendritic
cell; MPP, multipotent progenitor; LMPP, lymphoid-primed multipotent
progenitor; CMP, common myeloid progenitor; CLP, common lymphoid
progenitor; GMP, granulocyte–macrophage progenitor; MEP, megakaryocyte–
erythroid progenitor. Figure adapted from Corces et al (2016). (B) Quantitative
depiction of hematopoietic hierarchy, in which erythroid commitment is the
predominant and default pathway of differentiation. Figure adapted from Boyer
et al (2019). (C) Visualization of hematopoietic hierarchy in which lineage
commitment occurs on a continuum rather than in punctuated stages, a
perspective motivated by recent single-cell transcriptomic studies.
Figure adapted from Grootens et al (2019).
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one hand, they have demonstrated how allelic variation in known

hematopoietic regulators creates more diverse clinical manifesta-

tions compared to the all-or-none knockout studies of model organ-

isms. Secondly, they have revealed how fundamental biological

processes can often have distinct and unexpected roles in hemato-

poiesis. In this section, we describe genetic approaches for studying

rare blood diseases and then highlight examples of important

biological insights gained from such studies.

Several methods have been employed to map rare blood diseases

to causal genetic mutations. In the past, the most common approach

was linkage analysis. This approach involves recruiting families

with a disease or phenotype of interest, detecting co-segregation of

the disease with genetic markers of known chromosomal location,

and pinpointing a mutated gene in the linkage window. However,

since the development of massively parallel sequencing in the last

decade, targeted sequencing, WES, and WGS have emerged as far

more scalable and higher-resolution ways to dissect the genetics of

rare blood disorders. These approaches have had great success in

identifying rare loss (or gain)-of-function coding variants segregat-

ing within families with hematologic traits at extremes of the pheno-

typic distribution (Minelli et al, 2004; Shiohara et al, 2009; Albers

et al, 2011; Sankaran et al, 2012).

Studies of Diamond-Blackfan anemia (DBA) nicely illustrate

how rare variant genetics have illuminated our understanding of

human hematopoiesis and how this process can be perturbed in

disease in unexpected ways. DBA is an inherited hypoplastic

anemia in which erythroid precursors and progenitors are selec-

tively reduced in the bone marrow, while other lineages are osten-

sibly produced normally (Nathan et al, 1978). The first gene

mapping studies used linkage analysis of families with DBA to

localize a disease-associated region to 1 Mb on chromosome 19

(Gustavsson et al, 1997), which was later found to be attributable

to loss-of-function mutations in ribosomal protein (RP) gene RPS19

(Draptchinskaia et al, 1999). Subsequent studies identified at least

25 additional RP mutations that explained up to 80% of DBA cases

(Landowski et al, 2013; Ulirsch et al, 2018). However, how

heterozygous loss of function of ubiquitously expressed RP genes

could cause a selective absence of erythroid cells remained a

mystery. New gene discoveries, facilitated by broader methods for

genetic interrogation, enabled further insights into this disease.

WES of patients who had a clinical diagnosis of DBA, but no

known pathogenic mutations, revealed mutations impairing the

production of GATA1 in several patients (Sankaran et al, 2012;

Ludwig et al, 2014). Building upon this knowledge, subsequent

functional studies solidified the link between RPs, GATA1, and

defects in erythropoiesis by showing that RP haploinsufficiency

reduces ribosome levels and thus results in reduced GATA1 mRNA

translation (Ludwig et al, 2014; Khajuria et al, 2018). Therefore,

DBA genetics revealed new information about the regulation of

GATA1 expression in human hematopoiesis, establishing a novel

link between ribosome levels and GATA1 driven by its high trans-

lation rate (Khajuria et al, 2018).

Another example in which RVAS has enhanced our under-

standing of a known hematopoietic regulator is exemplified by

human variation impacting RUNX1. Germline mutations leading

to RUNX1 deficiency cause familial platelet disorder with predis-

position to myeloid leukemia (FPDMM). In 1999, linkage analy-

sis of six separate families with FPDMM revealed that all

pedigrees contained heterozygous mutations in RUNX1 (Song

et al, 1999). Further analysis of the affected individuals showed

a deficiency in megakaryocyte colony formation, implicating

RUNX1 as a regulator of megakaryopoiesis. These cases were

particularly intriguing because of the high rate of myelodysplas-

tic syndrome (MDS) and acute myeloid leukemia (AML) in

affected individuals, and demonstrated a key link between

RUNX1 haploinsufficiency and predisposition to malignant hema-

topoiesis (Owen et al, 2008). Given the challenges of studying

Runx1 in mice due to early embryonic lethality (Ichikawa et al,

2004), human genetic studies of FPDMM have provided powerful

insights into the roles of the RUNX1 TF in normal and malig-

nant hematopoiesis.

