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Abstract

Advances in proteomic technologies continue to substantially accelerate capability for generating experimental data on
protein levels, states, and activities in biological samples. For example, studies on receptor tyrosine kinase signaling
networks can now capture the phosphorylation state of hundreds to thousands of proteins across multiple conditions.
However, little is known about the function of many of these protein modifications, or the enzymes responsible for
modifying them. To address this challenge, we have developed an approach that enhances the power of clustering
techniques to infer functional and regulatory meaning of protein states in cell signaling networks. We have created a new
computational framework for applying clustering to biological data in order to overcome the typical dependence on
specific a priori assumptions and expert knowledge concerning the technical aspects of clustering. Multiple clustering
analysis methodology (‘MCAM’) employs an array of diverse data transformations, distance metrics, set sizes, and clustering
algorithms, in a combinatorial fashion, to create a suite of clustering sets. These sets are then evaluated based on their
ability to produce biological insights through statistical enrichment of metadata relating to knowledge concerning protein
functions, kinase substrates, and sequence motifs. We applied MCAM to a set of dynamic phosphorylation measurements of
the ERRB network to explore the relationships between algorithmic parameters and the biological meaning that could be
inferred and report on interesting biological predictions. Further, we applied MCAM to multiple phosphoproteomic datasets
for the ERBB network, which allowed us to compare independent and incomplete overlapping measurements of
phosphorylation sites in the network. We report specific and global differences of the ERBB network stimulated with
different ligands and with changes in HER2 expression. Overall, we offer MCAM as a broadly-applicable approach for analysis
of proteomic data which may help increase the current understanding of molecular networks in a variety of biological
problems.
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Introduction

Large and complex high-throughput proteomic experimental

studies are becoming more accessible through the use of

powerful, swiftly developing platforms such as mass spectrometry

(MS), flow cytometry (FC), and various kinds of protein

microarrays (PMA) [1–3]. As one particular example of

increasing attention, there has been an explosion in large-scale

datasets for receptor tyrosine kinase (RTK) network signaling by

the combination of protein post-translational modification

enrichment followed by quantitative MS methods [4]. In

receptor tyrosine kinase (RTK) networks, such as those activated

by the ERBB family of receptors, phosphorylation plays a central

role in the translation of extracellular cues into phenotypic

changes, such as differentiation, proliferation, and migration [5].

Phosphorylation on proteins in the RTK network induce a

variety of signaling events including protein-protein interactions,

enzymatic activation and inactivation, and cellular localization

changes, such as translocation to the nucleus or recruitment to

the plasma membrane [6–8]. Understanding RTK networks,

and the phosphorylation that occurs within them, will be

essential for understanding RTK signaling in normal and

dysregulated conditions. Mass spectrometry measurement of

phosphorylation events in cellular signaling networks is greatly

increasing our understanding of the specific modifications

occurring in the cell as well as their relative changes in response

to network perturbations, such as ligand stimulation or kinase

inhibition. However, the pace of identification of phosphoryla-

tion sites in cellular networks has outstripped our ability to

understand the function and regulation of the measured

phosphorylation sites as evidenced by the sharp increase in

phosphorylation database repository sizes, such as Phospho.ELM

[9]. Unsupervised computational learning methods, applied to

quantitative phosphoproteomic data, provides one method by
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which to infer function and regulation of phosphorylation within

cell signaling networks. Previous studies have shown success in

application of unsupervised learning to phosphoproteomic data

[10–12], however each has presented the results of a single

clustering solution, and to date, no extensive study of the

relationship between unsupervised learning and phosphoproteo-

mic data has been produced. Phosphoproteomic data represents

a new challenge in unsupervised learning and currently, no gold

standard exists as a method for judging the success of a clustering

solution of phosphoproteomic data.

Unsupervised learning approaches, such as various types of

clustering algorithms, have been heavily utilized to productive

effect in the biological community in application to other kinds of

high-throughput biomolecular measurements including gene

sequence [13], gene expression [14], and metabolomics [15].

Unsupervised learning algorithms, often referred to as clustering,

seek to group components of a multidimensional dataset into

clusters where intra-cluster differences are minimized and inter-

cluster differences are maximized. Successful application of

clustering has demonstrated its usefulness in reducing dataset

dimensionality and providing biological hypotheses through the

use of inference. Application of unsupervised learning to

biological datasets is extensive and includes a seemingly endless

option of algorithms, such as Kmeans [14], hierarchical

clustering [16], self organizing maps [17], and affinity propaga-

tion [18]. Since most clustering algorithms base clustering

solutions on the similarity, or dissimilarity, between two vectors

of measurements based on a distance metric, the metric used will

have an impact on the final solution as will any alteration applied

to the vectors by data transformations. Several studies have

examined the effect different distance metrics [19–21] and data

transformations [21,22] have on clustering solutions of experi-

mentally-derived data. In addition to choosing an appropriate

algorithm, distance metric, and data transformation, scientists are

also faced with having to determine a suitable number of clusters

(K) in which to partition their dataset, since few algorithms

incorporate concurrent optimization of K. A variety of methods

for determining the natural cluster structure of a dataset have

been proposed, see [23] for an example of their comparative

performances using a set of microarray experiments. Taken as a

whole, the historical application of unsupervised learning to

microarray data, as well as other large biological datasets,

indicates a vast landscape of decisions required to apply

unsupervised learning effectively. We view this vastness as

offering an opportunity for enhanced capability to gain

biochemical and biological insights, via an approach that takes

advantage of the diversity by seeking consistencies and contrasts.

In this work we create a framework, Multiple Clustering

Analysis Methodology (MCAM), in which one can apply a vast

array of algorithms, distance metrics, data transformations, and

cluster set sizes, in a combinatorial fashion, i.e. by the exhaustive

combination of all chosen parameters, to a biological dataset and

then subsequently compile and evaluate the outcome of all

solutions. In this framework, enrichment for biological terms

within clustering partitions, relative to the dataset, gives us a

metric for evaluating the success of any particular clustering

implementation. The use of this framework allows scientists to

apply unsupervised learning in a way that requires no a priori

knowledge or assumptions regarding the most useful clustering

algorithm, distance metric, data transformation, or set size. We

apply MCAM to diverse phosphoproteomic time-course datasets

arising from studies of the ERBB network, where interesting

biological enrichment includes Gene Ontology terms, protein

domains, kinase and phosphopeptide binding domain predictions,

and amino acid sequence motifs. We explore results from these

analyses for relationships between biological metrics and the

parameters of clustering and develop methods for combining

results of clustering to produce robust biological hypotheses and

inference. Using this information we explore the difference

between two independent measurements of ERBB signaling and

find interesting modules of signaling that may be responsible for

the migratory potential of HER2 amplification in cancer. The

implementation of MCAM was done through a mix of Matlab and

Perl scripts. The Perl programs for analyzing enrichment have

been incorporated directly into the PTMScout interface (http://

ptmscout.mit.edu) [24] and the Matlab tools to generate MCAM

cluster sets and analyze resulting enrichment are available for

download from PTMScout as well. PTMScout is an open-access

web and data resource that contains experimental information

concerning protein phosphorylation and lysine acetylation, tools

for analyzing proteomic datasets, and the ability for users to

directly load new experiments for analysis and data-sharing

purposes.

