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The task of predicting protein–protein interactions (PPIs) has been essential in the context
of understanding biological processes. This paper proposes a novel computational model
namely FCTP-WSRC to predict PPIs effectively. Initially, combinations of the F-vector,
composition (C) and transition (T) are used to map each protein sequence onto numeric
feature vectors. Afterwards, an effective feature extraction method PCA (principal
component analysis) is employed to reconstruct the most discriminative feature
subspaces, which is subsequently used as input in weighted sparse representation
based classification (WSRC) for prediction. The FCTP-WSRC model achieves accuracies
of 96.67%, 99.82%, and 98.09% for H. pylori, Human and Yeast datasets respectively.
Furthermore, the FCTP-WSRCmodel performs well when predicting three significant PPIs
networks: the single-core network (CD9), the multiple-core network (Ras-Raf-Mek-Erk-
Elk-Srf pathway), and the cross-connection network (Wnt-related Network).
Consequently, the promising results show that the proposed method can be a
powerful tool for PPIs prediction with excellent performance and less time.

Keywords: protein–protein interactions, principal component analysis, sparse representation, prediction,
crossover network
INTRODUCTION

Investigating protein–protein interactions (PPIs) relate to examine the correlation between proteins
involved in various aspects of life processes such as signal transduction, gene expression regulation,
energy metabolism, and cell cycle regulation. The traditional way of studying individual proteins has
failed to meet the requirements of the post-genome era because the performance of proteins is
diverse and dynamic when performing physiological functions. Therefore, proteins should be
studied at the global, network, and dynamic levels. Only by studying the sum of all proteins can we
support the understanding of life's behavioral processes, disease prevention, and development of
new drugs (Long et al., 2019). In recent years, some researchers predict PPIs by biological methods
such as yeast two-hybrid screening (Ito et al., 2001; Pazos and Valencia, 2002) and affinity
purification (Gavin et al., 2002). However, the results obtained by wet-lab experiments usually
contain a large amount of false positive and false negative data, and these methods are time
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consuming and costly. These limitations motivate the
development of effective machine learning methods to predict
large-scale PPIs.

Up to now, D.S. Huang et al. predicts PPIs utilizing different
information sources such as tertiary structure of proteins,
phylogenetic profiles, and protein domains (De-Shuang and
Chun-Hou, 2006; De-Shuang and Ji-Xiang, 2008). However,
these computational methods require prior knowledge of the
target protein (An et al., 2016). In recent years, protein sequence-
based methods (Yu et al., 2017) are becoming the most widely
applied technique for predicting PPIs due to the availability of
protein sequence data. Liu et al. (2012) designs a sequence
analysis method to represent protein sequences based on
hypergeometric series using the q-Wiener index (Xu et al.,
2017). X. Li et al. employs a global encoding approach (GE) to
describe global information of amino sequence (Li et al., 2009).

Since the effectiveness of machine learning algorithms has
been continuously verified in recent years, the use of machine
learning methods for predicting PPIs has become a new research
area. Yanzhi et al. proposes a support vector machine (SVM)
prediction method based on auto covariance (AC) (Wold et al.,
1993; Yanzhi et al., 2008) Davies et al. designs a model based on
k-nearest neighbor (KNN) with local descriptor (LD) (Juan et al.,
2007; Davies et al., 2008; Tong and Tammi, 2008; Lei et al., 2010).
Juwen et al. using SVM with conjoint triad method predicting
PPIs (Juwen et al., 2007). In addition, algorithms that use
machine learning include: random forest (RF) with multi scale
continuous and discontinuous local descriptor (MCD) (You
et al., 2014), deep neural networks (DNNs) with pseudo amino
acid physicochemical property descriptors(APAAC) (Kuo-Chen,
2005; Du et al., 2017) and so forth. These methods to perform
PPIs prediction use solely amino acid sequence data. In addition,
different representation methods can extract distinct
characteristic information of protein sequences, and it is
known that the feature information extracted by these
representation methods can be complementary. Thus, for PPIs
prediction, we advocate combining multiple descriptors, which
can capture more information than a single descriptor (Deng
et al., 2015). EnsDNN is a multi-descriptor combining method
based on deep neural network (Xenarios et al., 2002). These
descriptors such as auto-covariance descriptor (AC), local
descriptor (LD) and multi-scale continuous and discontinuous
local descriptor (MCD). It achieved a high accuracy of 95.25% on
the Saccharomyces cerevisiae dataset. Despite this, there is still
room to improve the accuracy and efficiency.

