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Background: The associations between olfactory identification (OI) ability and the

Alzheimer’s disease biomarkers were not clear.

Objective: This meta-analysis aimed to examine the associations between OI and Aβ

and tau burden.

Methods: Electronic databases (PubMed, Embase, PsycINFO, and Google Scholar)

were searched until June 2019 to identify studies that reported correlation coefficients or

regression coefficients between OI and Aβ or tau levels measured by positron emission

tomography (PET) or cerebrospinal fluid (CSF). Pooled Pearson correlation coefficients

were computed for the PET imaging and CSF biomarkers, with subgroup analysis for

subjects classified into different groups.

Results: Nine studies met the inclusion criteria. Of these, five studies (N = 494) involved

Aβ PET, one involved tau PET (N = 26), and four involved CSF Aβ or tau (N = 345).

OI was negatively associated with Aβ PET in the mixed (r = −0.25, P = 0.008) and

cognitively normal groups (r =−0.15, P= 0.004) but not in the mild cognitive impairment

group. A similar association with CSF total tau in the mixed group was also observed. No

association was found between OI and CSF phosphorylated tau or Aβ42 in the subgroup

analysis of the CSF biomarkers. Due to a lack of data, no pooled r value could be

computed for the association between the OI and tau PET.

Conclusion: The associations between OI ability and Aβ and CSF tau burden in older

adults are negligible. While current evidence does not support the association, further

studies using PET tau imaging are warranted.
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INTRODUCTION

Amyloid-β (Aβ) aggregates and tau neurofibrillary tangles are
known as the two neuropathological hallmarks of Alzheimer’s
disease (AD) (Villemagne et al., 2018). The importance of
the two biomarkers, whether for clinical or research use,
is obvious in the biologically oriented effort to tackle the
worldwide AD issue (Jansen et al., 2015; Alzheimer’s Association,
2020). This is especially true when the National Institute
on Aging and Alzheimer’s Association (NIA-AA) proposed
the Aβ/tau/neurodegeneration (AT(N)) classification system to
update the diagnostic criteria for AD recommended in 2011(Jack
et al., 2018). This biomarker-driven research framework has
shown potential to improve the predictive accuracy for memory
decline among non-demented elderly individuals and thereby
provide prognostic values for clinical change and progression
(Jack et al., 2019; Yu et al., 2019).

In the evolving biomarker research field of AD, olfactory
function has been frequently seen in studies related to
neurodegenerative diseases (Marin et al., 2018; Dintica et al.,
2019; Tu et al., 2020) since its first association with dementia was
claimed in 1974 (Waldton, 1974). Impaired olfaction, olfactory
identification (OI) ability in particular, has been reported in AD
and prodromal AD ailments, such as mild cognitive impairment
(MCI) (Roalf et al., 2017; Marin et al., 2018; Jung et al.,
2019). Moreover, several lines of evidence have indicated that
OI impairment is valuable in predicting cognitive decline in
cognitively intact participants and progression from MCI to
AD dementia, and it might suggest neurodegeneration in the
brain among non-demented older adults (Devanand et al., 2015;
Roberts et al., 2016; Dintica et al., 2019). OI, the ability to identify
and name specific odorants, is therefore considered a potential
early biomarker of cognitive decline and AD dementia.

Due to the well-known disadvantages of current standard
measures of AD biomarkers, namely, their expensive cost and
invasiveness, a convenient, inexpensive, and easily accessible test
that predicts amyloid and tau status would therefore reduce the
burden and cost of clinical AD trials. Studies have attempted to
identify correlations of OI ability with amyloid and tau burden
both in vitro and in vivo. Postmortem studies (Kovacs et al.,
1999; Attems et al., 2005; Attems and Jellinger, 2006; Wilson
et al., 2007, 2009; Franks et al., 2015) have linked OI ability
with the pathologic manifestations of AD, Aβ, and neurofibrillary
tangles. Studies involving in vivo positron emission tomography
(PET) imaging scans or cerebrospinal fluid (CSF) measures also
showed interesting results. But the results are inconsistent and
inconclusive; the aim of this systematic review was therefore to
provide a comprehensive overview of OI ability associated with
the Aβ and tau burden in older adults.