Results

Overview of methodology
The MCAM framework is depicted in Figure 1. Our specific

interest was to cluster dynamic phosphorylation measurements of

the ERBB network in order to find phosphorylation events with

similar temporal dynamics leading to possible hypotheses

regarding shared regulation or shared functionality. In the MCAM

framework, a biological dataset, here dynamic phosphorylation

measurements, is first subjected to a set of data transformations,

such as log transformation or mean-centering; this transformed

data is then clustered via the exhaustive combination of different

algorithms, distance metrics, and solution set sizes (K). In our

implementations, this produces on the order of 1,500 to 2,500

clustering sets, which we refer to as an MCA. Each set in an MCA

represents the complete clustering solution of a single combination

Author Summary

Proteomic measurements, especially modification mea-
surements, are greatly expanding the current knowledge
of the state of proteins under various conditions.
Harnessing these measurements to understand how these
modifications are enzymatically regulated and their
subsequent function in cellular signaling and physiology
is a challenging new problem. Clustering has been very
useful in reducing the dimensionality of many types of
high-throughput biological data, as well inferring function
of poorly understood molecular species. However, its
implementation requires a great deal of technical expertise
since there are a large number of parameters one must
decide on in clustering, including data transforms, distance
metrics, and algorithms. Previous knowledge of useful
parameters does not exist for measurements of a new
type. In this work we address two issues. First, we develop
a framework that incorporates any number of possible
parameters of clustering to produce a suite of clustering
solutions. These solutions are then judged on their ability
to infer biological information through statistical enrich-
ment of existing biological annotations. Second, we apply
this framework to dynamic phosphorylation measure-
ments of the ERBB network, constructing the first
extensive analysis of clustering of phosphoproteomic data
and generating insight into novel components and novel
functions of known components of the ERBB network.

A Framework for Clustering of Biological Datasets
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of clustering parameters. Next, we calculate enrichment in all

biological metric terms, as well as markers for time dynamics,

Table 1, within each cluster, compared to the full dataset, using

the hypergeometric function and the False Discovery Rate, FDR

[25], procedure to correct for multiple hypothesis testing for every

metric across a set, Figure 1B. Enrichment in biological metrics

will give us a method by which we can judge the fitness of a

clustering solution for known biological information, where those

categories include information about structure and function of a

protein as well as information about the regulation and function of

the particular phosphorylation sites, Table 1. Finally, we test, for

every parameter of clustering, the impact on the biological

information if all sets with that parameter are removed.

Parameters are removed from the final set when the removal of

that parameter results in a significant improvement of overall

biological enrichment and does not significantly decrease the

enrichment of any single category of biological information. This

pruning, or parameter refinement, allows us to remove clustering

solutions which, according to the current biological metrics, are

ineffective at producing solutions of biological import. We call this

post-pruned set of solutions MCAfinal , for the final Multiple

Clustering Analysis. It is important to consider that each clustering

solution in an MCA is derived by the quantitative measurements

alone, in an unsupervised manner. However, biological enrich-

ment is used to shape the final MCA representing a feature

selection step in the MCAM method. MCAfinal is typically on the

order of 500 clustering sets. With this final MCA we can begin to

compile the biological information that is contained, explore how

clustering parameters compare to each other using mutual

information, how clustering parameters relate to particular

biological metrics, and consider biological hypotheses generated

throughout all of these steps.

In this work we will focus on studies of ERBB network

dynamics. In a first example, we evaluate a four time point

measurement of the 184A1 human mammary epithelial cell

(HMEC) line stimulated with a saturating concentration of EGF,

where measurements were taken before stimulation (0 min) and

then subsequently at 5, 10 and 30 minutes following EGF addition

[26]. Enrichment and fractionation steps focused on capturing

tyrosine phosphorylation signaling events in the ERBB network.

This dataset represents extensive measurement of the phosphotyr-

osine ERBB signaling network, with 77 unique phosphopeptide

measurements on 68 proteins. Throughout this work we will refer

to this dataset as EGF4 for brevity. This dataset, a 7764 matrix,

represents the relative quantitative measurements of 77 phospho-

peptides in time following EGF stimulation, where the vectors used

in clustering are the dynamic measurements of a single

phosphopeptide. The full dataset is plotted in principal component

space in Supplementary Figure S1. The clustering parameters

originally applied, and those removed during pruning, are

described in Table 2. The original MCA included 1,320 sets

and after pruning, MCAfinal included 331 total sets. Pruning

indicates that for this dataset and set of parameters, the use of

Hierarchical clustering, set sizes of two and four, the differential

transformation, and the use of correlation and cosine as a distance

metrics are uninformative in producing enrichment in the

categories tested. The 331 sets remaining after parameter

refinement produces a wide diversity of biological enrichment

across all categories of information.

Validation of biological enrichment
In order to ensure that the basis of our analysis for clustering

fitness is a product of actual biological power, versus the

production of a large degree of false positives due to Type I

Figure 1. Multiple Clustering Analysis Method. A) MCAM begins with clustering a biological dataset through the combinatorial application of a
set of clustering parameters, followed by biological enrichment testing in various categories of information. Following this, the enrichment is used to
prune those parameters that contribute little biological information. B) The depiction of an MCA, which contains M sets, with each set having some
number of k clusters and produced by a particular combination of clustering parameters. Biological enrichment is corrected for multiple hypothesis
testing by using the False Discovery Rate procedure across a set and within a category of biological information. Mutual Information can be used to
compare the resulting clustering solution between any two sets.
doi:10.1371/journal.pcbi.1002119.g001

A Framework for Clustering of Biological Datasets
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error, we performed ten random controls, Figure 2 and

Supplementary Figure S2, using two different randomization

methods. In the first method, the data matrix is randomly

reshuffled and subjected to clustering using the same parameters as

in MCAfinal , followed by enrichment analysis. This method should

control for the mechanics of clustering random data. The second

method randomized the biological labels assigned to the vector

dynamics by randomly reshuffling the assignment of phosphopep-

tides to the measured phosphorylation dynamics. This random-

ization process should control for the potential limitations in the

annotations used for enrichment. Both methods gave similar

results, and if not explicitly stated otherwise, the results described

in this paper refer to randomization using the first method

described.

Figures 2A and B depict the extent of biological enrichment

found in one representative metric, PFAM domains, for both real

data and a representative random control. Figures 2A and B

represent the total number of enriched PFAM labels found per

cluster set, in order of descending degree of enrichment per set.

The ‘top’ and ‘bottom’ quartiles, according to total enrichment per

set, are indicated since they will be used extensively throughout

this work. As expected, we do see some enrichment in the random

control, which represents a small number of false positives,

however the contrast between the results of clustering real

biological data and random data is stark. These observations

indicate that clustering of temporal phosphorylation measure-

ments is capable of producing meaningful biological enrichment

and may therefore be useful for inferring function and regulation

of poorly understood phosphorylation events in the ERBB

network.

To ensure that Type I error, or the false positive rate, is

controlled, at least empirically, at the target rate of 0.05 or better,

we plotted the rate of null hypothesis rejection across all metrics

for real data and for the 10 random controls, Figure 2C. Figure 2C

shows that for most categories the rate of null hypothesis rejection

is higher than the random controls, and for all controls Type I

error is empirically controlled at 0.05 or better, with only one

outlier in the case of GO Molecular Function terms. We also

wanted to explore the total number of statistically significant labels

produced in real versus random MCA sets, shown in Figure 2D

Table 1. Description and categorization of biological metrics.

Metric Level Metric Short Name

Protein Metrics Gene Ontology: Molecular Function F

Gene Ontology: Biological Process P

Gene Ontology: Cellular Compartment C

Site Metrics Pfam Domains Pfam

Domain Phosphorylation Pfam Site

PhosphoELM Kinase Annotations PELM Kinase

Linear sequences Motifs

Scansite Kinase Predictions Scansite Kinase

Scansite Binding Predictions Scansite Bind

Dynamic Quantitative Metrics Minimum Phosphorylation MinValue

Maximum Phosphorylation MaxValue

Maximum Positive Change MaxPosChange

Maximum Negative Change MaxNegChange

There are a total of nine biological metrics and four dynamic metrics analyzed for enrichment in clusters. The metrics tested describe information regarding the protein
a peptide arises from, the particular site of phosphorylation, or the quantitative data. The abbreviated labels used throughout this work are given.
doi:10.1371/journal.pcbi.1002119.t001

Table 2. Clustering Parameters and MCA Set Sizes.