Additionally, RVAS of blood disorders have shown how muta-

tions in a single master TF can result in pleiotropic and variable

phenotypes, as nicely represented by the study of disorders attri-

butable to deficiency of GATA2. In the past decade, researchers

have found that GATA2 deficiency can cause a constellation of

disparate disorders, including cases of monocytopenia with

susceptibility to atypical mycobacterial infection (“MonoMAC”);

loss of dendritic cells, monocytes, B, and natural killer (NK) cells

(DCML deficiency); and familial MDS and AML (Dickinson et al,

2011; Hsu et al, 2011; Ostergaard et al, 2011). Common across

this spectrum of manifestations is the notable evolution of symp-

toms with age, suggesting that variation in early hematopoietic

stem and progenitor function may underlie many of the pleio-

tropic phenotypes in this disorder (Collin et al, 2015). Further

studies of these disorders will likely provide more insights into

how a master TF of hematopoiesis can lead to such disparate and

variable phenotypes.

While rare variant genetics have done much to further character-

ize factors with known roles in blood cell production, such studies

have also connected previously unappreciated molecular pathways

with hematopoiesis. For example, extensive work on DBA genetics

shed light on the connection between the seemingly distinct path-

ways of ribosome regulation and erythroid lineage commitment.

There are several additional examples of this trend. For instance,

investigating cases of thrombocytopenia-absent radius (TAR)

syndrome identified biallelic mutations in RBM8A, which encodes

the Y14 subunit of the exon-junction complex (Albers et al, 2012).

This revelation linked a general splicing factor to hematopoiesis

and suggested that lineage-dependent deficiency of a ubiquitous

protein may cause a very specific phenotype. While the exon-junc-

tion complex has been shown to play an important role in regulat-

ing RNA through alternative splicing and may be involved in fine-

tuning gene expression (Michelle et al, 2012; Ishigaki et al, 2013;

Mao et al, 2016), the exact basis of the mechanistic connection

between the exon-junction complex and platelet production remains

unresolved. Studies of Fanconi anemia (FA) have similarly

unearthed a previously uncharacterized connection between genetic

mutations underlying FA and critical DNA damage repair pathways.

In particular, the FA pathway has been found to play critical roles

in DNA inter-strand cross-link repair, homologous recombination,

and nucleotide excision repair, among other pathways (Ceccaldi

et al, 2016; Sumpter & Levine, 2017; Niraj et al, 2019). Finally,

congenital dyserythropoietic anemia type II (CDA II) was found to

be caused by mutations in SEC23B, a ubiquitous component of the

secretory COPII coat protein complex involved in Golgi trafficking
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(Schwarz et al, 2009), due to the absence of the paralog SEC23A

within the erythroid lineage (Khoriaty et al, 2018). All of these

examples demonstrate the broad impact of rare variant studies on

advancing our understanding of human hematopoiesis and

associated fundamental biological processes. There are many more

examples of RVAS elucidating new pathways in diverse hemato-

poietic lineages that we are unable to explore here due to space

constraints.

While many of the examples discussed above emerged through

traditional family-based linkage or sequencing analyses, as larger

cohorts of rare disease patients are being assembled, broader assess-

ments through RVAS and gene burden analyses are occurring. Such

approaches have been valuable in the context of DBA (Ulirsch et al,

2018), as well as for studies of patients with rare congenital forms

of thrombocytopenia and immunodeficiencies (preprint: Downes

et al, 2018, preprint: Thaventhiran et al, 2018). There is no doubt

that as larger collaborative efforts are established for rare disease

patients, including those with genetic blood disorders, there will be

more opportunities to identify additional causal and modifier genes.