METHODS

Selection Criteria
This systematic review was conducted according to the PRISMA
guidelines (Moher et al., 2015) and followed a predetermined
protocol (PROSPERO No. CRD42019138642). The selection
criteria of the studies were as follows: (1) reported associations

between OI test scores and Aβ or tau levels (measured via PET
imaging or CSF); (2) evaluated OI by common smell tests, such as
the University of Pennsylvania Smell Identification Test (UPSIT),
the “Sniffin’ Sticks” OI test, and the Odor Stick Identification
Test for Japanese (OSIT-J); (3) included older adults (mean
age of sample ≥ 60 years); and (4) made data available in the
publication or via contact with the authors to allow computation
of correlation coefficients.

Search Strategy
Systematic electronic databases (PubMed, Embase, PsycINFO,
and Google Scholar) were searched for articles published in
English from their inception until June 2019 with the following
search items: “olfaction” OR “smell” OR “odor” OR “olfactory”
AND “amyloid” OR “tau” OR “cerebrospinal fluid” OR “positron
emission tomography.” Filters were applied to limit searches
to human studies in the English language. The reference lists
and similar articles of the eligible publications were searched
manually for additional studies.

Amyloid and Tau Assessment
PET amyloid imaging agents included Pittsburgh Compound
B (PIB), florbetapir, and florbetaben. PET tau imaging agents
included tau-specific ligands, such as flortaucipir. Estimates of
amyloid and tau binding in PET studies were used from the
global cortex or cortical regions via standardized uptake value
ratios (SUVRs) or distribution volume ratios (DVRs). The CSF
method included measurement of Aβ 1-42 (Aβ42), p-tau181, and
t-tau levels.

Odor Identification Test
OI was tested with the UPSIT, Sniffin’ Sticks, OSIT-J, or other
commercially available tests. The shorter versions of the UPSIT
and Sniffin’ Sticks test were also eligible. Homemade tests and
tests that also assessed other olfactory functions (e.g., olfactory
threshold or discrimination) were excluded.

Data Extraction and Study Quality
Assessment
Data were independently extracted by two investigators (LT
and XL) from cross-sectional cohort studies and baseline
measurements of longitudinal studies with clinical follow-up.
For the studies with different groups of subjects, i.e., cognitively
normal (CN), MCI, AD, and mixed (whole sample) groups,
the correlation coefficient values were extracted separately for
the subgroup comparisons when data were available. The
following information was extracted from each included study:
the sample size, the study design, the country and cohort name,
the methodology used to measure AD biomarkers, the odor
tests, the sample demographic characteristics, and the bivariate
correlations (or related statistical information) between the AD
biomarkers and the OI score. The methodologic quality of each
included study was assessed using the Quality Assessment of
Diagnostic Accuracy Studies (QUADAS-2) tool (Whiting et al.,
2011).
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FIGURE 1 | Representation of the search strategy.

Effect Size Computation and Statistical
Analysis
The cross-sectional associations between OI test scores and Aβ

or tau levels were evaluated using Pearson correlation coefficients
(r). A preadjusted rwas used in all studies when available. In cases
where r values were not reported, they were calculated from the
scatter plot graph of the OI score vs. Aβ or tau levels. Two studies
(Körtvélyessy et al., 2015; Risacher et al., 2017) reported a non-
significant association between the OI score and Aβ or tau levels,
but no data were available. In this case, z = 0.00 was assigned
as a conservative estimate. The other three studies reported an
unstandardized regression coefficient (b) (Growdon et al., 2015;
Reijs et al., 2017; Vassilaki et al., 2017), with which we calculated
r according to previous methods (Kim et al., 2019). Specifically,
the following formulas were used:

(Estimated r)2 = t2 / (t2 + n – 2)
t = b/the standard error of b
Estimated r × b ≥ 0.
We used the Comprehensive Meta-Analysis (CMA), version 3

software (Biostat, NJ) to compute the r values and calculate the
pooled mean r values for the PET imaging and CSF biomarkers,
with subgroup analysis for subjects classified into different
groups. As random-effects models incorporate between-study
heterogeneity and give wider (i.e., more conservative) confidence

intervals (CIs) when heterogeneity is suspected, all analyses and
plots were reported using a random-effects model. The presence
of publication bias with a funnel plot was not assessed because
very few studies were included in our meta-analysis (Sterne et al.,
2011). To examine between-study heterogeneity, in addition to
Cochran’s Q (to determine whether the between-study variability
was greater than the sampling error) and τ (to quantify the
between-study variance of the true effect sizes), the I2 statistic was
also used.

