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Brief Definit ive Report

The importance of vitamin A in host resistance 
to infectious disease is irrefutable (Semba, 1999). 
Up to 10 million malnourished children are at 
increased risk of complications and death from 
measles and other infectious diseases as con
sequences of vitamin A deficiencies (VADs). Al
though recent studies have revealed how retinoic 
acid (RA) may control the development of 
protective immunity, findings reported herein 
show that RA plays a far more fundamental role 
in inflammation than previously anticipated.

RA signaling to T cells imprints their hom
ing to the mesenteric LNs and gut through the 
upregulation of 47 and CCR9 (Iwata et al., 
2004; Mora et al., 2008; Svensson et al., 2008; 
Wang et al., 2010) and contributes to B cell 
homing and isotype switching to IgA (Mora  
et al., 2008). Furthermore, RA at physiological 
concentrations has been shown to be critical 
for the development of Th17 (Uematsu et al., 
2008; Cha et al., 2010; Wang et al., 2010). These 
findings provide a plausible explanation for the 

epidemiological findings of impaired immunity 
in vitamin A–deficient populations. At odds 
with its proinflammatory role in immunity, it 
has been shown that RA (at higher concentra
tions) can effectively interfere with the gen
eration of inflammatory Th17 cells as well as 
enhance regulatory CD4+ T cell (Treg cell) fre
quencies and function (Mucida et al., 2007; 
Schambach et al., 2007). In conjunction with 
TGF, RA enhances the expression of the tran
scription factor FoxP3 (Benson et al., 2007; 
Coombes et al., 2007; Sun et al., 2007), the master 
regulator for Treg cells, and facilitates the differen
tiation of CD4+ effector T cells to stable, adaptive 
Treg cells (aTreg cells; Benson et al., 2007), likely by 
acting differentially in specific subsets of the 
CD4+ T cell compartment (memory vs. naive 
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It is known that vitamin A and its metabolite, retinoic acid (RA), are essential for host 
defense. However, the mechanisms for how RA controls inflammation are incompletely 
understood. The findings presented in this study show that RA signaling occurs concurrent 
with the development of inflammation. In models of vaccination and allogeneic graft 
rejection, whole body imaging reveals that RA signaling is temporally and spatially re-
stricted to the site of inflammation. Conditional ablation of RA signaling in T cells signifi-
cantly interferes with CD4+ T cell effector function, migration, and polarity. These findings 
provide a new perspective of the role of RA as a mediator directly controlling CD4+ T cell 
differentiation and immunity.
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Constitutive luciferase signal was routinely observed in the 
abdominal area of mice because of signaling emanating from 
the area of small and large intestines. Surprisingly, the intra
dermal administration of CD40, CD3, CFA, and LPS 
elicited a robust, enhanced luciferase signal that was localized 
to the site of administration as early as 24 h after immuniza
tion (Fig. 1 A). In addition, after the i.p. administration  
of CFA, a locally and temporally restricted luciferase signal 
was first induced over controls in 24 h, but the signal intensi
fied by the following days, with a gradual decrease over the 
ensuing 20 d (Fig. 1 B). A more indepth analysis of the tem
poral and spatial induction of RA reporting and identity of 
the cells reporting was undertaken after the i.p. administration 
of CFA and CD3. In this case, the administration of CFA 
triggered RA signaling on CD4+ T cells (Fig. 1 C), but to a 
lesser extent than T cell activation induced by CD3, where 
a heightened activity was observed when compared with IgG 
control (Fig. 1 D). The in vivo administration of a RA antago
nist before T cell isolation ablated the RA reporting, estab
lishing the possibility that the enhanced reporting was specific 
for RA (Fig. 1, C and D). Therefore, different immune activa
tors stimulate RA signaling in a spatially and temporally  
restricted manner.

In addition, RA reporting by CD4+ T cells was studied in 
a model of allogeneic skin graft rejection. DR5Luciferase 
CD4+ T cells were adoptively transferred into RAG/ mice 
before syngeneic or allogeneic skin graft transplantation. After 
transfer, WBI was used to assess RA reporting by the DR5
Luciferase T cells. As shown in Fig. 2 A, no signal was found at 
early time points (first 5 d after transplantation); however, be
tween 7 and 21 d after transplant, enhanced RA signaling was 
detected in allogeneic grafts versus the syngeneic grafts. By 
week 3 after transplant, RA reporting declined to near base
line levels in both groups. Signaling from the transplanted  
allograft was associated with the presence of the allograft  
because RA reporting disappeared when the graft was fully 
rejected. In Fig. 2 B, quantified photon flux is presented for 
both mice transplanted with syngeneic and allogeneic grafts. 
Therefore, alloreactive CD4+ T cells that enter an allograft are 
triggered by RA.

