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Optimal strategy to certify 
quantum nonlocality
S. Gómez1,2*, D. Uzcátegui3, I. Machuca1,2, E. S. Gómez1,2, S. P. Walborn1,2, G. Lima1,2 & 
D. Goyeneche3

Certification of quantum nonlocality plays a central role in practical applications like device-
independent quantum cryptography and random number generation protocols. These applications 
entail the challenging problem of certifying quantum nonlocality, something that is hard to achieve 
when the target quantum state is only weakly entangled, or when the source of errors is high, 
e.g. when photons propagate through the atmosphere or a long optical fiber. Here we introduce a 
technique to find a Bell inequality with the largest possible gap between the quantum prediction 
and the classical local hidden variable limit for a given set of measurement frequencies. Our method 
represents an efficient strategy to certify quantum nonlocal correlations from experimental data 
without requiring extra measurements, in the sense that there is no Bell inequality with a larger gap 
than the one provided. Furthermore, we also reduce the photodetector efficiency required to close the 
detection loophole. We illustrate our technique by improving the detection of quantum nonlocality 
from experimental data obtained with weakly entangled photons.

Quantum nonlocality plays a fundamental role in flourishing quantum technologies, such as  device1,2 and semi-
device3 independent quantum cryptography, device-independent quantum secure direct communication against 
collective  attacks4, and genuine random number  generation5, as well as fundamental aspects of quantum physics. 
In these applications, certification of nonlocality is typically required. In the ideal case, for any set of nonlocal 
correlations, there exists a Bell inequality that is  violated6. However, certification of nonlocality can be hard to 
achieve in practice due to the presence of experimental errors. This is especially true when the optimal quantum 
state, i.e. the state producing the maximal violation of a given Bell inequality, is weakly  entangled7. This problem 
plays a relevant role even when considering tight Bell inequalities, as also these inequalities might be maximally 
violated by partially entangled quantum  states8,9. Tight Bell inequalities are particularly useful as they are known 
to maximize the randomness that can be certified in a Bell scenario. For instance, a recent experiment deal with 
quantum nonlocality certification by using near-ideal two-qubit states for weakly entangled quantum  systems10.

Bell inequalities can be used to certify that a set of correlations cannot be described by a local hidden variable 
(LHV) model. Some bipartite Bell inequalities can have a large ratio between the quantum and LHV limits, equal 
to 
√
n/ log n , for n settings and n outputs in n dimensional Hilbert  spaces11. From the experimental perspective, 

a larger theoretical violation increases the chance to certify quantum nonlocality in the laboratory. Nonetheless, 
sometimes experiments are not conclusive to certify nonlocality. Under such situation, one can simply choose 
another Bell inequality with a larger gap between the LHV and quantum values, thus increasing the chances for 
success. However, this change typically involve a new experimental implementation, as the optimal settings of 
the new Bell inequality most likely differ from the original one. This procedure consumes additional time and 
resources in the laboratory.

Thus, a fundamental question arises: Can we certify quantum nonlocality from experimental data that pre-
viously failed to violate a target Bell inequality? To start studying the problem, an asymptotically optimal data 
analysis can be done to rejecting local realism of a given statistical  data12–14. In this work, we find necessary and 
sufficient conditions to provide a conclusive answer to this question, for any bipartite scenario. In addition, 
we present an optimization method that finds a Bell inequality that maximizes the chances to detect quantum 
nonlocality, among the entire set of inequalities of a given scenario. This method is particularly useful to certify 
nonlocality when considering weakly entangled quantum states. For instance, we successfully certify nonlocal-
ity for quantum states having smaller concurrence than those studied in a recent  work15. Our technique finds 
a wide range of practical applications including communication complexity problems, where the advantage in 
communication is an increasing function of the quantum-LHV value  gap16,17.
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Method
In this section, we introduce a method that provides the largest possible gap between the quantum and LHV pre-
dictions for any given set of experimental data. In particular, this procedure allows us to determine whether a set 
of experimental data is genuinely nonlocal or not, i.e. whether there is a Bell inequality that can certify quantum 
nonlocality from the noisy data. Our method represents an efficient certification of nonlocal correlations, that 
can be applied to experimental data without requiring extra measurements. In other words, we produce a Bell 
inequality that maximizes the chances to detect quantum nonlocality from a given set of statistical data among 
the entire set of Bell inequalities.