Post hoc subgroup analyses were conducted to determine
the source of the heterogeneity when statistically significant
heterogeneity was identified. The analyses examined the degree
to which heterogeneity resulted from variance due to moderators
such as (a) the type of OI test (e.g., UPSIT edition), (b) the
PET imaging method (PIB or non-PIB) and the measurements
(SUVR or DVR), (c) the code of the SUVR/DVR (continuous or
categorical), (d) adjustments for covariates (e.g., age, sex) or lack
thereof, (e) the sample size, and (f) the method r was obtained.

RESULTS

Description of Studies
A total of nine eligible studies were included in the final
systematic review and meta-analysis (see Figure 1 for flowchart),
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with five studies pertaining to Aβ PET and four about CSF Aβ

or tau. The characteristics of the included studies are shown
in Table 1. The selected studies were published between 2010
and 2018. Seven studies were cross-sectional, and two were
longitudinal. The median number of subjects per study was
93 (range, 22–215), with a total number of 839 (56% female)
subjects. Three studies with a relatively large sample (over 100)
focused on CN older adults, two of which utilized the PET
imaging method (Growdon et al., 2015; Vassilaki et al., 2017).
For the PET method, the included total sample sizes of CN,
MCI, and AD individuals were 392, 75, and 20, respectively,
with seven subjective cognitive decline (regarded as CN in our
analysis) individuals. The sample sizes for the studies using the
CSF method were 161, 63, and 95 individuals, respectively, with
26 non-AD dementia patients. The mean sample age was 71.8
years (SD= 6.8).

Demographic variables such as age, sex, and education were
adjusted statistically in a few studies. The inclusion criteria
for individuals with MCI were mostly according to Petersen’s
criteria, while for AD, it was the NINCDS-ADRDA criteria. The
methodologic quality assessment showed that only the patient
selection domain had the high risk of bias, mostly due to
inappropriate exclusions (Table 2).

AD Biomarkers
Five studies applied Aβ PET imaging [four used 11C PIB (Bahar-
Fuchs et al., 2010; Growdon et al., 2015; Vassilaki et al., 2017;
Kreisl et al., 2018); one used 18F-florbetapir/florbetaben (Risacher
et al., 2017)], and only one study utilized tau PET imaging [18F-
flortaucipir (Risacher et al., 2017)]. For the majority of studies,
the PET SUVR was used as a continuous variable to explore the
association between the Aβ burden and OI score. Four studies
measured CSF levels, two of which examined Aβ42, p-tau, and
t-tau (Körtvélyessy et al., 2015; Lafaille-Magnan et al., 2017),
whereas one study measured Aβ42 and p-tau (Kouzuki et al.,
2018), and the other one measured Aβ42 and t-tau (Reijs et al.,
2017).

Odor Identification Score
The OI score was obtained mostly (seven studies) from the
UPSIT, with 40 odors used by four studies and a short edition
(6∼12 odors) used by three studies. The other two studies used
either Sniffin’ Sticks (Körtvélyessy et al., 2015) or the OSIT-J
(Kouzuki et al., 2018). The raw OI scores were reported by all
studies except one (Lafaille-Magnan et al., 2017), which used
a transformed UPSIT error score. In this case, the raw score
was calculated from the scatter plot graph. One study (Dhilla
Albers et al., 2016) was excluded because a homemade olfactory
screening with mixed evaluation was adopted.

Correlation Between the Odor
Identification Score and PET Imaging
Meta-analyses were based on the correlation between the OI
score and the PET SUVR or DVR. For two studies (Growdon
et al., 2015; Vassilaki et al., 2017), the r values were calculated
based on the regression coefficients. For correlations of subgroup
subjects (CN, MCI, and AD), the r values were obtained via the

authors for one study (Kreisl et al., 2018) and calculated from the
scatter plot graph for another study (Bahar-Fuchs et al., 2010).
One study (Risacher et al., 2017) reported a non-significant
association without available data, in which z= 0.00 was assigned
accordingly. Our results showed that the OI score was negatively
associated with Aβ PET SUVR or DVR in the mixed group
(r =−0.25, 95% CI [−0.42,−0.07], P = 0.008; Figure 2).

Subgroup analysis also showed a negative association in the
CN group (r = −0.15, 95% CI [−0.24, −0.05], P = 0.004).
However, the MCI group showed no correlation (r = −0.2, 95%
CI [−0.72, 0.46], P = 0.568). Only one study had an AD group,
which also showed no correlation. The combination of MCI
and AD together did not change the result (data not shown).
The association between the OI score and tau PET imaging was
reported by one study (Risacher et al., 2017), showing that the tau
level in themean temporal lobe was negatively associated with the
preadjusted UPSIT total score (r =−0.45, P < 0.05).