Our findings establish that RA signaling in T cells may be 
linked with the development of inflammation. The tempo
rally restricted and regionally controlled signaling by RA sug
gests that RA regulates immunity within the inflammatory 
site over a prescribed period of time. In this study, polyclonal 
T cell activation in vivo augments RA signaling (or sensing) 
by CD4+ T cells. Although gutresident DCs (Coombes et al., 
2007; Sun et al., 2007) have been identified as the major 
source of immunederived RA, it is likely that RA produc
tion by DCs, other APCs, and even nonhematopoietic cells 
may be responsible for the reporting that is observed in intact 
mice. These observations are supported by several studies, in 
which not only gutresident DCs are able to synthesize  
RA but also draining LN (dLN)– and skinresident DCs 
(Guilliams et al., 2010), as well as nonhematopoietic cells  
(Hammerschmidt et al., 2008; Molenaar et al., 2009).

populations; Hill et al., 2008). Both of these latter activities 
provide compelling evidence that RA may exert antiinflam
matory effects within the host. Under what circumstances 
RA plays a proinflammatory role or an antiinflammatory role 
remains to be determined.

The molecular basis for RA signaling to T cells and the 
cellular sources of RA within the immune system have begun 
to resolve. Of the three RA receptors (RARs; , , and ), 
RA has been shown to control the suppressive (Treg) and in
flammatory activities (Th17) of the CD4+ T cell compart
ment by signaling through RAR (Mucida et al., 2007; Hill 
et al., 2008; Hall et al., 2011). Although it was originally be
lieved that RA produced by hematopoietic cells may be lim
ited to the gut, the production of RA by both hematopoietic 
and nonhematopoietic cells outside the gut has been repeat
edly demonstrated (Hammerschmidt et al., 2008; Molenaar  
et al., 2009; Guilliams et al., 2010). The capacity of cells to 
produce RA is dependent on the expression of retinaldehyde 
dehydrogenase (RALDH) enzymes, the key family of en
zymes which drive the irreversible conversion of retinal to 
RA (Duester, 2000). It has been shown that gutresident 
CD103+ DCs (Coombes et al., 2007; Sun et al., 2007), splenic 
DCs, and stromal cells (Hammerschmidt et al., 2008;  
Molenaar et al., 2009) produce RA. Within the gut, the op
posing regulatory actions of RA on Treg cell (to mediate suppres
sion) and Th17 cell differentiation (to suppress inflammation) 
have been implicated as critical actions in maintaining gut 
immune homeostasis (Mucida et al., 2007).

Whereas the role of RA in regulation of gut immunity 
has pictured RA as an important homeostatic regulator of in
flammation, the findings presented in this study provide a 
fundamentally new perspective on the role of RA in the de
velopment of cellmediated immunity. Using mice that re
port the upregulation of luciferase as a consequence of RA 
signaling, this study shows that robust RA signaling occurs 
concurrent with the development of inflammation. In models 
of vaccination and allogeneic graft rejection, whole body im
aging (WBI) revealed that RA signaling was temporally and 
spatially restricted with the site of inflammation. Conditional 
ablation of RA signaling in T cells arrested inflammation by 
altering T cell effector function, migration, and polarity. Our 
findings and others (Hall et al., 2011) establish that RA  
signaling to T cells is critical as an early mediator in the devel
opment of CD4+ T cell–mediated immunity and help to ex
plain the profound impairment of immunity in vitamin A– 
deficient populations.