A bipartite Bell  inequality6 is an expression of the form

where p(a, b|x, y) is the probability of obtaining outcomes a, b ∈ {0, . . . , d − 1} when inputs x, y ∈ {0, . . . ,m− 1} 
are chosen by two observers Alice and Bob, respectively. Here, C (s) denotes the maximal value of the left-hand 
side in (1) that can be achieved by considering local hidden variable (LHV) theories, whereas quantum mechanics 
might predict a violation of this  inequality18. Without loss of generality, we can restrict out attention to parameters 
within the set −1 ≤ sabxy ≤ 1 , for every a, b = 0, . . . , d − 1 and x, y = 0, . . . ,m− 1 . In order to obtain the LHV 
value C (s) , we have to optimize the left hand side in (1) over all possible local deterministic strategies. Here, 
locality means statistical independence of simultaneous and distant events, i.e. p(a, b|x, y) = p(a|x)p(b|y) , and 
deterministic means that all probabilities take values 0 or 1 only, restricted to the normalization conditions.

Quantum joint probability distributions satisfy the no-signaling principle, i.e. information cannot be instan-
taneously transmitted between distant parties. In particular, the outcome of one party cannot reveal information 
about the input of the other. That is,

and

for every x  = x′ and y  = y′ , where pA(a|x) and pB(b|y) are the marginal probability distributions associated to 
Alice and Bob, respectively.

Let us now consider a set of relative frequencies f(a, b|x, y) of occurrence for outcomes a, b when x, y is 
measured by Alice and Bob, respectively, obtained from experimental data. The no-signaling constraints (2) 
and (3) are not exactly satisfied for experimental data. However, they can be recovered by minimizing the Kull-
back–Leible  divengence19:

where f(x, y) is the relative frequency of implementing a measurement x by Alice and y by Bob, and p(a, b|x, y) the 
optimization variables, consisting of a joint probability distribution within the framework of quantum mechanics. 
The minimization procedure (4) is equivalent to maximizing the likelihood of producing the observed frequency 
p(a, b|x, y), see Appendix D1  in19.

The quantum prediction of a Bell inequality (1), defined by coefficients sabxy , is given by

having associated an error propagation �Q , see section A, Supplementary Information, for a detailed treatment 
of errors. An experimentally obtained probability distribution p(a, b|x, y), associated to errors �p(a, b|x, y) , 
is certainty nonlocal if Q − C > �Q , for a given Bell inequality. However, sometimes quantum nonlocality 
cannot be revealed due to the relatively high amount of errors. This especially occurs when a weakly entangled 
quantum state produces the maximal violation of the inequality. Under such situation, the method introduced 
here provides a new Bell inequality that increases the chances to prove quantum nonlocality for a given set of 
probability distributions p(a, b|x, y), associated to experimental errors �p(a, b|x, y) . The method consists in 
solving the following nonlinear problem:

for a fixed set of statistical data, where the optimization is implemented over all coefficients sabxy defining a Bell 
inequality (1). The shifting factor dm introduced in (6) avoids divergence of the function R; otherwise, the output 

(1)
m−1
∑

x,y=0

d−1
∑

a,b=0

sabxy p(a, b|x, y) ≤ C (s),

(2)
d−1
∑

b=0

p(a, b|x, y) =
d−1
∑

b=0

p(a, b|x, y′) =: pA(a|x),

(3)
d−1
∑

a=0

p(a, b|x, y) =
d−1
∑

a=0

p(a, b|x′, y) =: pB(b|y),

(4)DKL(�f ||�P) =
∑

a,b,x,y

f (x, y)f (a, b|x, y) log2
[

f (a, b|x, y)
p(a, b|x, y)

]

,

(5)Q =
m−1
∑

x,y=0

d−1
∑

a,b=0

sabxy p(a, b|x, y),

(6)R = max
s

Q (s)−�Q (s)+ dm

C (s)+ dm
,
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inequality would be any such that the LHV value C (s) vanishes. Optimization (6) is typically hard to implement, 
due to the presence of a large amount of local maximum values.