Previous works have pointed out that using feature selection
or feature extraction before conduction the classification tasks
can improve the classification accuracy (Zhang et al., 2012). The
software EFS (Ensemble Feature Selection) makes use of multiple
feature selection methods and combines their normalized
outputs to a quantitative ensemble importance. Currently,
eight different feature selection methods have been integrated
in EFS, which can be used separately or combined in an ensemble
(Neumann et al., 2017). What's more, several evolutionary based
methods are proposed for dimensionality reduction (Chuang
et al., 2016). A multi-objective differential evolution method
Frontiers in Genetics | www.frontiersin.org 2
(called MODEMDR) was proposed to merge the various
contingency table measures based on MDR to detect significant
gene-gene interactions (Yang et al., 2017). In this paper, principal
component analysis (PCA) is utilized to do the feature extraction
which projects the original feature space into a new space. The
effectiveness of the proposed FCTP-WSRC is examined in terms
of classification accuracy on the PPI dataset.

The main contribution of this paper is to develop a new
computational tool called FCTP-WSRC to predict PPIs
efficiently. More precisely: (1) Combinations of the F-vector,
composition (C) and transition (T) are used to map each protein
sequence on numeric feature vectors. (2) An effective feature
extraction method PCA (principal component analysis) is
employed to reconstruct the most discriminative feature
subspaces, which is subsequently used as input in weighted
sparse representation based classification (WSRC) for
prediction. We obtain a unique 60-dimensional feature vector
of each protein pair. (3) The FCTP-WSRC model can predict
newly discovered protein-protein interactions with unknown
biological functions using only protein sequence information.

METHODOLOGY

Reduced Sequence and F-Vector
In this paper, a computational model based on multivariate
mutual information is designed to represent the protein
sequence and obtain the feature vector. The model describes
the protein sequence as a fixed length feature vector containing
key information, which can be used as an effective input for
machine learning algorithm. Therefore, the design of the F vector,
the composition and transition (CT) descriptors is combined to
map each protein sequence to a digital feature vector. F-vector of
protein sequence is constructed in the following manner.

First, we generate reduced amino acid sequences according to
their physicochemical properties such as hydrophobicity and
polarity. When studying Shannon entropy of residue properties,
instead of treating the amino acids as distinct symbols in the
entropy calculation, six groups have proposed partitioning the
amino acids into stereo chemically defined sets, and then
computing the entropy of the column with respect to these
sets. According to Capra JA et al. (Capra and Singh, 2007), we
classify residues into six different classes. The six classes of amino
acids are: aliphatic (AVLIMC), aromatic (FWYH), polar
(STNQ), positive (KR), negative (DE), and special (reflecting
their special conformational properties) (GP) (Mirny and
Shakhnovich, 1999), as depicted in Table 1.
TABLE 1 | Amino acid classification.

Descriptor Property Classification

A1 Aliphatic amino acid A,V,L,I,M,C
A2 Aromatic amino acid F,W,Y,H
A3 Polar amino acid S,T,N,Q
A4 Positive amino acid K,R
A5 Negative amino acid D,E
A6 Special conformations G,P
February 2020 | Volume
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The plane rectangular coordinate system has four quadrants.
Dividing 20 amino acids into four groups can use the formula (1) to
map the protein sequence to the unit circle. However, 20 amino
acids are divided into six classes. Thus, we recombine six types of
amino acids. Three classes of amino acids are selected from the six
classes of amino acids as one group and the remaining three classes
are unchanged. In this way, we can get four groups of amino acids,
and there are a total of 20 combination patterns. It is found through
experiments that the 20 patterns will cause too many features and
affect the operation efficiency. Selecting the top 10 combination
patterns got good results.