Parameter
Type Original Set Pruned

K 2, 4, 6, 8, 10, 12, 14 2, 4

Transform raw (untransformed)

center (zero centered)

zscore (mean center, sample standard
deviation of 1)

normMax (normalized to maximum value)

rangeScale (full range scaled to 1)

log10 (log base 10)

pow (power to 0.5)

pareto

FFT

diff (differential) diff

normMax_log10 (normMax follwed by log10)

zscore_log10 (zscore followed by log10) zscore_log10

Distance euclidean

correlation correlation

cityblock

cosine cosine

chebychev

Algorithm Ncut (Ncut Segmentation)

AP (Affinity Propagation [18])

SOM (Self-Organized Map [25])

Kmeans

Hierarchical Hierarchical

Set Size 1320 331

The parameters of clustering used in application to the EGF4 dataset including
the short names used throughout this work as well as increased description of
the parameters. Pruned parameters are parameter sets removed from MCAfinal

because their removal improved overall biological enrichment by at least 2%
and did not negatively affect any one category by more than 10%.
doi:10.1371/journal.pcbi.1002119.t002
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and Supplementary Figure S2 for randomization using the second

method described above. Bonferroni correction was also used and

the results were similar regarding empirical control of the false

positive rate, but demonstrated a large loss in statistical power,

Supplementary Figure S3. Given these results, FDR correction is

used in all further results presented.

Figure 2 shows some categories, like motifs, which have roughly

the same rate of null hypothesis rejection as random controls, have

a much larger number of total hypothesis tests, resulting in a large

degree of enrichment in the case of real biological data. However,

some categories perform no better than random controls based on

both rate of null hypothesis rejection and total enrichment. These

categories include Scansite Kinase predictions, PhosphoELM

kinase annotations, and phosphorylation within known PFAM

domains (pfam_site). We noticed that despite the fact that overall

enrichment for Scansite Kinase terms was poor in MCAfinal ,

clusters derived using the Fast Fourier Transform, FFT, were

correlated with production of Scansite Kinase enrichment in a

significant manner. We looked at random controls and real

enrichment for Scansite Kinase terms in just FFT derived clusters

and found there was an appreciable improvement in enrichment

for this relative to random controls Supplementary Figure S4,

indicating that for specific enrichment, subsets of MCAfinal could

be considered. This presents a method in which to target clustering

results for producing meaningful information in a particular

biological category. For example, here it appears that the FFT

subset, which performs better than random controls for producing

Scansite Kinase predictions, may provide clusters of phosphory-

lation sites with the power of inferring shared kinase regulation.

Taken together, these results demonstrate that the use of any single

algorithm, distance metric, and transformation would highlight

only a small fraction of the possibly interesting relationships

between the data.

Analysis of clustering parameters
We originally hypothesized that the choice of optimal

unsupervised learning parameters would be dependent on the

biological information desired in the resulting clustering solution.

Figure 2. Biological enrichment in MCA compared to random controls. A) An example histogram of PFAM enrichment in the MCA plotted in
descending order of the number of total terms enriched per set. Green lines mark the top 25% and red the bottom 25% of sets based on total
number of labels enriched. B) Example resulting enrichment from a random control for PFAM enrichment. C) The rate of null hypothesis rejection, per
biological category, for MCAfinal and ten random controls. Random control distribution plotted in whisker plot and blue circles represent MCA
results. Null hypothesis rejection in a random control is equivalent to a false positive, which as controlled for using the False Discovery Rate
procedure with a cutoff of 0.05. D) Resulting average enrichment found, per category, per cluster in MCAfinal (blue dots) and ten random controls
(box plots).
doi:10.1371/journal.pcbi.1002119.g002
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Therefore, we explored the relationship between clustering

parameters and the enriched biological information. We rank

ordered the sets in an MCA in nine ways, according to the degree

of total enrichment the sets contained within each of the nine

biological metrics, depicted in Figure 2A for PFAM domain

ranking. We found that there was no single set that performed in

the top 25% of all nine metric rankings. When we took the union

of the top 25% in the nine orders, we found that 273 sets of the

331 sets in the MCA, or 83% of all sets, were required to capture

the top quartile of all biological information. These results indicate

that, indeed, the choice of ‘optimal’ parameters will be based on

the desired type of categorical relationships, since almost all sets

are required to capture the full array of possible information.

To understand how parameters directly relate to specific types

of biological information, we tested for the overrepresentation of

clustering parameters in the top and bottom quartiles of all nine

biological metrics, and four dynamic metrics, Table 3. We found

that the parameter performance is based on the particular metric

tested. For example, the cityblock distance metric consistently

performs poorly for producing clustering sets with clusters that

have enrichment in GO Molecular Function terms, but the same

distance metric consistently performs well in producing sets with

clusters containing PFAM enrichment. Interestingly, Kmeans

clustering is in the bottom quartile of all biological metrics.

However, since Kmeans was not cut in the reduction stage of

creating MCAfinal , it indicates that is still useful at producing

biological enrichment, unlike those parameters shown in Table 2

that were pruned based on their inability to produce significant

biological meaning. The lack of enrichment for a parameter in a

particular category indicates that the top and bottom quartiles

have diversity of parameters in this category. For example, there

are transforms, log10 and normMax, that consistently produce

clusters with motif labels, but there is no particular distance metric

or algorithm that outperforms others in this capacity. This

observations indicate that there is indeed an important relation-

ship between the parameters chosen in clustering and the resulting

biological information produced.

We discerned additional results in Table 3 to be worth exploring

further. For example, it seems that the FFT transformation

performs well in producing multiple protein-level metric types. To

elucidate this, we compared the set rankings in all 13 metrics

(biological and dynamic) in a pair-wise fashion. Using a boot-

strapping method, we compared the overlap in the top and bottom

quartile rankings with that expected by random and highlighted

when there was either a significant increase or a significant decrease

between any two metric rankings compared to the expected overlap,

Figure 3A. The most striking results from this analysis are that there

tends to be relatively good agreement in the top and bottom

quartiles of sets between protein-level information and site-level

information, with the exception of motifs. However, there is very

little overlap between different site-level categories in the top

quartile, except for Scansite Binding predictions and motifs. There

are roughly twice as many positively enriched overlaps in the

bottom quartile than there are the top quartile indicating there

tends to be more agreement in the worst performing sets across

different categories than in the best performing sets. Enrichment for

dynamic terms is meant to act as a marker for those features in the

dynamics that may have led to a particular clustering outcome.

There is a good degree of agreement between dynamic enrichment,

but very little agreement with protein-level information and

opposing agreement with site-level information.

In order to compare how the phosphopeptide cluster mappings

between different clustering solutions compare, we calculated the

mutual information between sets in a pairwise fashion. The

pairwise MI calculations have been hierarchically clustered in

Figure 3B, high values of MI indicate a closer agreement in two

clustering solutions than low values of MI. The clustered heat map

of MI terms indicates there are pockets of sets with high

agreement. We bisected the MI cluster tree at various levels and

searched for indications that a set of parameters drives similarity

between set architectures. At the coarsest level, and depicted in

Figure 3C, similarity appears to be driven by the data

transformation. At the next level, it appears the algorithm defines

similarity and finally the distance metric. There was no clear

evidence that cluster set size, K, was important in determining

similarity, but this is a poor method for determining the exact

effect of K, since the maximum possible MI between any two sets,

or self-MI, will be dependent on their cluster set sizes K. We took

subsets of MCAfinal , based on having a single shared parameter,

such as all those sets derived with a log10 transform, and found the

Table 3. Relationships between parameters of clustering and
biological enrichment.

Metric Top Quartile Bottom Quartile

F K 6

transform FFT, center

distance chebychev cityblock

algorithm Kmeans

C K

transform FFT,center

distance euclidean cityblock

algorithm SOM Kmeans

P K 6, 8

transform FFT, center log10, nMaxLog10,
rangeScale

distance

algorithm AP Kmeans

PFAM K 12, 14

transform pow zscore, rangeScale

distance cityblock

algorithm Kmeans, SOM

Motifs K 6 10

transform log10, normMax zscore

distance

algorithm Ncut

Scansite Bind K 6 14

transform nMaxLog10

distance

algorithm Kmeans, Ncut

Scansite Kinase K 12 6

transform FFT

distance

algorithm

Parameters are given for each biological metric if they are enriched in either the
top or bottom quartile of the list when ranked by the number of labels enriched
in that category. PELM kinase annotations and Pfam_site did not perform better
than random controls, and are not included. Although Scansite Kinase
parameter enrichment also did not perform better than random controls, it is
listed here since subsets based on the FFT did perform better than their random
control counterparts. See Table 2 for a full description of parameters.
doi:10.1371/journal.pcbi.1002119.t003
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average MI in that subset. The distributions, Supplementary

Table S1, indicate that there is far more similarity in the clustering

set solutions when single transform subsets are explored, than

when single algorithm or distance metric subsets are explored,

which is in agreement with the observations from Figure 3C.