Correlation Between the Odor
Identification Score and CSF Biomarkers
Meta-analyses were based on the correlation between the OI
score and CSF biomarker levels. For two studies, the r values
were calculated based on the regression coefficients (Reijs et al.,
2017) or from the scatter plot graph (Lafaille-Magnan et al.,
2017). One study (Körtvélyessy et al., 2015) reported a non-
significant association without available data, in which z = 0.00
was assigned accordingly. MCI and AD were analyzed together
given the limited data.

Our analysis showed that the OI score was negatively
associated with CSF t-tau in the mixed group (r=−0.17, 95% CI
[−0.28,−0.05], P = 0.006; Figure 3). The same was true for CSF
p-tau (r = −0.14, 95% CI [−0.28, 0.001], P = 0.052) and Aβ42 (r
= 0.14, 95% CI [−0.01, 0.28], P = 0.069) in the mixed group but
only with a marginal association. Subgroup analysis showed no
association in the CN or MCI/AD group for CSF Aβ42 or t-tau
(data not shown).

Moderator Effects
The present data showed a statistically significant heterogeneous
between-study variability for the PET imaging method in the mix
(Q = 15.2, P < 0.01, τ 2 = 0.033, I2 = 73.68%) and MCI groups
(Q= 10.3, P < 0.01, τ 2 = 0.267, I2 = 80.64%). Post hoc subgroup
analyses indicated that the pooled r values in the mixed group
remained statistically significant when the moderator variables
were adjusted (Table 3).

A significant negative correlation (r = −0.55, 95% CI [−0.72,
−0.32], P < 0.001) for the MCI group was observed when
these accounted for data from studies that had utilized the
40-item UPSIT, although this only pertained to two studies.
Table 3 provides a summary of the meta-analysis by potential
moderator variables of the association between the OI score and
PET imaging.

DISCUSSION

This meta-analysis explored the relationships between OI ability
and the cerebral measures of amyloid and tau deposition via
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TABLE 1 | Characteristics of the included studies.

References Design

(follow-up)

Country N Cohort Mean age

[year (SD)]

Sex, female (%) Olfactory test AD biomarker Classification Statistical analysis

Bahar-Fuchs et al.

(2010)

XS Australia 63 Longitudinal PiB PET

project at Austin Health

73.6 (8.2) 58.6 UPSIT (6-item) PET: Aβ (11C PIB) CN, MCI, AD Pearson correlation

Growdon et al. (2015) XS USA 215 Harvard Aging Brain Study 73.9 (5.9) 59.1 UPSIT PET: Aβ (11C PIB) CN Multiple linear

regression

Kreisl et al. (2018) LT (1 year) USA 71 Longitudinal observational

study of AD biomarkers

68.5 (7.6) 49.0 UPSIT PET: Aβ (11C PIB) CN, MCI Pearson correlation

Risacher et al. (2017) XS USA 26 Indiana Alzheimer Disease

Center

70.4 (8.8) 63.4 UPSIT PET: Aβ

(18F-florbetapir/florbetaben);

Tau (18F-flortaucipir)

CN, SCD, MCI Pearson correlation

Vassilaki et al. (2017) XS USA 119 Mayo Clinic Study of Aging 79.2 (–) 48.5 UPSIT (12-item) PET: Aβ (11C PIB),
18F-FDG-PET

CN Multiple linear

regression

Körtvélyessy et al.

(2015)

XS Germany 22 Memory Clinic, University of

Magdeburg

72.7 (6.9) 66.7 Sniffin (12-item) CSF: Aβ42, p-tau, t-tau AD Pearson correlation

Kouzuki et al. (2018) XS Japan 71 Faculty of Medicine, Tottori

University

78.3 (1.1) 43.8 OSIT-J CSF: Aβ42, p-tau CN, MCI, AD Pearson correlation

Lafaille-Magnan et al.