To solve this problem, we implement the Sequential Least Squares Programming (SLSQP)20 algorithm, using 
routines from the scientific library (Scipy) of the Python Programming  Language21. SLSQP is an efficient method 
to numerically solve constrained nonlinear optimization problems with bounds, well suited to solve the follow-
ing problem

Our strategy consists in running this optimization for a given number of trials, denoted num_of_trials in 
our code. In the first trial, a random seed real vector �x0 , with entries taken in the range [−1, 1] , is given to the 
routine. After the first optimization procedure the algorithm outputs a vector �s0 . Then, the seed for the second 
trial is taken as �x1 = (�s0 + �x0)/2 . We update the seed as �xk+1 = (�sk + �xk)/2 during the trials and keep the output 
�sk = �s for which R(�s) is the greatest. The solution to the optimization problem posed above is stored in vector 
�s . This approach is highly efficient to avoid getting stuck in local maximum values, although there is no way to 
certify that the reached solution is the global maximum. The code for this optimization procedure was written 
in Python and is available at  GitHub22.

Let us summarize the method as follows:

Proposition 1 A Bell inequality having LHV value C (s) , for which a quantum value Q (s) is achieved with errors 
�Q (s) , is nonlocal if and only if R > 1 in Eq. (6).

Proof Let sabxy be the parameters of the Bell inequality producing the maximum value R in (6). Therefore, it is 
simple to show that Q (s)−�Q (s)− C (s) = (R − 1)(C (s)+ dm) . Therefore, the statistical data is nonlocal, 
i.e. Q (s)−�Q (s)− C (s) > 0 , if and only if R > 1 . Given that R takes the maximal possible value among all 
Bell inequalities of the scenario, if R ≤ 1 then there is no Bell inequality that can detect quantum nonlocality for 
the given statistical data.   �

Here, genuinely nonlocal means that there exists a Bell inequality (1), associated to coefficients sabxy , such that 
the amount of experimental errors do not overpass the gap between the quantum violation Q (s) and the LHV 
prediction C (s) . Therefore, R > 1 is equivalent to saying that there is a way to experimentally certify quantum 
nonlocality for a given set of experimental data. On the other hand, if R ≤ 1 then there is no way to decide 
whether the physical system is prepared in a nonlocal quantum state or not from a linear Bell inequality.

Note that the gap of a Bell inequality Q (s)−�Q (s)− C (s) can be artificially enlarged by a multiplicative 
factor κ > 1 by considering a Bell inequality having a rescaled set of coefficients s̃abxy = κsabxy . In order to avoid 
this scaling problem, it is convenient to refer to the relative gap, given by the gap of a Bell inequality for which 
C (s) = 1 , which can be assumed without loss of generality. Thus, the global maximum value of R in (6) implies 
the largest possible relative gap, as we show below.

Proposition 2 The Bell inequality associated to the global maximum of the function R, introduced in (6), produces 
the largest possible relative gap between the LHV and quantum values, among all linear Bell inequalities of a given 
scenario.

Proof Without loss of generality, we can restrict our attention to Bell inequalities for which C (s) = 1 . Indeed, 
this can always be done by considering the following rescaling of a given Bell inequality: Q ′(s) = Q (s)/C (s) , 
�Q

′(s) = �Q (s)/C (s) and C ′(s) = 1 . Here, we used the fact that error propagation is linear as a function of 
the coefficients sabxy defining the Bell inequality, see section A, Supplementary Information. After the rescaling,  
optimization of R is equivalent to maximize Q ′(s)−�Q

′(s) along all Bell inequalities satisfying C ′(s) = 1 , according to  
(6). This is equivalent to maximizing the gap Q ′(s)−�Q

′(s)− 1 = Q
′(s)−�Q

′(s)− C
′(s) .   �

In the next section, we apply our optimization method to the so-called tilted Bell inequality7. This family 
of inequalities was used to demonstrate that almost two bits of randomness can be extracted from a quantum 
system prepared in a weakly entangled state. This property makes the tilted Bell inequality an ideal candidate to 
test our method, due to the hardness to certify nonlocality in such case.