Using this same subset MI averaging method, we can look at direct

comparison of the similarity of any two parameters of clustering by

creating a subset made up of both parameters, Supplementary

Table S1. Rank-ordered lists for data transformations also agree

with observations from Figure 3B, for example, that log10

transform clustering solutions are most related to the power

transform solutions and least related to rangeScale transform

solutions. Additionally, we find that Kmeans and AP clustering

algorithms perform the most similarly to each other. However,

both Ncut and SOM algorithm subsets show a higher similarity

with other algorithms than they do with themselves. These

observations could be very useful in determining a subset of

clustering parameters that could be chosen to generate the

maximum difference in clustering solutions.

Biological inference capabilities
In the previous section, we developed methods for comparisons

of parameter and metric information in order to understand the

impact parameters have on biological enrichment, the similarities

between biological metric categories, and the impact parameters

have on clustering solution architectures. In addition to this, we

Figure 3. Comparison of parameters and metrics. A) Pairwise comparison of the overlap in the best and worst 25% of sets based on each
metric in MCAfinal . We performed 1000 random selections of two sets of the same size to generate a normal distribution whose mean represents the
expected overlap value between any two sets pulled from that background size. We then evaluated whether pairwise overlap was significantly higher
(‘Pos. Sig’) or lower (‘Neg. Sig.’) than expected by random. Significance cutoff was set at a FDR corrected alpha value of 0.05. The top right represents
the pairwise comparison of the best performing 25% and the bottom left is the comparison of the worst performing 25% of sets in each category.
B) Hierarchical clustering of pairwise mutual information between every set in the MCA. Self-MI is highest along the diagonal. Highlighted groups
indicate dendrogram cutoffs for which the full group is composed of the denoted parameter. The labels log10/pow denote normMax_log10, log10
and the pow transformations, pareto/zscore contain zscore and pareto transformations. The topmost zscore/pareto group contains one outlier (out
of the group of 41) created using the transform pow.
doi:10.1371/journal.pcbi.1002119.g003
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wanted to develop a way to use the resulting MCAM information

in a more traditional manner, regarding biological inference and

hypothesis generation. There are a variety of ways in which one

could select a manageable number of clustering solutions from

MCAfinal for manual evaluation based on selecting the sets with

the largest differences in architecture or resulting biological

information. However, here we decided to look at robust

relationships that result despite the high degree of variability that

occurs through the implementation of a combinatorial set of

clustering parameters. We did this in two ways, first by combining

the enrichment results of MCAfinal and second by looking at the

frequency of which any two phosphopeptides co-cluster in

MCAfinal .

Supplementary Table S2 lists all biological and dynamic

enrichment that occurs in MCAfinal and the number of times

that label occurs. Across the biological categories of interest, there

are 539 unique labels enriched at least once in MCAfinal , and

many of these labels appear in more than one clusterset. A

histogram of the number of unique biological labels enriched in

MCAfinal versus the number of clustersets they occur in is given in

Supplementary Figure S5. Biological labels enriched several times

are considered to be ‘robust’ labels, for example GO Biological

Process terms ‘‘DNA binding’’ and ‘‘transcription factor binding’’

both appear in 23% of the cluster sets. Since these robust labels

may contain specific information worth exploring, we seeded the

generation of a ‘‘robust cluster’’ based on the number of times

phosphopeptides participate in a cluster with a particular

enrichment term. Figure 4A and B show the results of two such

terms, GO Biological Process term ‘‘MAPKKK cascade’’ and

Cellular Compartment term ‘‘lamellipodium’’ and all phospho-

peptides that were in a cluster giving rise to these terms at least

50% of the time. In addition to being enriched for the seed term,

Figure 4A, this ‘robust’ cluster is also enriched for GO:BP term

‘‘positive regulation of DNA’’ proliferation. This group is

composed of multiple phosphopeptides from SHC1 (Swissprot

P29353), an adaptor protein recruited to the EGFR in response to

EGF and upstream of the MAPK cascade. Additionally, it includes

the activation sites of MAPK1 (ERK2, Swissprot Q1HBJ4) and

MAPK3 (ERK1, Swissprot Q7Z3H5) and a phosphorylation on a

relatively poorly characterized protein, FAM59A (Swissprot

Q9H706). A recent study showed FAM59A acts in the MAPK

pathway in response to EGF stimulation by binding to Grb2 in a

manner that is dependent on the phosphorylation of Y453 [27].

The group associated with the cellular compartment ‘‘lamellipo-

dium’’ is composed of only three phosphopeptides from the

proteins cortactin (CTTN, Swissprot Q14247), paxillin (PXN,

Swissprot P49023), and ENO1 (Swissprot Q96GV1), an enolase.

Paxillin and cortactin are both labeled as being localized in

lamellipodium, however, ENO1, at least in full length is currently

thought to be only cytoplasmic. This robust ‘‘lamellipodium’’

cluster also has enrichment for two sequence motifs, E.E.VyS,

which is shared in both PXN and CTTN and G....Oy (O indicates

a degenerate search for hydrophobic amino acids and ‘.’ for any

amino acid), common to ENO1 and CTTN. These motifs may be

indications of shared enzyme or binding domain recognition.

These findings indicate that productive biological inference

regarding function, localization and regulation is possible using

the MCAM framework.

An alternate method for understanding relationships between

data measurements is to consider the frequency that any two

phosphopeptides appear in the same cluster. We calculate this

frequency, or co-occurrence, for every pairwise combination. The

hierarchically clustered co-occurrence matrix is shown in

Figure 4C. It appears in Figure 4C that there are essentially two

groups of peptides that co-cluster a great deal with themselves and

very little with the other group, listed explicitly in Supplementary

Table S3. We highlighted these two groups, and one we consider a

‘transition’ group and plot the average dynamics of those groups

+/2 two standard deviations in Figure 4D. The transition group

clearly has the largest variability in their dynamics, which may

explain why they co-cluster to some extent with both outlying

groups. The ‘‘blue group’’, which is also the largest, appears to

have the least variance in the early time points following EGF

stimulation. There is also a marked difference between the

downregulation of the two outlying groups. Analysis of the co-

occurrence matrix indicated there are roughly only two main

dynamics in tyrosine phosphorylation dynamics within this

dataset. However, given that enrichment analysis was very fruitful

for finer gradations, it is clear that several levels of dataset

separation are useful.

With 77 phosphopeptides, there are 2,926 pairs of phosphopep-

tides to consider in the EGF4 dataset, listed in Supplementary

Table S3. In MCAfinal , only 63, or 2.15%, of the possible

relationships never occur. Fifty-percent of the possible relation-

ships occur less than 34 times. There are 272 pairwise clusterings

that occur more than half the time in MCAfinal , which accounts

for 9.3% of possible relationships. We found no particular

relationship between the parameters of clustering and the

production of infrequently, or highly frequently, occurring

phosphopeptide clustering. The most robust relationship seen is

STAT3 Y705 (isoform 1, Swissprot P40763) phosphorylation with

STAT3 Y704 (isoform 2, Refseq NP_003141) phosphorylation,

co-clustering all but two times. This variability highlights the

importance of considering more than a single clustering solution

when deriving hypotheses for further testing.

We have illustrated only a few examples of a large number of

possibilities to demonstrate the power of MCAM in deriving

biologically meaningful hypotheses. We encourage others to make

full use of the Supplementary Information and Matlab scripts to

continue to explore the results in this dataset. In particular, the

methods that are the most promising, which are described in this

section, are to explore robust relationships found either: 1)

Through the exploration of a particular enriched label of interest,

or 2) Through the exploration of a particular phosphopeptide of

interest and those phosphopeptides that co-cluster the most

robustly with it.