Then, we use a binary space (V, F) to describe amino acid
sequences. Here, V is the feature space of the sequence
information, and each amino acid combined pattern vi
represents a sort of quad type; F is the feature vector
corresponding to V. The size of V should be 10; thus, I = 1,2,
…, 10. We describe ten amino acid combined patterns by the
letters B, J, O and U in Table 2. The detailed definition and
description for (V, F) are illustrated by the Equations (1)-(4).
Clearly, each protein has a corresponding F vector.
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(1)

We suppose each reduced sequence S=S1S2S3⋯Sn, Sq∈{B, J,O,U},
and q = 1, 2,…, n. Bn is the number of B in the sequence S by using
the pattern vi. Bj is the number of B in the first j characters when Sj =
B. According to Equation (1), we introduce Equation (2):

S(vi) !
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1
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1
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q=1yq
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q=1(yq −My)

2
q

8>>>>>>>><
>>>>>>>>:

(2)

Here xq and yq (q = 1,2,⋯, n) are derived from Equation (1).
For example, sequence METKDGIRWA can be expressed as

BOBJOUBJBB based on v1, so it is mapped to the unit circle as
shown in Figure 1. The reduced sequence corresponds to a one-
to-one curve in the unit circle. So, the invariant of the curve can
be used as the characteristic value of the sequence. Finally, the F-
vector can be expressed by:

F = (F(vi), F(v2),⋯, F(v10)) (3)

The vector F(vi) is as follows:

F(vi) = (Mx ,My ,Vx ,Vy), i = 1, 2,⋯, 10 (4)
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Thus, a 40-dimensional vector is obtained to characterize
each amino acid sequence.

The Composition and Transition of Protein
Sequence (CT)
In this section, we put forward a new description approach using
binary coding sequences. First of all, the amino acid sequence is
mapped to a sparse matrix. Then the composition (C) and
transition (T) of characteristic sequence are extracted from the
obtained sparse matrix. The protein sequence is scanned from
left to right by the step of one amino acid at a time. Suppose a
protein sequence with n amino acid residues is given:
S=S1S2S3⋯Sn;D = {A,R,N,D,C,E,Q,G,H,I,L,K,M,F,P,S,T,W,Y,V}.
Now we derive the matrix A of this sequence:
TABLE 2 | Ten amino acid combined patterns described by the letters B, J, O,
and U.

B J O U

v1 {A1, A2, A3} A4 A5 A6

v 2 {A1, A2, A4} A3 A5 A6

v 3 {A1, A2, A5} A3 A4 A6

v 4 {A1, A2, A6} A3 A4 A5

v 5 {A1, A3, A4} A2 A5 A6

v 6 {A1, A3, A5} A2 A4 A6

v 7 {A1, A3, A6} A2 A4 A5

v 8 {A1, A4, A5} A2 A3 A6

v 9 {A1, A4, A6} A2 A3 A5

v 10 {A1, A5, A6} A2 A3 A4
Feb
ruary 2020 | Vo
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FIGURE 1 | 2-D Unit circle mapping representation of “METKDGIRWA”
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(
(5)

where D(i) is the i-th kind of amino acid in the arranged letter
sequence D.

For each row vector of matrix A with length n, we divide the
sequence into L sub-vectors. For each characteristic sub-vector,
the composition (C) consists of four parts: frequency of “0”,
frequency of “1”, frequency of “11” and frequency of “111”,
respectively. The descriptor (T) is the frequency of “0” followed
by “1” or “1” followed by “0”. An example regarding the
composition (C) of the sub-vector with respect to amino acid
A i s s hown in th e F igur e 2 . Th e sub s equ enc e
“AATWTFAAACATAPDAADAG” with respect to amino acid
A is replaced by “11000011101010011010”. We see that there
exists ten “1”, ten “0”, four “11”, and one “111”. The composition
for these four parts is 10×100%/(10 + 10) = 50%, 10×100%/(10 +
10) = 50%, 4×100%/19 = 21.05%, and 1 × 100%/18 = 5.56%. The
transition for “1-0” and “0-1” is (6 + 5)×100%/19 = 57.89%.
Thus, a protein sequence is transformed into a 4×20×5 = 400
dimensional vector with L = 4 and 20 amino acids.