Tilted Bell inequality
Certification of quantum nonlocality from experimental data is a challenging task in general. In a recent work, a 
genuine random number generation protocol based on quantum nonlocality was experimentally  demonstrated10. 
Here, authors certified randomness from a physical system prepared in quantum states with concurrences 
C = 0.986 , C = 0.835 and C = 0.582 . However, certification failed for C = 0.193 and C = 0.375 , due to the high 
sensibility of certifying quantum violation under the presence of errors. The inequality in question is the tilted 
Bell  inequality7:

maximize R(�s) with �s = {sabxy }
subject to − 1 ≤ sabxy ≤ 1
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where pA(a|x) is the marginal probability distribution for Alice, Cα = α + 2 and Qα =
√
8+ 2α2 , α ∈ [0, 2] . 

The quantum state producing the maximal violation in (7) is given by |ψ(θ)� = cos(θ)|00� + sin(θ)|11� , where 

θ = 1
2 arcsin

(
√

1−( α2 )
2

1+( α2 )
2

)

 . Optimal settings are provided by eigenvector bases of the following observables: 

A0 = σz , A1 = σx , B0 = cos(µ) σz + sin(µ) σx and B1 = cos(µ) σz − sin(µ) σx , where µ = arctan

(
√

1−( α2 )
2

1+( α2 )
2

)

.
We tested optimization (6) from the photonic Bell inequality experiment described in section B, Supple-

mentary Information (see Fig. S1). The experiment consisted of a high-quality source of polarization-entangled 
Bell states of the form |ψ(θ)� . Entanglement of this optimal quantum state can be characterized by its concur-
rence, given by C = sin(2θ) . By using optimization (6), we improve the experimental violation of the tilted Bell 
inequality for high concurrences and, more importantly, we successfully demonstrate quantum nonlocality for 
low values of concurrence, i.e. C = 0.375 and C = 0.193 , something that failed to be proven when considering 
the tilted Bell inequality (7) from the same statistical data. In Fig. 1 we show the number of standard deviations 
of the quantum-LHV gap for the tilted Bell inequality and the one resulting from our optimization procedure 
(6) (more details in Table 1).

This result can lead to interesting practical applications. For instance, note that the amount of bits of ran-
domness that can be extracted from the  protocol10 are identical to the number of bits that can be extracted by 
considering our optimized Bell inequality. This is so because both schemes consider the same experimental data, 
representing the same physical phenomena.

Closing the detection loophole
In this section, we show that optimization procedure (6), apart from increasing the quantum-LHV value gap, 
also reduces the detection efficiency required to close the detection loophole, for a fixed set of statistical data.

Suppose that Alice and Bob have detector efficiencies ηA and ηB , respectively. The minimal efficiencies required 
to violate a Bell inequality are given by the following  procedure23: first, a two outcomes Bell inequality has to be 
written in a canonical form. Namely, it has to consider only one of its outcomes per party (we choose a = b = 0 ), 
as we associate the other outcomes ( a = b = 1 ) to the cases where detectors do not fire correctly. It is simple to 
show that any bipartite Bell inequality (1) with m settings per side and two outcomes can be written as:

(7)α
[

pA(0|0)− pA(1|0)
]

+
1

∑

x,y=0

1
∑

a,b=0

(−1)xy
[

p(a = b|xy)− p(a �= b|xy)
]

≤ Cα ,

Figure 1.  Number of standard deviation number (SDN) for the gap between the LHV and quantum values, 
as a function of concurrence. For each value of concurrence, the optimization procedure (6) provides a Bell 
inequality that increases the number of standard deviations of the quantum-LHV value gap. SDN is calculated 
for two cases: the original tilted Bell inequality [black circles] and an inequality arising from optimization (6) 
[red squares]. In both cases, we consider experimental data, where quantum nonlocality can be certified in the 
light blue region. For concurrences C = 0.375 and C = 0.193 , there is no quantum violation of the tilted Bell 
inequality, whereas inequalities arising from optimization (6) produce a violation for both concurrences. This 
result is obtained with the same statistical data that did not produce a violation with the tilted Bell inequality, i.e. 
a new experiment was not required to certify quantum nonlocality. Figure created on Python 3.8.8, https:// www. 
python. org.

https://www.python.org
https://www.python.org
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where