Comparison of multiple ERBB datasets
We wished to explore the utility of MCAM in comparing

independent measurements of the same network, and so we turned

to a different study of ERBB network dynamics by Wolf-Yadlin

et. al. [12]. In this study, which will be referred to here as the

HER2 dataset, the authors were interested in the signaling

response downstream of EGF and HRG and in response to

HER2 amplification, which is common to several breast cancers.

They used two cell lines, the wild type, or parental HMEC cell

line, which is the same cell line used in the EGF4 study described

previously in this paper, which has 20,000 HER2 receptors per

cell, and 24H, a HER2 overexpressing cell line, which has 600,000

HER2 receptors per cell. Both cell lines express roughly the same

number of EGFR and HER3 receptors. EGF ligand binds EGFR,

which will drive EGFR homodimers and EGFR:HER2 heterodi-

mers, whereas heregulin, HRG, which only binds the HER3 and

HER4 family members will instead drive HER3 and HER4

containing heterodimers. When HER2 is overexpressed, the

majority of the dimers in HRG treatment will be composed of

HER2:HER3 and a larger proportion of EGFR:HER2 dimers will

occur in response to EGF treatment. The authors found HER2
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overexpressing cells were more migratory in response to

stimulation by either ligand when compared to wild type HMECs.

One quarter of this dataset represents the same measurement

conditions as the EGF4 dataset (0, 5, 10, and 30 minutes following

a saturating dose of EGF) of wild type HMECs (termed P for

parental). The remainder of the dataset is the measurement, at the

same time points, of parental with HRG treatment and with

HER2 overexpressing (24H) cells treated with EGF and HRG. We

were interested in applying MCAM to the HER2 dataset in order

to see if two independent measurements of a network would agree

and if signaling differences between EGF and HRG stimulation,

and wild-type versus HER2 amplification, could be distinguished

using MCAM and could therefore highlight potential signaling

mechanisms related to the increased migratory behavior of HER2

overexpressing cells. We applied MCAM to the HER2 dataset and

to five subsets of the dataset in order to tease apart: 1) differences

in signaling between the various HER2 states and ligand

treatments, and 2) how measurements of a conditional nature

(for example measurements at only one time point across the four

conditions) would differ from the dynamic measurements and how

these differ from the full dataset. The datasets analyzed by MCAM

include: the full 16-point measurement set (Full), a ‘‘conditional’’

dataset made up of the 5-minute measurements in all conditions

(5 minTimePoints), and four subsets representing the four

Figure 4. Biological inference based on robust clustering results. A) The group of phosphopeptides that participate at least 50% of the time
in a cluster with enrichment for GO Biological Process term ‘‘MAPKKK Cascade’’, those proteins with the term are starred. This new group is enriched
for GO BP term ‘‘positive regulation of DNA replication’’. B) These three phosphopeptides always appear when GO Cellular Compartment term
‘‘lamellipodium’’ is enriched, CTTN and PXN are the proteins annotated as being localized in lamellipodium. This new group is enriched for two
sequence motifs as well. C) The co-occurrence matrix clustered hieararchically. Co-occurrence between any two phosphopeptides is the number of
times those two peptides are clustered together in MCAfinal . For the heat map, the log base 10 was taken of the normalized values, zero values
became 0.5/331 prior to log transformation. D) The average values, +/2 two standard deviations, are shaded for the three groups highlighted in
panel C.
doi:10.1371/journal.pcbi.1002119.g004
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dynamic measurements (0, 5, 10, and 30 minutes) of each

condition named P_EGF for EGF stimulation of Parental cells,

P_HRG for HRG stimulation of parental cells, 24H_EGF for

EGF stimulation of HER2 overexpressing cells, and 24H_HRG

for HRG stimulation of HER2 overexpressing cells.

To understand more globally how the MCAM results compare

across these different datasets, we found the correlation between

the co-occurrence matrixes. The MCAM co-occurrence matrix of

the EGF4 dataset has the highest correlation with that of the

Parental EGF subset of the HER2 dataset, followed closely by the

EGF treatment of the 24H cell line, there are 36 phosphopeptides

common to both the EGF4 and HER2 datasets, Table 4. There is

poorer correlation with the HRG treated subsets and the worst

correlation with 5 minuteTimePoint subset. In general, we see that

EGF and HRG treatments correlate much better with themselves

than they do with each other. For example, all EGF treatment

comparisons appear in the top of the rankings of correlations, with

an average correlation of 0.46. However, all cross-treatment

comparisons have correlation of 0.35 or worse, with an average

correlation of only 0.25. Using the co-occurrence matrix that

results from MCAM application to different measurements of the

same system is a useful way to derive a single, global metric for the

agreement between different datasets.

In order to explore the differences in clustering results of any

two datasets, we are faced with analyzing an overwhelming

number of comparisons. To simplify the search range, and

highlight those differences that are the most extreme, and

potentially the most biologically interesting, we looked for co-

occurrences that move from one extreme of co-clustering to

another. Specifically, we define an extreme difference as the case

when two phosphopeptides change from co-clustering at least 75%

of the time in one dataset to co-clustering less than 25% of the time

in another. Full results for all dataset comparisons are provided in

Supplementary Table S4. There are several notable changes in

cross-comparing the EGF4 dataset and all sets formed from the

HER2 dataset, but the ones we found the most interesting occur in

the difference between EGF treatment of parental cells versus 24H

cells. In this comparison, we noticed two sites on SHC1 experience

very different phenomena. In the case of parental EGF treatment,

both sites co-cluster robustly with each other and with phosphor-

ylation on EGFR pY1172 and pY1197 (Swissprot P00533), both

known to bind SHC1. However, EGF treatment of HER2

overexpressing cells indicates that although pY427 continues to

robustly co-cluster with those sites on EGFR, SHC1 pY349 does

not, and instead most robustly co-clusters with catenin delta-1,

CTTND1 (Swissprot O60716), phosphorylation of Y228. Dynam-

ics of these sites, and their most robustly co-clustered partners,

under both conditions are shown in Figure 5. We also observe

large differences in the co-clustering of multiple sites on p130Cas,

also known as BCAR1 (Swissprot P56945), between the two cell

lines in response to EGF treatment and an extreme change in the

association of ENO1 pY44 with annexin A2 (ANXA2, Swissprot

P07355) phosphorylation on Y238, where ENO1 Y44 phosphor-

ylation associates with ANXA2 phosphorylation in parental but

not HER2 overexpressing cells. The largest number of differences

is observed when comparing the EGF treatment of parental cells

to the 24H cell lines treated with HRG, which also has the lowest

correlation of any dynamic subset comparison. Both pieces of

evidence point to maximum differences in signaling dynamics

when both HER2 expression levels and the stimulating ligands are

altered. Further hypothesis generation can be accomplished by

exploring the remaining pairwise dataset comparisons for other

meaningful signaling changes that occur, which are highlighted by

extreme differences in phosphopeptide co-clustering, provided in

Supplementary Table S4.

Although the best agreement the EGF4 MCAM results have is

with the parental EGF treatment of the HER2 MCAM results,

there is less than ideal correlation. We looked to see if there were

any serious disagreements by using the same ‘co-cluster swap’

method as mentioned above and found there were only two such

instances, which highlight very different measurements made on

GIT1 (Swissprot Q9Y2X7) pY545 and EFNB2 (Swissprot P52799)

pY304 in HMEC cells in response to EGF treatment, Supple-

mentary Table S4. Interestingly, though these measurements are

quite different, the extreme differences of co-occurrences with

other phosphopeptides are only highlighted in two cases, both with

regards to Ephrin family phosphorylation sites that are relatively

similar in the two datasets, GIT1 pY545 with EPHB1 (Swissprot

P54762) pY600 and EFNB2 pY304 with EPHA2 pY772

(Swissprot Q96HF4). This indicates that the MCAM co-

occurrence matrix is a precise way to identify similarities and

discrepancies between independent measurements of a system.