RESULTS AND DISCUSSION
Immune activation elicits RA reporting on CD4+ T cells
To determine whether RA production and signaling occurs 
during immune activation, mice were administered immune 
activators, and WBI was performed. The distribution and in
tensity of RA signaling after immune activation were deter
mined using a RARELuciferase reporter mouse (DR5 
Luciferase), which transcriptionally upregulates luciferase 
expression upon signaling by RA (Svensson et al., 2008). 
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Figure 1. Immune activation induces RA signaling. (A) DR5-Luciferase reporter mice were immunized with the indicated activators by footpad injection. 
WBI was performed 24 h after immunization using IVIS technology. Quantification of photon flux is shown in the plot (right). n = 1–3 mice per group, and data 
represent three pooled independent experiments. Bars indicate the mean. (B) DR5-Luciferase reporter mice were immunized with CFA by i.p. injection, and kinetics 
for RA reporting was tracked by WBI. Basal reporting is shown in the top left picture (Luc+) including a negative control littermate (Luc–). Quantification of pho-
ton flux is included in the plot (right). n = 3 mice. (C and D) CD4+ T cells were isolated from the spleens of DR5-Luciferase mice previously immunized by i.p. injec-
tion with CFA (C) or -CD3 (D). In some mice, the RA-specific antagonist (Antag; NRX194310; 50 µg per mouse) was injected i.p. at the time of stimulus. 
Luciferase activity was measured in vitro as described in Materials and methods. n = 2–3 mice per group. Pooled data of at least two independent experiments are 
shown. Error bars indicate SEM. ns, nonstatistical difference; *, P ≤ 0.01; **, P ≤ 0.05. These findings are representative of two independent experiments.
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dnRARCD4Cre–OTII–Ly5.2 cells by i.v. injec
tion, and the next day, mice were transplanted with 
either syngeneic (B6) or allogeneic (actinOVA) 
grafts. After 7 d, skin grafts and dLNs were removed 
and analyzed for OTII–CD4+ T cell infiltration. 
Fig. 3 (A and B) shows that the alteration of RA 
signaling in CD4+ T cells impairs accumulation of 
T cells at the site of inflammation (skin graft). No 
differences in the expression of either activation 
markers (CD44, CD69, and CD62L) or chemo
kine receptors that are upregulated upon inflam
mation and are associated with migration to 
inflamed sites (CCR4, CCR5, CCR6, CXCR3, 
and CCR10) were observed (Fig. S4). Therefore, 
early TCRmediated events and expansion of graft
specific T cells appeared intact in the absence of RA 
signaling, but tissue accumulation was impaired.

It appeared that clonal T cell proliferation was 
intact in the absence of RA signaling, and so addi
tional experiments were designed to evaluate the 
impact of RA signaling on T cell differentiation. 

Because of the difficulty of recovering sufficient numbers of 
transferred CD4+ T cells when the host is on the WT C57BL/6 
background, skingrafted RAG/ mice were used as recipi
ents to ensure a high recovery and purity of OTII–CD4+  
T cells. dnRAR–OTII–Ly5.2 or dnRARCD4Cre– 
OTII–Ly5.2 cells were transferred to RAG/ recipient mice 
and grafted the next day. dLNresident CD4+ T cells were 
isolated after 7 d and cocultured with unpulsed or ISQ
pulsed DCs. After 72 h, cytokine and chemokines were quan
tified. As shown in Fig. 4 A, the production of Th1type 
cytokine IFN and IL17 was significantly reduced (60% 
for both, with P ≤ 0.022 [IFN] and P ≤ 0.028 [IL17]) 
when dLNresident dnRARCD4Cre–OTII–Ly5.2 T cells 
were recalled with their cognate antigen, as compared with 
their counterpart dnRAR–OTII–Ly5.2 T cells. Chemo
kine production by recalled dnRARCD4Cre–OTII–Ly5.2 
and dnRAR–OTII–Ly5.2 T cells was also evaluated. As 
depicted in Fig. 4 B, the interruption of RAR signaling in 
CD4+ T cells blocks the production of Th1linked chemo
kines such as MIP1 (P ≤ 0.014) and MIP1 (P ≤ 0.008), 
including a downregulation in the production of RANTES 
(Fig. S5; Cook, 1996). Moreover, we observed a tendency to 
a Th2skewed/suppressive phenotype characterized by the 
upregulation in the production of IL4 (P ≤ 0.037), IL9  

Disruption of RA signaling in CD4+ T cell impairs T cell 
tissue accumulation and effector cell function
To analyze the functional impact of intrinsic RA signaling  
on CD4+ T cell population dynamics during graft rejection, 
RA signaling was selectively ablated in graftspecific T cells.  
A dominantnegative form of the RAR, RAR403 (hereafter 
denoted dnRAR; Rajaii et al., 2008), was overexpressed in 
T cells by interbreeding the dnRAR with CD4Cre mice.