These transformations arise from the identities shown in section C, Supplementary Information. For instance, 
for the tilted Bell inequality (7), we have the following canonical form:

where C̃α = (Cα + α − 2)/4.
Second, due to imperfect detectors, probabilities have to be transformed according to the the rule 

p(0, 0|x, y) → ηAηBp(0, 0|x, y) , p(0|x) → ηA p(0|x) and p(0|y) → ηB p(0|y) , for every setting x, y. Therefore, 
the lower bound for the minimal efficiencies required to detect a quantum violation satisfies:

We observe that optimization (6) reduces the detection efficiency required to close the detection loophole, 
with respect to a target Bell inequality, for a fixed set of probability distributions p(a, b|x, y), pA(0|x) and pB(0|y) . 
Here, we show evidence of this fact by improving detection efficiencies for the experimental statistical distribu-
tions associated to the tilted Bell inequality (9), see Fig. 2.

Conclusions
Violation of Bell inequalities is at the heart of quantum physics and defines a cornerstone for a wide range of 
quantum information protocols with real-world appeal. We have shown how an “experiment-inspired” optimiza-
tion procedure can be applied to the search of Bell inequalities that increase the quantum-LHV gap with respect 
to a target Bell inequality, for a given set of experimental data (see Prop. 2). Furthermore, we demonstrated that 
the gap provided by our optimization procedure is the largest possible among the entire set of Bell inequalities 
having LHV equal to 1, something that can be assumed without loss of generality (see Prop. 2). When nonlocal-
ity certification from a given set of experimental data fails, our method provides a “second chance” to succeed, 
without requiring to perform any additional measurement. Furthermore, our method also provides a gain in 
the minimal detection efficiency required by a fixed statistical set, a crucial ingredient to maximize the chances 
to close the detection loophole. We illustrated our technique by considering experimental data associated to the 
maximal violation of the so-called tilted Bell inequality. Here, we considerably increased some previously obtained 
gaps, a fact that allowed us to certify nonlocality when considering weakly entangled quantum states. This cer-
tification was not possible to do with the tilted Bell inequality, i.e. the inequality that motivated the experiment, 
see section “Tilted Bell inequality”. Furthermore, we also showed how the detection efficiencies required to close 
the detection loophole can be reduced after implementing our optimization procedure, see section “Closing the 

(8)
m−1
∑

x,y=0

s̃00xyp(0, 0|x, y)+
m−1
∑

x=0

s̃0AxpA(0|x)+
m−1
∑

y=0

s̃0BypB(0|y) ≤ C (s),

s̃00xy =
1

∑

a,b=0

(−1)a+bsabxy ,

s̃0Ax =s0Ax − s1Ax +
m−1
∑

y=0

1
∑

a=0

(−1)asa1xy ,

s̃0By =s0By − s1By +
m−1
∑

x=0

1
∑

b=0

(−1)bs1bxy .

(9)(α/2− 1)pA(0|0)− pB(0|0)+ p(0, 0|0, 0)+ p(0, 0|0, 1)+ p(0, 0|1, 0)− p(0, 0|1, 1) ≤ C̃α ,

(10)ηAηB

1
∑

x,y=0

s̃00xyp(0, 0|x, y)+ ηA

1
∑

x=0

s̃0AxpA(0|x)+ ηB

1
∑

y=0

s̃0BypB(0|y) = C (s).

Table 1.  Summary of results. The concurrence was obtained from quantum state tomography. Qα refers to 
the experimental values of the Tilted Bell inequality. Cα is the LHV bound for each α . After implementing the 
method mentioned in section II, the results obtained are presented in the values Q and C.

Concurrence 0.193 0.375 0.582 0.835 0.986

Qα 3.890 3.686 3.418 3.108 2.819

(±)�Qα 0.006 0.008 0.008 0.007 0.004

Cα 3.921 3.702 3.372 2.937 2.002
Qα−Cα

�Qα
− 4.85 − 1.93 5.83 25.44 213.06

Q 1.436 0.858 2.308 2.290 1.819

(±)�Q 0.001 0.006 0.007 0.006 0.004

C 1.429 0.745 1.994 0.745 1.429
Q −C

�Q
3.54 17.75 44.41 89.60 213.57



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:20489  | https://doi.org/10.1038/s41598-021-99844-2

www.nature.com/scientificreports/

detection loophole”. Our technique finds application in device-independent protocols, random number genera-
tion, communication complexity and any practical application based in quantum nonlocality.
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