(2017)

XS Canada 100 The PREVENT-AD cohort 62 (6) 70.0 UPSIT CSF: Aβ42, p-tau, t-tau CN Multiple linear

regression

Reijs et al. (2017) LT (3 years) Netherlands 152 The EDAR study 67.4 (9.5) 47.2 UPSIT (12-item) CSF: Aβ42, t-tau CN, MCI, AD,

non-AD dementia

Multiple linear

regression

XS, cross sectional; LT, longitudinal; UPSIT, University of Pennsylvania Smell Identification Test; OSIT-J, Odor Stick Identification Test for Japanese; PET, positron emission tomography; 11C PIB, 11C-Pittsburgh compound B; Aβ, amyloid β;

CSF, cerebrospinal fluid; Aβ42, amyloid-β42; t-tau, total tau; p-tau, phosphorylated tau;
18F-FDG, 18fluorodeoxyglucose; CN, cognitively normal; SCD, subjective cognitive decline; MCI, mild cognitive impairment; AD, Alzheimer’s disease.
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TABLE 2 | Risk of bias and applicability concern summary: review authors’ judgements about each domain for included studies, individually.

Study Risk of bias Applicability concerns

Patient selection Index test Reference standard Flow and timing Patient selection Index test Reference standard

1. Bahar-Fuchs

2. Growdon

3. Kreisl

4. Risacher

5. Vassilaki

6. Körtvélyessy

7. Kouzuki

8. Lafaille-Magnan

9. Reijs

, low risk; , high risk; , unclear risk.

FIGURE 2 | Forest plot summarizing the correlations between the odor identification score and amyloid PET imaging data and their 95% confidence intervals for

different groups. (Squares represent study weighting due to sample size, and the diamond represents the weighted mean effect size estimated in a random-effects

model. CN, cognitively normal; MCI, mild cognitive impairment; AD, Alzheimer’s disease).

PET imaging or CSF evaluation. Our main finding was that Aβ

(measured by PET) and t-tau (measured by CSF evaluation)
depositions were only weakly associated with OI scores across a
mixed population (CN, MCI, and AD) of older adults. A weak
association was also observed in the CN group between the Aβ

deposition (measured by PET) and OI score. As all the pooled
absolute r values were <0.3, the correlation could be considered
negligible. There were no associations between the MCI and AD
groups or between CSF Aβ42 and t-tau. In addition, no pooled r
value could be computed for the association between the OI score

and tau PET due to the lack of data. These findings suggest that
the associations between OI ability and Aβ and CSF tau burden
in older adults are negligible. OI ability is believed to be linked
with the pathologic manifestations of AD in postmortem studies
(Kovacs et al., 1999; Attems et al., 2005; Attems and Jellinger,
2006; Wilson et al., 2007, 2009; Franks et al., 2015). Among the
AD pathologic changes associated withOI, neurofibrillary tangles
were particularly noted, especially in olfactory bulb (OB) (Kovacs
et al., 1999; Attems et al., 2005; Attems and Jellinger, 2006) and
central olfactory regions (entorhinal cortex and CA1/subiculum
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FIGURE 3 | Forest plot summarizing the correlations between the odor identification score and cerebrospinal fluid biomarker levels and their 95% confidence intervals

in the mixed group. Squares represent study weighting due to sample size, and the diamond represents the weighted mean effect size estimated in a random-effects

model. Aβ42, amyloid-β42; t-tau, total tau; p-tau, phosphorylated tau.

TABLE 3 | Pooled Pearson’s r values and 95% confidence intervals (CIs) adjusted for moderator variables (for Aβ PET only).

Moderator variables MCI Mix

r [95% CI] I2 r [95% CI] I2

Odor test UPSIT-L −0.55 [−0.72, −0.32]*** 0 −0.26 [−0.56, 0.1] 85

UPSIT-S Bahar-Fuchs et al. (2010)+ −0.23 [−0.4, −0.04]* 40

PET method PIB −0.24 [−0.79, 0.53] 90 −0.29 [−0.47, −0.09]** 79

Non-PIB Risacher et al. (2017) Risacher et al. (2017)

PET measure SUVR −0.2 [−0.72, 0.46] 81 −0.35 [−0.57, −0.09]* 79

DVR – Growdon et al. (2015)

Amyloid analysis Continuous −0.2 [−0.72, 0.46] 81 −0.35 [−0.59, −0.05]* 71

Categorical – −0.14 [−0.24, −0.03]* 0

Sample size >100 – −0.14 [−0.24, −0.03]* 0

<100 −0.2 [−0.72, 0.46] 81 −0.35 [−0.59, −0.05]* 71

Method of obtaining r Reported Kreisl et al. (2018) −0.45 [−0.63, −0.23]*** 54

Estimated 0.18 [−0.23, 0.53] 0 −0.13 [−0.23, −0.02]* 0

The results for adjusted covariates equaled those of the odor test.