The potential impact of dnRAR- gene expression on  
T cell ontogeny in the dnRARCD4Cre was addressed. 
Analysis of the T cell development indicated that overexpres
sion of the dnRAR- gene impacted the frequencies of thy
mic singlepositive CD8+ T cell populations, as previously 
described (Zhou et al., 2008), but had little effect on T cell 
populations in the periphery (Fig. S1). Overexpression of the 
dnRAR- did not affect CD3–induced T cell proliferation 
in vitro or in vivo (Fig. S2) but, as anticipated, did inhibit RA
induced TGF–dependent FoxP3 conversion (Fig. S3; Benson 
et al., 2007; Coombes et al., 2007; Sun et al., 2007). To study  
the impact of RA signaling on graft rejection, the dnRAR- 
gene was also overexpressed in OVAspecific OTII TCR 
transgenic T cells, and mice were grafted with skin that ex
presses OVA as a transplantation rejection antigen (Ehst et al., 
2003). C57BL/6 mice received dnRAR–OTII–Ly5.2 or 

Figure 2. Enhanced RA signaling in allogeneic skin 
grafts. (A) RAG/ recipient mice received DR5-Luciferase 
CD4+ T cells and were then transplanted the next day with 
syngeneic (Syn; B6) or allogeneic (Allo; F1) skin grafts. Kinet-
ics of RA reporting by CD4+ T lymphocytes was tracked by 
WBI. n = 4 mice per group/experiment. (B) Graph displays 
kinetics of T cell–derived WBI RA reporting from skin grafts. 
Error bars indicate SEM. ns, nonstatistical difference;  
*, P ≤ 0.01; **, P ≤ 0.05; and ***, P ≤ 0.001. The findings are 
representative of two experiments.

http://www.jem.org/cgi/content/full/jem.20102358/DC1
http://www.jem.org/cgi/content/full/jem.20102358/DC1
http://www.jem.org/cgi/content/full/jem.20102358/DC1
http://www.jem.org/cgi/content/full/jem.20102358/DC1
http://www.jem.org/cgi/content/full/jem.20102358/DC1
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in the dnRARCD4Cre mice was com
pletely abolished. Therefore, experiments 
with an RAR panantagonist and over
expression of the dnRAR- gene in T cells 
demonstrate that RA signaling is required 
for T cell–mediated graft rejection.

Our data demonstrate that RA sig
naling to CD4+ T cells is essential for the 
inflammatory responses that mediate the 
rejection of allogeneic skin grafts. The ab
sence of RA signaling in CD4+ T cells  
alters T cell polarity, resulting in a shift 
from a Th1/Th17 to a Th2 phenotype. 
The selective impact of RA on T cell dif
ferentiation and not clonal expansion is 
consistent with the welldescribed role of 
RA as a differentiation factor in develop
mental biology (Maden, 2007). With the 
present data considered, it is clear that 
RA exerts both proinflammatory and anti
inflammatory effects on cellmediated 
immunity. Numerous studies have impli
cated RA in facilitating immune suppres
sion via the enhanced differentiation of 

aTreg cells (Benson et al., 2007; Coombes et al., 2007; Sun  
et al., 2007) and the suppression of Th17 cell differentiation 
(Mucida et al., 2007; Elias et al., 2008). In fact, it has been 
shown that RA agonists can suppress several murine auto
immune diseases, including systemic lupus erythematosus and 
experimental autoimmune encephalomyelitis (Yamauchi et al., 
2005). In the latter, reduced differentiation of Th17 was at
tributed to the resolution in disease. Furthermore, a major 
emphasis for the role of RA in immunity has been placed on 
its role in gut homeostasis. Studies have shown that CD103+ 
DCs from the gut can potentiate the differentiation of aTreg cells 
through their capacity to express RALDH enzymes re
quired for RA synthesis (Coombes et al., 2007; Sun et al., 
2007). Although its role in the gut is no doubt critical, the 
findings reported herein provide a completely new perspec
tive of the role of RA in immunity. In this regard, our prelimi
nary results show that stimuli like T cell activation by CD3 
antibody treatment increases the frequencies of DCs express
ing RALDH. In the skin transplantation model, although we 
observed heightened RA signaling in CD4+ T cells during 

(P ≤ 0.026; Fig. 4 C), and IL10 (P ≤ 0.128), although for  
IL10 this difference was not statistically significant (Fig. S5).  
The impairment of Th1linked chemokines by graftspecific  
T cells may contribute to the transcriptional program re
quired for Th1/Th17 cell differentiation and the develop
ment of CD4+ T cell–mediated inflammation.