Moreover, these studies highlight the incomplete penetrance or vari-

able expressivity of many alleles when examined in large cohorts of

patients compared with healthy population controls (Ulirsch et al,

2018). Such discoveries will pave the way for further insights into

human hematopoiesis.

Population-based genetic studies of hematopoiesis and
their translation to clinical impact

In addition to the lessons gleaned from studying rare variants, there

has been an equally fertile ground on the opposite side of the

frequency spectrum. In this section, we will explore a burgeoning

array of approaches applied to dissect common genetic variation and

how they have advanced our understanding of human hematopoiesis.

At the population level, there is a wide spectrum of variation in

commonly measured blood traits such as hemoglobin levels and

blood cell counts. These traits not only cause disease at extreme

ends of the spectrum (e.g., anemia, polycythemia, thrombocytope-

nia, and neutropenia), but also are independent risk factors for a

multitude of non-hematological diseases, including leukocyte count

for coronary heart disease (Ensrud & Grimm, 1992; Hoffman et al,

2004) and eosinophil count for asthma (Astle et al, 2016), highlight-

ing the importance of better understanding how hematopoiesis is

regulated. Large family studies have estimated these blood indices

to be highly heritable (Pilia et al, 2006), meaning that a significant

portion of the observed variation in phenotype can be attributed to

genetic factors. However, the precise genetic variants responsible

for this variation and their mechanisms of action remain poorly

understood.

To answer these questions, many groups have leveraged natural

variation in blood cell traits in healthy populations to study their

genetic underpinnings, most often through GWAS. In part due to

the low cost and widespread availability of blood count measure-

ments, many large-scale GWAS have been performed on these traits

in various ancestries. Together, these studies have identified thou-

sands of genomic loci linked to blood cell measurements

(Table EV1; Fig 2A and B).

Interestingly, multiple GWASs have been performed on the

same hematopoietic phenotypes over the past 15 years, with each

successive study featuring more and better resolved genetic associ-

ations. Why has this been the case? Statistical power to detect true

genetic associations is a function of variant allele frequency, the

effect size of a variant on the phenotype of interest, and the

sample size of the study (Fig 3A and B; Skol et al, 2006). Of these,

sample size is the most scalable and extrinsic to the variant–

phenotype relationship and thus has seen the largest uptick. Other

advances contributing to GWAS power and resolution include the

generation of larger reference panels and more accurate computa-

tional algorithms for imputation, as well as improved statistical

models for genetic association testing that correct for population

stratification and relatedness. These developments have collec-

tively fueled an explosion in the number of associations identified

by GWAS, including those linked to blood cell indices. For exam-

ple, a study in 2009 identified a single locus associated with mean

platelet volume, explaining ~ 1.5% of the total trait variance

(Soranzo et al, 2009). Seven years later, a GWAS with a > 10-fold

increase in sample size discovered 294 significant loci, including

many with lower allele frequency and smaller effect sizes, collec-

tively explaining ~ 30% of phenotypic variance in the same trait

(Astle et al, 2016).

However, as a result of the rapid progress in this field, a critical

follow-up question has arisen: How can we obtain meaningful

biological insight from so many robust genetic signals? In the post-

GWAS era, the challenge has shifted to not only identify genetic

regions associated with blood cell traits, but also pinpoint the exact

variants driving each signal, the genes targeted by these variants,

and the cell types in which they act, in order to ultimately better

understand mechanisms underlying the regulation of hematopoiesis

in health and disease (Gallagher & Chen-Plotkin, 2018). In other

words, there is now a pressing need to move from variant to func-

tion to achieve the same richness of biological insights that have

been derived from studies of rare blood diseases, as discussed

above. A variety of computational and experimental approaches

have been developed to tackle this multifaceted challenge

(Table EV2 and Fig 4).

An estimated 80–90% of GWAS loci tag non-coding regions,

where many variants tune gene expression by modulating regula-

tory elements such as promoters and enhancers (Gusev et al,

2014). Many methods have leveraged this connection to map vari-

ants to target genes and biological pathways in a tissue-specific

manner. For example, expression-quantitative trait locus (eQTL)

studies identify variants which influence gene expression (GTEx

▸Figure 2. Trends in genome-wide association studies (GWAS) of blood traits.