Since this methodology relies on comparing the relationships

between measurements within a dataset and then comparing this

abstracted metric across datasets, one could imagine that the

measurement scheme would not need to be the same between the

two datasets of interest.

Table 4. MCAM co-occurrence correlations of ERBB network
datasets.

Dataset 1 Dataset 2 Correlation Ligands

Full 5 minTimePoints 0.63

Full 24H EGF 0.59

EGF4 P EGF 0.53 EGF:EGF

EGF4 24H EGF 0.51 EGF:EGF

Full 24H HRG 0.45

Full P HRG 0.39

EGF4 Full 0.37

P EGF 24H EGF 0.36 EGF:EGF

P HRG 24H HRG 0.35 HRG:HRG

EGF4 P HRG 0.35 EGF:HRG

5 minTimePoints 24H HRG 0.34

Full P EGF 0.32

5 minTimePoints 24H EGF 0.31

EGF4 24H HRG 0.25 EGF:HRG

24H EGF 24H HRG 0.24 EGF:HRG

5 minTimePoints P HRG 0.23

P EGF P HRG 0.23 EGF:HRG

P HRG 24H EGF 0.23 EGF:HRG

P EGF 24H HRG 0.17 EGF:HRG

EGF4 5 minTimePoints 0.16

5 minTimePoints P EGF 0.10

The co-occurrence matrix correlations for the MCAM results of EGF4 and six
datasets obtained from the full HER2 dataset were found for those
phosphopeptides contained in both Dataset 1 and Dataset 2. The lists are rank-
ordered according to decreasing correlation and ligands are highlighted when a
dataset is composed only of that treatment condition. The line separates
EGF:EGF and HRG:HRG comparisons from the EGF:HRG comparisons. The
correlation of EGF4 with subsets of the HER2 dataset involves 36 common
peptides and all HER2 comparisons involve 68 phosphopeptides.
doi:10.1371/journal.pcbi.1002119.t004
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Discussion

MCAM was developed to capitalize on the success unsupervised

learning has had on biological inference in the past and apply it to

a new challenge in the field, that of understanding the function

and regulation of phosphorylation in the ERBB network. Since the

dynamic trajectory of a phosphorylation site will be shaped by the

combination of the kinase and phosphatase activities, as well as

any protective influence accumulated through binding to other

proteins, and the exposure to all of these proteins by localization

with or away from their regulatory proteins, then co-regulation of

multiple phosphorylation sites may yield testable hypotheses

regarding one or all of these possible shared traits. Encouragingly,

biological information is enriched in dataset partitions derived

through separation by clustering, whereas multiple random

controls do not demonstrate a significant relationship with

biological category enrichment. In addition to using this

information to gain understanding of the phosphorylation events

in the ERBB network, we also undertook to account for the fact

that a large number of mathematically correct solutions can be

derived through the use of various data transformations, distance

metrics, algorithms, and target set sizes. We found that given a

variety of clustering solutions, one could see almost any pair of

phosphopeptides co-cluster, which may not necessarily be a

product of co-regulation that can be linked directly to spatial

localization, shared functionality, or shared enzymatic regulation.

Therefore, we feel any single clustering implementation will have

hypotheses likely to yield testable and supportable information as

well as a good mix of those that may not.

Each clustering set within an MCA represents the dimension-

ality reduction of a large, multidimensional dataset. However, we

found there is unique value in the majority of all clustering sets in

MCAfinal , according to the variety of biological enrichment, and

so no single set could be considered as an optimal solution and

evaluated in a traditional way. Therefore, the most significant

development that had to be made in MCAM was to reduce the

complexity of a large number of clustering sets. To this end we

focused on two aspects of information: 1) Understanding how the

parameters affected the final clustering solution, and how this

related the power of any particular type of biological inference that

could be made, based on statistically enriched information and 2)

How to derive meaningful and testable biological hypotheses,

through inference, concerning the function and regulation of

protein phosphorylation. We found the resulting methods

provided important insights when comparing similar measure-

ments, indirectly, across multiple datasets.

Through the use of this technique we found that indeed,

optimal clustering parameters one would choose for clustering a

dataset would vary greatly dependent on the type of information

that was desired at the outcome. However, for those biological

categories chosen in this study, there were a few parameters that

performed badly across the board, including Hierarchical

clustering and the differential transform. These are somewhat

unsurprising since the differential transform will reduce the vector

size by one dimension, which in a dataset with few measurements

may be detrimental to the ability to separate the measurements.

However, it is an important observation to mention that lessons

found in one dataset should not be extrapolated to all datasets,

even of the same type. Although the cosine and correlation

distance metrics were uninformative in producing biological

enrichment in the EGF4 dataset, they were useful in clustering

various portions of the HER2 dataset. This observation highlights

the importance of a broad-spectrum application of multiple

parameters of clustering.

It is important to consider the impact the feature selection

process has on the final result in the MCAM method, which is

applied during the parameter refinement, or pruning, step of the

MCAM method. Given the varied relationships we observed

between particular types of information and the parameters of

Figure 5. Dynamics for SHC phosphorylations and their robust
co-clustered partners in EGF treatment of parental and HER2
overexpressing (24H) cells. For these plots, all subsets were
normalized to their own 5 minute time point to make the comparisons
across treatments easier. Peptide centric clusters were created by finding
all peptides that co-cluster with a given peptide at least 50% of the time
in MCAfinal . A) Both SHC1 Y349 and SHC1 Y427 centric clusters are the
same for Parental HMEC cells treated with EGF. B) EGF treatment of 24H
cells creates some change in the SHC1 Y427 centric cluster, but the
dynamics compared to Parental treatment are relatively similar. C) The
SHC1 Y349 centric cluster has changed drastically compared to Parental
EGF treatment due to a very different response of Y349 phosphorylation.
doi:10.1371/journal.pcbi.1002119.g005
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clustering that best gave rise to them, it is likely that the final result

will change with the addition of new biological features, or the

alteration to existing features, such as the improvement of GO

annotations. One can imagine the parameters pruned during the

feature selection process would decrease with the addition of new

features, which would redefine the value of a successful clustering

solution. Although this suggests the results may need to be

reconsidered as annotations improve, we feel this parameter

refinement process helps to avoid the consideration of a large

portion of currently uninformative sets. The open source nature of

the MCAM software project allows for flexibility in altering the

specific categories and the thresholds used during parameter

refinement.

We found that there is no single ‘optimum’ clustering solution,

or one that performed in the top quartile of all biological metrics of

interest. Depending on the application, a small number of

solutions could be chosen and analyzed in a way that is more

traditionally performed in the field. However, we decided to focus

on allowing the agreement of many solutions to highlight a

potential area of robust biological inference through the

agreement of biological enrichment and alternately the agreement

of co-clustering of phosphorylation dynamics. These methods

produced a large list of possibly interesting biological inferences, of

which we highlighted just a few possibilities to demonstrate

MCAM’s power. In Figure 4 we highlight two ‘robust’ clusters

based on repeated enrichment of categorical terms, which creates

a hybrid cluster from a combination of multiple clustering sets

within MCAfinal , based on a particular enrichment label of

interest. The hybrid cluster, like any single cluster produced from a

single clustering method, represents a cluster of phosphopeptides

that are strongly co-regulated. The first cluster, Figure 4A, was

produced based on enrichment for co-regulation of phosphoryla-

tion sites on proteins involved in the MAPK cascade. For those

proteins not currently annotated in the MAPK cascade, there is

individual evidence that they are involved in regulating MAPK

activity. FAM59A was recently named GAREM, which stands for

Grb2-associated and regulator of Erk/MAPK activity [27].

Specifically, phosphorylation of Y453 on GAREM was required

for association with Grb2 and subsequent activation of Erk by

EGF stimulation. PTPN18, a protein tyrosine phosphatase also

known as BDP1, has been implicated in regulation of HER2

directed MAPK signaling activation [28]. The study specifically

found that PTPN18 was capable of inhibiting activation of

mitogenic signaling. The robust co-regulation of PTPN18 Y389

phosphorylation with other components of the MAPK cascade,

shown here, further implicates PTPN18 in MAPK signaling

downstream of EGF stimulation, and highlights a particular

mechanism for PTPN18 activity, that of Y389 phosphorylation.