To evaluate the functional significance of RA signaling to 
graft rejection, T cell–mediated graft rejection was studied in 
mice in which RA signaling was ablated chemically and ge
netically. Mice receiving syngeneic (B6) or allogeneic (actin
OVA) skins were treated with a RAR panantagonist (NRX 
194310). As shown in Fig. 5 A, the blockade of RAR signal
ing resulted in complete acceptance of the skin allograft (open 
red circles). Experiments then evaluated the involvement of 
RA signaling in CD4+ T cells during graft rejection. WT,  
dnRAR, and dnRARCD4Cre were grafted with syngeneic 
or allogeneic skin, and the kinetics of graft rejection was eval
uated over time. As depicted in Fig. 5 B, dnRAR mice re
ject the allograft following the same kinetics previously 
described for C57BL/6 (Ehst et al., 2003). However, rejection 

Figure 3. RAR- signaling blockade in  
CD4+ T cells compromises migration to the 
allograft. (A) dnRAR-–OT-II–Ly5.2 or dnRAR-
CD4Cre–OT-II–Ly5.2 cells were transferred into 
C57BL/6 recipients, and T cell infiltration in dLNs 
and skin graft was analyzed by flow cytometry.  
n = 2–4 mice per group. (B and C) Graphs depict 
the number of transferred cells infiltrating the 
dLNs (B) and skin grafts (C). Pooled data from 
three independent experiments are shown. Bars 
indicate the mean. ns, nonstatistical difference.
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control T cell plasticity in vivo, and dnRARCD4Cre may 
have impairments in lineage commitment. Studies are under
way to evaluate these hypotheses.

In addition, our data show that the disruption of RA sig
naling in the CD4+ T cell compartment impairs T cell infil
tration of the skin graft. Although the expression of the major 
skin/inflammationrelated chemokine receptors was not 
compromised, the added effect of reduced Th1 cytokines and 
chemokines may cooperate for the poor recruitment of CD4+ 
T effector cells to the allograft. We observed that dnRAR
CD4Cre CD4+ T cells produce less Th1linked chemokines, 
which can explain in part the lack of CD4+ T cell accumula
tion within the graft if chemokine migration by infiltrating  
T cells amplifies the recruitment of additional T cells to the 
inflammatory site.

A recent publication (Hall et al., 2011) has highlighted the 
role of RA signaling of T cells in the mucosal immune  
response to Toxoplasma gondii. These investigators have  
shown that VAD impairs IFN recall responses in immune 
mice. Furthermore, they show that T cells derived from an 
RAR/ mouse display abnormalities in cell growth and Ca2+  
mobilization and produce less IFN in response to vaccina
tion with OVA protein and Escherichia coli toxin. In contrast to 
these findings, we show that T cells that are unresponsive to 
RA via overexpression of a dnRAR- proliferate in response 
to antigen in vivo and in vitro. An apparent explanation to the 
differences is not clear at this time. It is possible that T cells 

the rejection process, we did not see a significant difference in 
the numbers of RALDH+ DCs between the syngeneic and 
allogeneic groups (either dLNs or skin grafts; unpublished 
data). Thus, signaling of RA to CD4+ T cell may not be cor
related with differential production from other cell types 
(APCs and stromal cells). It is known that RA signaling can 
be regulated by the expression of RA transport proteins ex
pressed by the target cell. Alternatively, RA concentrations  
in vivo can be regulated by its catabolism by the catabolic en
zyme, Cyp26. In this regard, future experiments involving 
Cyp26, the protein which degrades RA in the cytosol, will be 
pursued to understand its role in immunity. In contrast, the 
molecular mechanisms underlying the ability of RA to con
trol the lineage commitment of T cells in vivo are unresolved. 
Our data show that ablation of RA signaling in vivo reduces 
the expression of Th1 and Th17associated cytokines and 
chemokines. This effect is not seen in vitro when dnRAR
CD4Cre T cells are stimulated with CD3 (unpublished 
data). The role of RA in eliciting Th1 and Th17 inflammatory 
T cells may be through its capacity to influence the expres
sion of master transcription factors that regulate the fate of 
Th cells, such as Tbet or RORt. Alternatively, RA may 