(A) Sample size of GWAS for commonly measured hematopoietic traits, including red cell, platelet, and leukocyte traits, over time. (B) Number of independent genome-wide
significant loci discovered for the hemoglobin trait as a function of study sample size. In both panels, the colors of lines and points indicate the ancestry of the study
population. The text labels denote the first author of each study.
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Figure 2.
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Consortium et al, 2017); chromatin immunoprecipitation (ChIP)-

seq can profile DNA methylation, histone modification, and TF

binding sites, which can be used to predict the potential for non-

coding variants to perturb molecular phenotypes (Chen et al,

2016); and chromatin capture methods identify looping interac-

tions between enhancers and gene promoters (Javierre et al,

2016). High-throughput gene knockdown or knockout screens have

also become a popular experimental approach to identify genes

that are important for a phenotype of interest. These screens can

be implemented with short hairpin RNA or CRISPR-Cas9 genetic

perturbation to systematically test which genes or regulatory

elements are essential for a phenotype, such as hematopoietic

lineage differentiation (Canver et al, 2017; Nandakumar et al,

2019).

GWAS of blood cell traits, combined with these functional analy-

ses, have provided tremendous value for understanding the tran-

scriptional regulatory mechanisms underlying hematopoiesis. For

example, such studies have identified blood trait-associated variants

which predispose or protect from clinical disease (e.g., eosinophil-

associated loci increasing risk of rheumatoid arthritis), enabled the

discovery of genes and TFs important for the stage-specific regula-

tion of hematopoietic differentiation, and provided insights into

how distinct hematopoietic lineages can be co-regulated by pleio-

tropic variants acting in multipotential progenitor populations (Astle

et al, 2016; Ulirsch et al, 2019).

Having reviewed the major methods used in CVAS, we now

present a vignette of how these technologies have been applied to

advance our understanding of a key and clinically relevant aspect of

human hematopoiesis: fetal hemoglobin regulation and switching.

Fetal hemoglobin (HbF) has been shown to be a key modifier of the

major b-hemoglobin disorders, sickle cell disease, and b-thalas-
semia, where it is able to ameliorate symptoms through replacement

of the mutated adult b-hemoglobin (Sankaran & Weiss, 2015).

Although HbF was found to be highly heritable (Garner et al, 2000),

little was known about its precise genetic modifiers. In late 2007

and 2008, two GWAS in non-anemic individuals identified three loci

associated with variation in fetal hemoglobin levels (Menzel et al,

2007; Uda et al, 2008). These loci were also shown to be important

in ameliorating the severity of symptoms in patients with sickle cell

disease and b-thalassemia (Lettre et al, 2008; Uda et al, 2008).

Among these was a locus on chromosome 2 within the BCL11A

gene, which had been well studied for its role in B lymphopoiesis

and neurodevelopment, yet whose role in hemoglobin switching

had not been appreciated. As a result, initial functional studies

revealed a key role for BCL11A in silencing of HbF (Sankaran et al,

2008). In addition, BCL11A was shown to be a critical regulator of

fetal hemoglobin switching in humans and mice (Sankaran et al,

2009; Xu et al, 2011). Recent studies of rare individuals haploinsuf-

ficient for BCL11A have provided additional insights into its critical

in vivo role in silencing HbF in humans (Basak et al, 2015; Dias

et al, 2016). These findings have led to a considerable effort to

target BCL11A to achieve HbF induction in patients with the b-
hemoglobin disorders. These efforts include gene therapy-based

delivery of shRNAs targeting BCL11A and efforts to target an

erythroid enhancer of BCL11A using genome editing approaches

(Esrick & Bauer, 2018). In addition, groups have begun to perturb
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Figure 3. Discovery of association signals across the allelic frequency spectrum.

(A) Traditional depiction of variant discovery power by genetic association studies, as a function of variant effect size and allele frequency. Figure adapted fromManolio et al
(2009). (B) Revised schematic that illustrates the 3-way relationship between (i) sample size of the study, (ii) effect size of a genetic variant, (iii) and allele frequency of the
variant on discovery power. The dashed triangular plane indicates the sample size threshold above which studies are sufficiently powered to detect variants at any given
coordinate of allele frequency and effect size. The labeled circles depict categories of variants which are most often studied by the analytical methods listed next to them:
common variant association studies (CVAS) and/or rare variant association studies (RVAS).
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this pathway and identify more broadly effective therapeutic

approaches for HbF induction in these diseases. Collectively, the

study of HbF regulation has encompassed the full journey from vari-

ation to function and has now moved into the translational realm in

an attempt to cure human diseases.