This modification may possibly act as a negative regulator of

BDP1 activity, thereby relieving its function as a negative regulator

of MAPK activity. Alternatively, if Y389 phosphorylation on

PTPN18 potentiates its ability to shut down MAPK signaling, then

these dynamics suggest it occurs subsequently with MAPK

activation. ARHGEF5, also known as TIM, is a RhoGEF, which

has been shown to activate Rac, which is upstream of another

MAPK family member, JNK. This suggests that the JNK cascade

may be concurrently activated or that this particular RhoGEF has

a role in the ERK1/ERK2 cascade directly. These results indicate

that MCAM has been useful not only in highlighting a known co-

regulation event, that of EGFR phosphorylation on sites that

recruit SHC1 to the receptor with that of SHC1 phosphorylation

sites that are phosphorylated following recruitment to the receptor,

but also in highlighting proteins not yet generally recognized as

playing a role in the EGFR/MAPK signaling pathway. This result

also supports a role for these proteins in the MAPK pathway in

human mammary epithelial cells as previous cell lines explored in

previous studies. Additionally, the example of highlighting

GAREM (FAM59A) phosphorylation on Y453 as playing an

important biochemical role in the indicated pathway strengthens

the hypothesis that PTPN18 Y389 phosphorylation is also an

important biochemical mechanism in the MAPK pathway

downstream of EGFR activation. Since we can find no specific

study on the effect of PTPN18 Y389 phosphorylation, this

hypothesis could not have come from literature mining. Addition-

ally, we observe that traditional application of a single clustering

implementation would likely not have highlighted this group of

proteins in a way that would have linked PTPN18 Y389 and

GAREM Y453 phosphorylation with that of EGFR Y1172 and

MAPK Y187, since this event occurs in less than 15% of clustering

set solutions in MCAfinal .

In Figure 4B we highlight another ‘robust’ cluster, which

indicates the dynamics of phosphorylation of Y44 on ENO1 are

very similar to that of cortactin and paxillin phosphorylation, two

proteins and phosphorylation sites that play a role in cell motility

[29,30] and are annotated as being localized to ‘lamellipodium’.

However, since there is relatively little evidence that paxillin is

localized to lamellipodia, but instead has a strong association with

mature focal adhesions [29], it may be that ‘lamellipodium’ has

been used as a blanket term for leading edge formations in the

Gene Ontology since GO is lacking finer gradations of leading

edge compartments. What is common to both paxillin and

cortactin is localization in invadopodia [31,32], a term not

currently included in GO. Such similarity of dynamics indicates

potential co-regulation, which is dependent on a variety of factors.

There is evidence that all three sites may be targets of Src

[30,33,34]. In addition to shared enzymatic control, similarity of

dynamics might also be dependent on shared localization,

especially when enzyme activation is localized to an area such as

focal adhesions, invadopodia, or lamellipodium. To better

conjecture where this co-regulation is occurring we looked at

additional robust associations with ENO1 phosphorylation and

found in addition to paxillin and cortactin this site is most closely

associated with phosphorylation on a protein called AFAP1L2,

which stands for actin filament associated protein like-2. Despite

several other phosphorylation sites on focal adhesion proteins,

including integrin b4 (ITGB4), p130Cas/BCAR1, and focal

adhesion kinase (FAK), none of these sites is similarly regulated.

Additional evidence supporting this is that the parental EGF

subset of the HER2 dataset also indicates that ENO1 and paxillin

phosphorylation are tightly coupled with a third protein, Annexin

A2, which has been implicated in cell spreading and migration

[35] as well as formation of invadopodia [36]. Finally, a recent

proteomic study found enolase is enriched in invadopodia [37]

further supporting the hypothesis that co-regulation of enolase,

paxillin, and cortactin phosphorylation is through shared cellular

localization.

The temporal association of ENO1 phosphorylation with that of

cortactin and paxillin is intriguing. ENO1, in full and dimeric

form, is a metabolic enzyme. However, a short isoform of the same

gene product has been shown to block Myc transcription factor

activity by binding the Myc promoter [38]. This begs the question

of whether ENO1 is playing a role in lamellipodium, invadopodia,

or focal adhesions, related to its metabolic activity or some other

gene product of yet to be discovered functionality. ENO1

phosphorylation on Y44 has long been known and when originally

studied did not show a noticeable affect directly on its catalytic

activity [34]. However, in these studies it was observed that only a

small percentage, roughly 5%, of total enolase was phosphorylated
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and so catalytic differences due to phosphorylation may have been

imperceptible. Perhaps compartmentalization of a fraction of

altered enzymatic activity could play an important functional role;

this activity may be confined to lamellipodia, invadapodia, or focal

adhesions. Despite the excess of ATP in the cell, the induction of

an ATP gradient within invadopodia could conceivably act as a

method of invadopodia formation, since many components, such

as F-actin, would be sensitive to a shift in the ATP to ADP ratio.

There are other indications that phosphorylation of metabolic

enzymes may indeed be playing a functional role and driving

tumor progression [39] and our results may indicate a role for

enolase phosphorylation specifically in the metastatic potential of

tumor progression.

Finally, we found that using the concepts developed in MCAM,

we could compare independent measures of the ERBB network

and dissect signaling alterations occurring between different

perturbations of the network, including ligand and receptor level

differences. Using the co-occurrence matrix we were able to look

‘‘globally’’ at the differences between the networks. This study

indicated that despite HER2 amplification, EGF stimulation drove

signaling that was more similar between the two cell lines than it

was for the same cell line under two different ligand stimulations.

The greatest difference in signaling occurred when EGF

stimulation of wild type cells was compared with HRG stimulation

of HER2 overexpressing cells. We can dissect the signaling

differences further by looking for those associations that have the

most extreme differences between conditions. When we did this,

we were fascinated to find that in the presence of HER2

overexpression, EGF drives very different dynamics on two

phosphorylation sites of the adaptor protein SHC1 and sites on

focal adhesion protein p130Cas/BCAR1. SHC1 is known to be

recruited to EGFR by two different phosphopeptide binding

events and it subsequently recruits, and activates, members of the

MAPK cascade. Specifically, both Y349 and Y427 phosphoryla-

tion on SHC1 has been shown to recruit Grb2 [40]. Through its

SH2 domain, SHC1 is recruited to EGFR Y1197 phosphorylation

and through its PTB domain, it is recruited to EGFR Y1172

phosphorylation [41]. Therefore, it is no surprise that subsequent

phosphorylation of SHC1 on Y427 and Y349 would be tightly co-

regulated with that of EGFR Y1172 and Y1197 phosphorylation

when the network is stimulated with EGF. However, what is

surprising is this co-regulation is broken for only Y349 in the

presence of HER2 overexpression. Instead of being most closely

co-regulated with the receptor phosphorylations it is instead most

closely co-regulated with Y228 phosphorylation on catenin delta-

1, CTTND1, a protein known to be interact with E-cadherin at

cell-cell junctions [42]. The authors of the original study found

that HER2 amplification drives a higher migratory potential and

posited that breakup of E-cadherin junctions would be essential to

this process. Our finding may therefore indicate that SHC1 plays

an important role in this process and that the differential

regulation of Y349 and Y427 is perhaps driven by two populations

of SHC1, one of which is localized at cell-cell junctions and which

is differentially regulated, indicated by the sustained phosphory-

lation of SHC1 Y349 relative to Y427 phosphorylation, and a

second population that is recruited to the receptor, which is

probably the dominant population in EGF stimulation of wild type

HMECs. The sequence surrounding catenin delta-1 Y228

matches known preferences for SHC1 SH2 recognition. In

addition, multiple sites on the focal adhesion protein p130Cas/

BCAR1 experience differential regulation in the presence of

HER2 overexpession. Increased migration would come as a result

of the disruption of both cell-cell contacts and cell-substrate

contacts, so these sites might indicate a particular role in how cell-

substrate contacts are disrupted in HER2 overexpressing cells. All

of these data may help us in understanding the aggressiveness of

tumor cells with HER2 amplification.