Figure 4. RAR- signaling is required for effector function on 
CD4+ T cells. RAG/ recipient mice received dnRAR-–OT-II–Ly5.2 or 
dnRAR-CD4Cre–OT-II–Ly5.2 cells 1 d before B6 or actin-OVA skin graft 
transplantation. After 7 d, CD4+ T cells were isolated from dLNs and co-
cultured with ISQ-pulsed splenic CD11c+ cells. (A and C) Supernatants 
were collected to measure Th1/Th17 (A)- and Th2-type (C) cytokines by 
ELISA and Luminex. (B) Chemokine secretion was also quantified by  
Luminex. n = 2–3 mice per group. Graphs depict pooled data from three 
independent experiments. Bars indicate the mean.

Figure 5. RA signaling to CD4+ T cells is essential for allograft 
rejection. (A) C57BL/6 mice were transplanted with syngeneic (B6) or 
allogeneic (actin-OVA) skin grafts. RAR pan-antagonist (Antag; NRX 
194310) was given three times per week at 50 µg/mouse, and skin graft 
survival was monitored. (B) C57BL/6, dnRAR-CD4Cre, and dnRAR- 
were grafted with either B6 or actin-OVA skin grafts. Skin graft survival 
was monitored over time. The number of mice per group is indicated in 
each graph. Pooled data from two representative independent experi-
ments are shown.
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Conversion assay in vitro. CD4+ T cells were isolated from the spleens of 
dnRAR or dnRARCD4Cre mice and stimulated with 10 µg/ml plate
bound CD3 (clone 2c11) and 1 µg/ml CD28 (clone PV1) plus the  
addition of 100 U/ml IL2, 10 ng/ml TGF, and different concentrations of 
RA (SigmaAldrich; as indicated). After 4 d in culture, the expression of 
FoxP3 was evaluated by intracellular staining (eBioscience) and analyzed by 
flow cytometry.

Quantification of luciferase activity in vitro. CD11c+ and CD4+ T cells 
were isolated from the spleens of immunized DR5Luciferase reporter mice. 
0.5 × 106 cells were resuspended in 100 µl DPBS, and the procedure  
was performed according to the manufacturer’s instructions (SteadyLite  
kit; Roche).

Skin grafting. Skin grafting was performed as described previously 
(Quezada et al., 2005). For tracking RA signaling on CD4+ T cells, splenic 
CD4+ T cells were isolated from the DR5Luciferase reporter mouse, and  
3 × 106 cells were transferred into RAG/ recipients by i.v. injection. The 
next day, syngeneic or allogeneic skin grafts were transplanted. For the antag
onist treatment regimen, when indicated, recipient mice were treated three 
times/week with control vehicle (DMSO) or 50 µg/mouse of the RAR 
panantagonist (NRX 194310; NuRx Pharmaceuticals).

Skin-infiltrating cell isolation. Skin transplants were removed from  
animals at the indicated day in the figure legends. The transplants were  
incubated in HBSS media with 4 mg/ml DNase, 4 mg/ml Liberase,  
and 10 mg/ml Collagenase D for 3 h at 37°C (all from Roche). After  
this, the tissue was disintegrated using a mortar and pestle and filtered  
through a 100µm nylon strainer. Cell suspension was stained for flow cyto
metric analysis.

Recall experiments. At day 0, RAG/ mice received 106 OTII– 
dnRAR–OTII–Ly5.2 or dnRARCD4Cre–OTII–Ly5.2 cells by i.v. injec
tion. The next day, recipient mice were grafted with syngeneic (C57BL/6) or 
allogeneic (actinOVA) skins. After 7 d, CD4+ T lymphocytes were isolated 
from skin graft dLNs (L3T4 kit; Miltenyi Biotec) and cocultured at a 3:1  
ratio with naive or ISQpulsed splenic CD11c+ cells (10 µg/ml New Eng
land Peptide and CD11c microbeads; Miltenyi Biotec).

Cytokine and chemokine secretion. Supernatants were collected 72 h 
after culture and analyzed using ELISA (mouse IL17A kit; BioLegend) or 
Luminex (BioRad Laboratories), as indicated. The Luminex assay was per
formed by the Immune Monitoring Core (Dartmouth College).