Bridging rare and common genetics to study
hematopoiesis in health and disease

There has traditionally been a division between RVAS (and other

rare variant studies) and CVAS, when in reality, there is likely a

continuum of genetic effects in human traits (Katsanis, 2016). Any

“monogenic” disease likely acts on top of a complex, polygenic

structure of variation that confers varying individual severity and

risk, and any complex trait can be altered by rare, high-effect muta-

tions. Fortunately, on the heels of major technological and computa-

tional advances, we now arrive at an exciting crossroads in which

we can begin to appreciate this full allelic spectrum underlying

human variation, as the statistician Ronald A. Fisher first provided a

theoretical basis for over a hundred years ago (Visscher & Goddard,

2019). In complex traits such as blood traits, schizophrenia, and

autism, most of the heritability appears to be due to common alleles

(Gaugler et al, 2014; Schizophrenia Working Group of the

Psychiatric Genomics Consortium et al, 2014), yet recent large-scale

sequencing studies have uncovered a concomitant enrichment in

rare loss-of-function variants in these and other phenotypes (Chami

et al, 2016, preprint: Karczewski et al, 2019; Weiss et al, 2008),

suggesting an interplay between rare and common variants. More-

over, in other complex traits including height and body mass index

(BMI), WGS studies suggest that variants with low minor allele

frequency explain a substantial portion of the total heritability that

has not been able to be explained by common variants alone

(preprint: Wainschtein et al, 2019).

The same convergence can also be observed in other areas of the

hematopoietic system. For example, despite being defined as a

monogenic disorder by a coding mutation in the b-globin gene,

sickle cell disease (SCD) exhibits extensive clinical heterogeneity,

ranging from mild phenotypes that remain undetected for decades

to severe forms with multiorgan damage and early mortality (Platt

et al, 1991). Two of the strongest modifiers of SCD severity are HbF

levels and white blood cell count (Miller et al, 2000; Steinberg &

Sebastiani, 2012; Bao et al, 2019). Rare and common variants are

known to be independently associated with variation in these traits

(Galarneau et al, 2010), and consequently influence SCD severity.

Similarly, in b-thalassemia, a disorder defined by mutations

affecting the expression of the HBB gene, genetic studies have found

that common variants influencing HbF at least partially explain the
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Figure 4. Schematic of moving from variant to function in human genetics research.

Blue boxes indicate key areas involved in characterizing and applying the biological mechanisms of genetic associations.
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significant variation in disease severity (Nuinoon et al, 2010). Both

of these cases highlight the importance of studying “monogenic”

diseases in the context of common genetic variation.

Another example of this convergence can be seen in mutations

altering GATA1 activity or function both globally and at specific

loci. On one hand, GATA1 bound cis-regulatory elements (CREs)

are frequently impacted by common genetic variation associated

with hematopoietic traits, but these variants primarily tune the

activity of such CREs with effect sizes below what is required to

cause frank disease (Ulirsch et al, 2016). On the other end of the

spectrum, mutations disrupting the GATA1 motif in critical CREs

can cause a variety of monogenic blood disorders due to impaired

gene expression (Manco et al, 2000; Campagna et al, 2014; Kaneko

et al, 2014; Wakabayashi et al, 2016). Moreover, mutations in

GATA1 itself can result in a range of phenotypes that include a

complete absence of erythropoiesis, as is the case in DBA, or more

subtle defects in red blood cell and platelet production (Crispino &

Horwitz, 2017; Abdulhay et al, 2019). Putting these disparate find-

ings together, one can theorize that these disease-causing GATA1

mutations do not exert their effects in isolation, but rather act on

top of a complex, polygenic structure of genetic variation that

confers varying predisposition to alteration in blood cell traits (e.g.,

CREs at specific loci may be more or less sensitive to disruption of

key master TFs, like GATA1). Only by considering this complete

spectrum of allelic variation can we begin to explain all of the

nuances and variation observed in blood disorders.