PET, positron emission tomography; UPSIT, University of Pennsylvania Smell Identification Test, -L = 40 items, -S = 6∼12 items; PIB, Pittsburgh Compound B; SUVR, standardized

uptake value ratio; DVR, distribution volume ratio; MCI, mild cognitive impairment.

“+” references.

*P < 0.05; **P < 0.01; ***P < 0.001.

area of the hippocampus) (Wilson et al., 2007). This was in line
with the tau PET imaging study (Risacher et al., 2017) included in
our analysis, which indicated a low negative correlation between
the tau and OI score in the mean temporal lobe. Of note,
this was in response to the idea endorsed by Kametani et al.
suggesting that it is tau contributed to the development and
progression of AD, not Aβ (Kametani and Hasegawa, 2018).
Nevertheless, the meta-analysis of in vivo CSF t-tau, not p-
tau, yielded only a very weak association, which was considered
negligible. The inconsistency of the two findings might be
explained by the following aspects: the histopathological study
contained a relatively small sample size with advanced age and a

span of several years between olfactory testing and death. More
importantly, in vitro neuropathological studies focused mainly
on specific olfactory-related regions, while in vivo CSF studies
could not take the same approach. However, the association
with OI for the Aβ burden on autopsy appeared non-significant,
which supported our meta-analysis findings, particularly the
results regarding CSF Aβ, despite a low negative correlation that
could be observed in the mixed group with moderator variables
adjusted for the Aβ PET imaging.

The mixed group, in general, showed a negligible correlation
between OI ability and the Aβ and CSF tau burden. However,
the MCI and AD groups, both of which are associated with OI
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impairment and inclined to be associated with Aβ or tau burden
(Jansen et al., 2015; Roalf et al., 2017; Villemagne et al., 2018;
Jung et al., 2019), showed no correlation between the two at all
among the different biomarker classifications. The correlation
was observed in theMCI group for Aβ PETwhen only the studies
that applied the 40-item UPSIT were included, which was largely
due to one study alone (Kreisl et al., 2018). Although part of the
irrelevant finding may be related to the relatively small size of the
sample within the included studies, especially for the AD group
with Aβ PET imaging (n= 20), we speculate that OI ability is not
specific to the underlying AD pathophysiology, especially Aβ. On
the other hand, the CN group is usually characterized by intact
OI ability and a lack of Aβ or tau burden, making the correlation
between the two likely. In fact, Kreisl et al. (2018) attributed
the correlation between OI ability and PIB SUVR largely to the
subjects with high OI scores and low PIB binding in their study.
Nevertheless, our results did not show any correlations in the
CN group, with a negligible association for Aβ PET imaging.
This result again suggests that OI ability is non-specific for the
underlying Aβ burden.

The weak association between OI ability and the cerebral
measures of amyloid and CSF tau levels might be explained by
several possibilities. First, like the notion mentioned above, OI
impairment may not be specific to AD. It is known that impaired
OI is associated with normal aging, and some age-related changes
in olfactory function may relate to factors irrelevant to AD
pathophysiology (e.g., deterioration of the olfactory epithelium
and ossification of the cribriform plate) (Doty et al., 1984;
Doty and Kamath, 2014). In addition, many neuropsychiatric
disorders, such as Parkinson’s disease (Hoyles and Sharma,
2013), dementia with Lewy bodies (Mahlknecht et al., 2015), and
schizophrenia (Kamath et al., 2019), are reported to be associated
with OI impairment. In addition to AD pathologic alterations,
alpha-synucleinopathy of Parkinson’s disease and dementia with
Lewy bodies in the cortical brain and olfactory-related regions are
also observed and are supported by convincing evidence (Wilson
et al., 2007; Arnold et al., 2010; Nag et al., 2019).

Second, the limitations of the Aβ burden itself and its current
measures are worth noting. The Aβ burden is not conclusive
in determining the risk of AD or cognitive impairment. The
prevalence of incidental Aβ positivity increases with age, and
approximately a quarter of CN elders are amyloid-positive
on PET scans or CSF evaluations (Jansen et al., 2015); the
so-called asymptomatic cerebral amyloidosis stage may make
the correlation between cerebral amyloid and OI impairment
fruitless because the latter occurs predominantly in MCI and
AD but not CN (Jansen et al., 2015; Jung et al., 2019). It
is also worth noting that Aβ burden reaches a plateau early
in the disease process or even in the preclinical phase of
the AD (Ingelsson et al., 2004; Serrano-Pozo et al., 2011);
hence, it is not the most appropriate to correlate OI with
Aβ in AD, especially in late stage. Furthermore, a more
toxic soluble or oligomeric form of Aβ (Walsh et al., 2002;
Shankar et al., 2008), which is considered critical in the AD
pathological cascade but has not been measured in the included
studies, may potentially correlate with OI ability more directly
(Bahar-Fuchs et al., 2010).