Flow cytometry. The following FITC, PE, PerCP, or APCconjugated 
antibodies were used: Ly5.2 (A20), CD4 (L3T4), CD8 (536.7),  
CD11c (N418), CD62L (Mel14), CD11b (M1/70), CCR4 (2G12), 
CCR5 (7A4), CCR6 (292L17), CCR10 (248918), CXCR3 
(CXCR3173), and v5 (MR94). All antibodies except v5 (BD) and 
CCR10 (R&D Systems) were purchased from BioLegend. Data acquisi
tion was performed on a FACScan (BD), and analysis was performed using 
FlowJo software (Tree Star).

Statistical analysis. Differences between the means of experimental groups 
were analyzed using the MannWhitney test. Data analysis was performed 
using Prism software (version 4.0; GraphPad Software). A pvalue ≤0.05 was 
considered significant.

Online supplemental material. Fig. S1 shows the T cell frequencies and 
phenotype from different organs in WT, dnRAR, and dnRARCD4Cre 
mice. Fig. S2 shows that CD4+ T cells from the dnRARCD4Cre mice do 
not convert to FoxP3 cells in vitro. Fig. S3 shows that the ablation of RA sig
naling on CD4+ T cells does not affect the expression of chemokine recep
tors or activation markers. Fig. S4 shows that the lack of RAR signaling 
promotes the generation of Th2/suppressive CD4+ T cells. Fig. S5 shows that 

derived from RAR/ are developmentally impaired.  
Alternatively, it is possible that the signaling function of  
the RAR molecule may still be intact in the dnRAR-– 
expressing T cells. Future studies with conditional deletion of 
each of the RAR will help resolve these issues and shed in
sights into the role of other RAR in immunity. Nonetheless, 
collectively, the study by Hall et al. (2011) and our study on 
the role of RA in immunity provide new insights into the 
function of this mediator in inflammation.

With regard to cell differentiation and stability, data from 
experiments examining the role of RA in aTreg cell genera
tion have implicated RA as an important differentiation fac
tor for T cells, which may impact their plasticity. Data show 
that RAtreated natural Treg cells are lineage committed and 
virtually irreversible in their phenotype, even in the face of 
extremely proinflammatory conditions (Zhou et al., 2010). As 
such, RA controls the plasticity of aTreg cells (Benson et al., 
2007; Nolting et al., 2009) and perhaps Th1 and Th17 cells. 
The enhanced aTreg cell differentiation by RA has been re
cently resolved to show that RA enhances the association of 
the RAR/RXR receptor to the FoxP3 enhancer, leading to 
enhanced histone acetylation and enhanced binding of phos
phorylated Smad3 (Xu et al., 2010). For nearly a century, it 
has been clear that VAD compromises immunity, and these 
new findings on the role of RA in controlling T cell–mediated 
differentiation provide a rational, scientific basis for the  
increased susceptibility to infectious disease in vitamin A– 
deficient individuals.
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mice were purchased from the Jackson Laboratory. The DR5Luciferase re
porter (Svensson et al., 2008) and dnRAR (Rajaii et al., 2008) have been 
described previously. Animal experiments were approved by the Institutional 
Animal Care Use Committee of Dartmouth Medical School. All animals 
were maintained in a pathogenfree facility at Dartmouth Medical School.
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gen Corp.) according to the manufacturer’s instructions. Analysis and images 
were obtained using the Living Image Software (version 2.6.1; Caliper  
Life Sciences).

T cell phenotyping. Thymus, peripheral LNs, spleen, and mesenteric LNs 
were removed from WT, dnRAR, or dnRARCD4Cre mice. Cell sus
pensions were prepared, and staining for CD4 and CD8 T cells was per
formed and analyzed by flow cytometry.

Proliferation assay in vitro. CD4+ T cells were isolated from the spleens 
of dnRAR or dnRARCD4Cre mice and labeled with 5 µM CFSE (In
vitrogen). In parallel, T cell–depleted splenocytes (APC) were prepared, and 
0.15 × 105 APCs were cocultured with 0.5 × 105 CD4+ T cells in the pres
ence of soluble CD3 (clone 2C11). CFSE dilution was evaluated by flow 
cytometry at day 3.
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disruption of RAR signaling on CD4+ T cells skews T cell polarity toward 
the Th2 phenotype. Online supplemental material is available at http://www 
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