What mechanisms could mediate this phenomenon in which

common variants influence rare disease mutations? Most genetic

studies assume an additive effects model, whereby independent risk

alleles contribute to a uniform, linear increase in an associated

phenotype. From this perspective, individuals who harbor risk alle-

les across common variants tuning blood production, combined

with a rare disease-causing mutation, could manifest with a particu-

larly severe phenotype. However, the biology can also be more

complicated. Epistasis refers to interactions between loci in their

effect on a trait, such that the impact of a particular genotype

depends on the genotype at other loci in a non-independent manner

(Wei et al, 2014). For example, in a number of rare monogenic

disorders, the deleteriousness of the disease-causing mutation can

be modulated by neutral or benign alleles in the same haplotype

(Jordan et al, 2015) or at distinct, but molecularly related, loci (Tim-

berlake et al, 2016). Together, these additive and complex genetic

interactions likely act in concert to tune the penetrance and expres-

sivity of hematopoietic phenotypes and traits.

An important next step is to assess how well our expanding

coverage of human genetic variation can predict complex traits in

heterogeneous populations and serve as clinical biomarkers. Poly-

genic risk scores (PRSs) serve as a prime example of this endeavor.

PRSs are a weighted sum of risk alleles carried by an individual, in

which the risk alleles and their weights are defined by their effect

sizes on a phenotype of interest. In many complex traits and

diseases, PRS can already quantify risk more accurately than current

clinical models (Sharp et al, 2019), at times identifying individuals

with an increased risk equivalent to those with rare monogenic

mutations (Khera et al, 2018). Other studies have found that

combining common variant PRSs with other known modifiers,

including lifestyle factors and rare mutations, can further improve

prediction accuracy for disease risk and severity (Niemi et al, 2018).

To our knowledge, there has been no large-scale attempt to imple-

ment PRS on hematopoietic traits to date, but given the substantial

heritability of these phenotypes (Pilia et al, 2006), their wide spec-

trum of continuous variation, and multifaceted connections to clini-

cal parameters ranging from inflammation to hemostasis, blood

traits are promising targets for PRS prediction.

Thus, perhaps we should shift our perspective on allelic variation

underlying hematopoiesis from a dichotomous lens involving rare

or common variation, to one involving a spectrum of variation that

collectively impacts the process of hematopoiesis to varying extents

to alter traits or cause disease. From a technical standpoint, we are

now poised to fully bridge this gap. In the early years of genetic

studies, sample sizes were limited such that for complex traits, only

common variants could be detected by GWAS, whereas in presumed

monogenic diseases, only highly penetrant and deleterious rare vari-

ants could be readily identified. Now, with increasingly large sample

sizes, GWAS for common phenotypes can detect a greater propor-

tion of rare variants with real effects, whereas rare disease studies

are better powered to assess how common variants tune the pene-

trance of disease-causing rare variants. Looking ahead, the future is

bright for researchers to study the impact of the entire allelic varia-

tion spectrum on hematopoiesis.

Concluding remarks and future perspectives

Modern genetic analysis has transformed our understanding of the

genetic determinants of human hematopoiesis and the diseases that

ensue when these processes go awry. This has enabled us to gain

considerable insights beyond the valuable observations made in

model organisms. Looking ahead, there is tremendous potential and

excitement for the future of genetics and applications to understand

human hematopoiesis. One important goal over the next 10 years is

to map the full allelic spectrum of how genetic variation regulates

hematopoiesis in health and disease. Furthermore, despite the enor-

mous strides the field of genetics has already made, and a critical

shortcoming has been that the majority of large studies have been

confined to populations of European ancestry (Martin et al, 2019).

Therefore, an essential part of this challenge is to expand genetic stud-

ies to populations of different ancestries. As data for underrepresented

subpopulations become more available, it is likely that numerous

additional population-specific loci and variants will be uncovered.

As illustrated in this review, we have already started to bear the

fruits of increasingly powered rare and common genetic association

studies. Merging knowledge of how rare variants contribute to

disease with our growing understanding of common variation in

human genetics will allow us to more fully characterize and explain

the genetic architecture of blood cell production. In addition, with

powerful functional tools becoming increasingly available, we can

begin to glean rich insights into human hematopoiesis from func-

tional studies that span the allelic spectrum and enable us to move

from variant to function.

Expanded View for this article is available online.
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