Third, the same concept may apply to CSF t-tau and p-tau,
which are often used to stage preclinical AD and are viewed
as biomarkers of a “disease state,” despite potentially correlating
with OI ability (Mattsson et al., 2017; Lian et al., 2019). It was
suggested that CSF P-tau levels might vary among AD and
occur before measurable cognitive decline, which also makes
the correlation difficult (Leuzy et al., 2019; Meyer et al., 2020).
However, there are advantages to associating PET tau, viewed as a
biomarker of a “disease stage,” with dementia status and cognitive
decline (Brier et al., 2016; Mattsson et al., 2017). Risacher et al.
(2017) stated that tau deposition significantly correlated with
OI ability, on the condition that Aβ was positive. This, to a
certain extent, corresponds with the definition of AD under the
AT(N) scheme (Jack et al., 2018), which requires that both Aβ

and tau are positive. Therefore, correlating OI ability with PET
tau will be promising and plausible, especially when focusing on
Aβ-positive individuals.

Finally, the included PET studies focused mainly on
composite gray matter from frontal, parietal, lateral temporal
cortex, and other regions of interest (Growdon et al., 2015;
Vassilaki et al., 2017; Kreisl et al., 2018) but olfactory
structure, while an olfactory region-targeted evaluation approach
may strengthen the exploratory association. A number of
neuroimaging studies indicate the association between structural
and functional degeneration of distinct brain regions and
olfactory impairment, mainly to the hippocampus and the
primary olfactory cortex (Thomann et al., 2009; Growdon et al.,
2015; Vasavada et al., 2015, 2017; Risacher et al., 2017; Vassilaki
et al., 2017; Wu et al., 2019). In addtion, postmortem studies
mentioned above (Kovacs et al., 1999; Attems et al., 2005; Attems
and Jellinger, 2006; Wilson et al., 2007, 2009) also state that
the association between AD pathologic changes and OI largely
reflects in the OB. Thus, it might be wiser to adopt a strategic
regional analysis, rather than averaging the biomarker levels
for the whole brain. Nevertheless, PET has so far not provided
sufficient resolution measuring Aβ and/or tau deposition in the
OB in humans, as stated by Risacher et al. (2017).

Furthermore, the prion-like hypothesis in AD is also worth
noting concerning the olfactory impairment. Like the prion
detected in olfactory epithelium of sporadic Creutzfeldt-Jakob
disease (Tabaton et al., 2004), Aβ and tau also appeared in
olfactory structures in AD and healthy subjects, including
olfactory epithelium and OB (Kovacs et al., 1999; Wilson et al.,
2007; Arnold et al., 2010; Brozzetti et al., 2020), both are
susceptible to protein and enzyme modifications involved in
AD pathogenesis (Dibattista et al., 2020). It was hypothesized
that pathological modifications lead to the activation of protein
accumulation in the OB after environmental insults, and then
induces the propagation of the disease within the brain in a prion-
like fashion by a templating process (Rey et al., 2018). Thus, OB
was considered the entry site for this prion-like spreading in AD.
Here, Aβwas proposed as an initiator for AD pathogenesis, while
prion-like propagation of tauopathy dominated the process and
might even independent of Aβ (Walker, 2018). Taken together,
we believe these underlying pathologic development starting
from olfactory neurons may contribute to the OI impairment,
as memory dysfunction in AD and/or MCI was not enough
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to explain this deficit (Wilson et al., 2007; Reijs et al., 2017).
Hence, the olfactory region-based association, again, between
OI ability and Aβ, tau particularly is important. Recently, a
non-invasive nasal brushing technique was used to collect the
olfactory neuroepithelium (Brozzetti et al., 2020), from which
neurodegeneration-associated proteins were detected, making
correlating OI ability with Aβ and tau levels in peripheral
olfactory system in vivo possible. This, certainly, may help clarify
the relationship between the olfactory function and biomarkers
of interest. A comprehensive search, a detailed subgroup analysis,
and the appraisal of potential moderators for heterogeneity are
the strengths of the study. In addition, active communication
with the authors of the included studies and the comprehensive
extraction of additional data provided our analysis with more
power than the original publications offered.