The methodology developed here has wide applicability to data

mining of all varieties. Permutations of clustering parameters and

their judgement of success by pertinent categorical data has the

capability of producing a wide array of solutions that together span

a meaningful range of data separation. MCAM, as developed, can

be applied directly to any dataset currently in the PTMScout

database, and any proteomic dataset that measures phosphoryla-

tion or lysine acetylation can be added by the public to PTMScout

for analysis by MCAM. Extension to any type of multidimensional

biological measurements simply requires the alteration of the

target categorical data. For example, in addition to using gene and

protein annotation information, one could look for known

transcription factors when mining gene expression data. Another

benefit of MCAM is that it provides a method for comparing the

relationship between independent measurements of a system, even

if the overlap of measurements is incomplete. This methodology

provides a new method for understanding the relationship of

quantitative measurements with each other, and importantly

provides a means in which to judge the outcome of a parameter of

clustering with regards to resulting power of inference. This is a

much-needed tool when one lacks a satisfactory ‘gold standard’ by

which to evaluate the impact of various parameters of unsuper-

vised learning.

Materials and Methods

Dataset preparation and clustering
The EGF4 and HER2 datasets were loaded into PTMScout [24]

and then subsequently reassigned to default assignments through

the PTMScout ‘ambiguity’ interface to ensure all isoform

selections represent the best overlap with current annotations.

The default dataset was then reloaded into PTMScout. This

modified dataset was then exported from PTMScout’s ‘subset

evaluation’ page as a tab-separated file, which was then loaded

into Matlab for clustering.

The flat text file of the dataset was imported into Matlab based

on DataRail object structures [43]. Transforms, distance metrics,

and algorithms are from the Matlab environment and its

toolboxes, downloaded from other resources, or developed for

our purposes. Ncut code for Matlab was obtained from http://

www.cis.upenn.edu/*jshi/software/ based on the algorithm

description in [44], affinity propagation (AP) clustering code was

downloaded from http://www.psi.toronto.edu/affinitypropagation/

software/apcluster.m based on the algorithm described in [18]. A self

organizing map (SOM) Matlab toolbox was downloaded from

http://www.cis.hut.fi/somtoolbox/ and is based on the algorithm

described in [45]. Affinity propagation clustering was modified to

accept an arbitrary distance metric, but does not accept an

argument for K. SOMs only utilize the Euclidean distance metric.

Average linkage distance is used in hierarchical clustering. Kmeans

uses the squared value of the Euclidean distance and does not accept

the Chebychev distance metric. The largest value of K is bounded

by a number that would produce roughly 5 phosphopeptides per

cluster, assuming a solution were to equally distribute all

phosphopeptides, which in this case is Kmax = 14. For non-

deterministic algorithms, such as SOMs and Kmeans, we store the

random seed so that results can be exactly reproduced, but allow the

random seed to vary between individual implementations so as to

ensure we do not force all implementations of the algorithm into a

poorly performing local minima.
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Enrichment analysis and multiple hypothesis correction
Clustering assignments are written from Matlab into a tab-

separated file, which is then loaded into PTMScout’s ‘subset

evaluation’ tool and enrichment is calculated on the PTMscout

server using the ‘MCAM’ feature. Enrichment is calculated as in

PTMScout’s subset selection enrichment analysis, using a

hypergeometric distribution calculation [24] to test for the

overrepresentation of a label in a cluster compared to the full

dataset. The MCAM feature has variable arguments, which

were set as following: the motif algorithm branch cutoff is set at

1e-2 [46]; Scansite prediction levels of three and better are

considered based on an empirical analysis of the tradeoff

between the false positive rate and total hypothesis rejection

(data not shown); Domain predictions of 1e-5 and more

stringent are allowed; the Benjamini and Hochberg FDR

procedure was used with an alpha value of 5e-2 [25]. False

discovery rate correction (FDR) was performed at the metric

and set levels as following: p-value calculations were accumu-

lated for all tests within a category across a cluster set and the

p-value satisfying an FDR alpha value of 0.05 was used to

determine final enrichment for that metric. Three main data

structures are translated from the PTMScout MCAM calcula-

tions into Matlab structures can then be used in Matlab for

parameter refinement and analysis into results. Random

controls were performed using two methods described in the

results section. The first method randomized the data matrix

and the second method randomized the metadata labels by

reshuffling the vector to phosphopeptide mappings.

Parameter refinement
Once enrichment structures are completed on the PTMScout

server, they are loaded locally into Matlab. In order to determine

parameters that produce clustersets with a relatively small degree

of biological enrichment, we test the impact on the total

enrichment when all clustersets generated with a particular

parameter are removed from the full MCA. We perform this test

systematically for every parameter used. Parameters whose

removal improves the total enrichment across all categories by

at least 2% without decreasing the power of enrichment in

any single category by more than 10% are pruned to create

MCAfinal . Where designated, in the HER2 dataset a total

improvement of 3% was required to ensure the final sizes were

roughly the same.

Calculation of mutual information
In order to compare the clustering mappings of two clustering

set solutions, we calculated the pairwise mutual information,

I(X;Y), between clustering sets X and Y according to the

equation given below, where X is composed of clusters 1::Kx and

Y is composed of clusters 1::Ky, p(x,y) indicates the joint

probability distribution function of X and Y, and px(x) and py(y)
indicate the marginal probability distributions of X and Y,

respectively.

I(X ; Y )~
XKy

y~1

XKx

x~1

p(x,y) log(
p(x,y)

px(x),py(y)
)

Supporting Information

Figure S1 The EGF4 dataset projected onto the top three
principal components. The 77 phosphopeptide vectors were

normalized to their maximum and then plotted on the first three

principal components for illustration of the full multidimensional

dataset.

(PDF)

Figure S2 Enrichment and random controls for MCAfinal

using an alternate randomization process. Procedures as

described for Figure 2 were used to compare the real results of

enrichment to random results, where randomization controls for

the metadata labeling of phosphopeptide objects.

(PDF)

Figure S3 Comparison of Bonferroni and FDR correc-
tion methods on the enrichment and random controls
for MCAfinal. Procedures as described for Figure 2 were used to

compare the real results of enrichment to random results, for both

FDR and Bonferroni correction methods with a target alpha of 0.05.

(PDF)

Figure S4 Enrichment and random controls for subsets
of MCAfinal. A) The false positive rate and rates of enrichment

and null hypothesis rejection when only cluster sets derived using

the FFT transform are considered. An improvement in Scansite

Kinase predictions is seen compared to the full MCAfinal . B) The

zscore transform was chosen to create a comparable subset of

solutions, and in contrast, here no improvement in Scansite

Kinase terms is produced.

(PDF)

Figure S5 Histogram of biological label enrichment
based on number of times they appear in MCAfinal. The

number of unique biological labels found enriched in MCAfinal are

given based on the number of times they occur across MCAfinal .

For example, there are 539 unique labels that occur at least once,

no labels that occur in 100% of of the clustersets, and 39 labels

that occur at least 25% of the time.

(PDF)

Table S1 Exploration of parameter relationships
through mutual information. Average MI is calculated for

subsets of MCAfinal based on a single parameter type. Similarity

between two parameters is also considered by finding the average MI

of a subset containing only two parameter types. This supplementary

information contains graphs and tables of the average MI by subset.

(XLSX)

Table S2 List of all enrichment produced in MCAfinaland
the number of times it appeared as enriched in the 331
sets.
(XLSX)

Table S3 Supplemental co-occurrence information. List

of all possible pairwise relationships between phosphopeptides in

the EGF4 and HER2 analyses and the number of times they co-

occur in their respective MCAfinal . This also contains the listings

for the three groups highlighted in Figure 4 C and D.

(XLSX)

Table S4 Supplemental ERBB dataset comparisons.
List of the sites that are in common between the EGF4 and HER2

datasets, correlations of the co-occurrence matrixes and lists of the

extreme differences between sets highlighted by relationships moving

from 75% or more co-occurrence to less than 25%.

(XLS)
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