However, several limitations of our study should also be noted.
First, the available data did not allow us to correlate PET tau
with OI ability or to identify associations within the AD group.
In addition, other olfactory functions (olfactory threshold and
discrimination) were not considered in this study. Thus, the
inferences in the study cannot be extended to the above situation.
Second, the sample sizes in general were modest but relatively
small in the AD group and the CSF analysis, which reflects the
limited amount of available data in the associated field and limits
the power of detecting associations. Third, it was shown that the
association was greater if the OI was defined by suggested cutoffs
of abnormality, such as anosmia and normosmia (Vassilaki et al.,
2017). Unfortunately, no such data could be obtained because
only one study took the approach. Fourth, t-tau/Aβ42 or p-
tau/Aβ42 might correlate with odor identification better than
single CSF measures due to their improved ability for defining
biomarker positivity, but the data was limited. Two studies
reported p-tau/Aβ42, and the pooled results indicated a weak
association (r = −0.17, P = 0.03). Fifth, it is advisable to take
APOE ε4 allele into account when analyzing the associations
between OI ability and amyloid-β and tau burden as the latter
interacts with APOE ε4 allele. This has not been done as only a
few studies adjusted APOE ε4 allele. Finally, the comprehensive
data extraction was a double-edged sword, as it may have
yielded results that deviate from the original results due to the
recalculation and estimation of the data.

Future studies using PET tau imaging with larger sample
sizes may help further clarify this issue. Concerning other
olfactory functions, a recently published study (Lian et al.,
2019) investigated the relationship between the threshold
discrimination identification score and CSF Aβ and tau levels
in AD patients with or without olfactory dysfunction (OD),
finding that only t-tau levels were significantly lower in the
AD-OD group, but the significant correlation disappeared after
adjusting for age, sex, education, and disease duration. The same
was true for the study by Doorduijn et al. (2020), which found
no associations between AD biomarker levels and threshold
discrimination identification. Another excluded study using odor
percept identification performance with a homemade test to
correlate with Aβ PET data also yielded a negative result (Dhilla
Albers et al., 2016). These findings appear to be consistent with
our meta-analysis results. Additionally, the p-tau/t-tau ratio has
recently been shown to be related to olfaction in peripheral

olfactory systems (Liu et al., 2018); thus, it might be interesting
to examine the association between the p-tau/t-tau ratio and
OI ability.

Here, we provide a thorough analysis on the negligible
association between OI ability and Aβ and CSF tau burden, from
the limitation of theOI test andAβmeasures themselves (both are
lack of specificity) and the drawbacks of currently averaging the
Aβ levels for the whole brain, to the possible association between
the pathologic development (amyloid plaques and tauopathy)
and OI impairment based on the prion-like hypothesis in AD.
Specifically, we point out that the prion-like spreading Aβ,
especially tau along the olfactory pathway (starting from OB)
may contribute to the OI impairment, in parallel of memory
dysfunction to some extent. This highlights a strategic regional
analysis in the future, and a handful of other ideas, such as treating
OI as a categorical variable (e.g., anosmia, normosmia), using t-
tau/Aβ42 or p-tau/Aβ42, focusing on the APOE ε4 allele carriers,
and most importantly measuring by PET tau imaging.

In summary, our meta-analysis suggests that OI impairment
correlates marginally with Aβ PET data but not CSF Aβ and
more weakly correlates with CSF t-tau but not p-tau. These
findings may disappoint those who intend to use OI ability alone
for the early detection of AD. Nevertheless, PET tau might be
more strongly associated with OI impairment; however, more
studies are needed to clarify this association. Importantly, our
results should not be regarded as a rationale for denying the
value of olfactory testing in AD research. OI test may have
limited value predicting amyloid and tau status when used alone,
yet it is possible that an enhanced association between the two
may be yielded when combined with other biologic markers
discussed above (e.g., focusing on APOE ε4 carriers using tau
PET imaging with olfactory region-based analysis), and it is
still valuable in predicting cognitive decline and progression
from MCI to AD dementia. In fact, as a low-cost, non-invasive
method of evaluating olfactory function, the assessment of OI
ability, combined with global cognitive testing, has the potential
to help clinicians identify persons who rarely transition to
dementia (Devanand et al., 2019), thus helping practitioners
decide whether to apply further diagnostic investigations, such as
PET scans, which help reduce the burden and cost of clinical AD
trials and as the first diagnostic tau radiotracer for use with PET
was approved by the US Food and Drug Administration, further
research is possible and warranted.
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