Reconstructing Feature Vectors
So far, we combine the descriptor F-vector (40 dimension) and
descriptor CT (400 dimension) for a protein sequence into a
440-dimensional vector. However, if this vector is used as
Frontiers in Genetics | www.frontiersin.org 4
input of the classifier directly, the efficiency is likely to be low.
Therefore, in this section we discuss how to reconstruct new
feature vectors using principal component analysis (PCA).
Principal component analysis (PCA) is a widely used
dimensional compression technique. The main idea of PCA
is to sequentially find a set of mutually orthogonal coordinate
axes from the original space, which is closely related to the
data itself. When 30 dimensional features are selected, the
contribution rate of features can reach more than 90%. It can
not only ensure the accuracy, but also improve the calculation
efficiency. Therefore, we use PCA to reduce 440 dimension
vector to 30 dimension. We connect the feature vectors of
two proteins (VA and VB) to describe their interaction
information (VAB):

VABf g = VAf g⊕ VBf g (6)

Thus, a pair of proteins can be expressed by a 60
dimensional vector.
Weighted Sparse Representation Based
Classification (WSRC)
In recent years, inspired by the theory of compressed sensing,
Wright et al. (2009) proposed a sparse representation based
classification (SRC). The algorithm has been proven useful and
reliable for many applications. Later, Fan et al. (2015) proposed a
weighted sparse representation based classification (WSRC),
which introduced sample weights into training samples and
enhanced the robustness of classification. Usually the
representation result of WSRC is sparser than that of SRC, so
better recognition results can be obtained. Here we give a brief
introduction towards WSRC.

Suppose that training samples are classified into C classes. Let
X = [X1, X2,…, Xc] ∈ Rd x n, where Xi ∈ Rd x n i is the ni training
sample of class i. Given a test sample y ∈ Rd: y = Xa, where a =
[a1, a2,…, ac], ai is the representation coefficient vector
associated with the i-th class. WSRC keeps data relativity while
FIGURE 2 | The composition and transition of subsequence “AATWTFAAACATAPDAADAG” with respect to amino acid A.
February 2020 | Volume 11 | Article 18
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sparse representation makes coding localized and allows more
neighboring samples to express the samples to be tested. The
training samples nearer to the test samples should be given
smaller weights to make their corresponding coefficients larger.
The objective function is:

(Weighted   l1) : min  jjWajj1 (7)

subject to

y = Xa (8)

Dealing with occlusion, the Equations (7) and (8) should be
extended to the stable l\s\do5(1)−minimization problem:

â = arg min  jjajj1 (9)

subject to

∥ y − Xa ∥ ≤  ϵ : (10)

e > 0 is the tolerance of reconstruction error. After obtaining
the sparsest solution â , we assign a test sample y to the class i by
the following rule:

miniri(y) =   ∥ y − Xâ i ‖, i = 1, 2,…, c : (11)

and specifically,

diag(W) = ½d(y, x11),…, d(y, xcnc )� : (12)

W is a diagonal matrix used to adjust the weight of training
samples to express the test samples and nc is the sample number
of training set in class c. WSRC calculates the Gaussian
similarities between the test sample and the entire training
samples, which are used as the weight of each training sample.
The Gaussian similarity between two samples, a1 and a2, could
be defined as follows:

d a1, a2ð Þ = exp   −
∥ a1 − a2 ∥2

2s 2

� �
(13)

where s means the Gaussian kernel width. In this paper, we
take the parameters ϵ = 0.005, s = 1.5. The WSRC algorithm can
be described as follows:
ALGORITHM 1 | Weighted sparse representation based classification (WSRC).

INPUT:
The matrix of training samples X∈Rd×n and a test sample y∈Rd.

OUTPUT:
The prediction label of y as identify(y) = argmin

i
ri (y).

1: Normalize each column of X to have the unit l2 norm.
2: Calculate the Gaussian similarity between y and each sample in X and obtain
the weight matrix W.
3: Solve the stable l1—minimization problem described in Equation (7).

4: Calculate residual error: min
i

ri (y) = ∥ y − Xâ i ∥, i = 1, 2; :::, c :

5: return y;
Frontiers in Genetics | www.frontiersin.org 5
DATASET

In this paper, H. pylori, Yeast, and Human PPIs datasets are
downloaded from the DIP database (Xenarios et al., 2002). Cd-
hit (Li et al., 2001) is a tool for protein sequence clustering that
clusters sequences based on their similarity. This article uses the
cd-hit tool to remove redundant sequences such that the protein
interaction dataset has less than 40% homology and builds a
non-redundant dataset (Shawn et al., 2005). Thus, the H. pylori
dataset contains 1,428 pairs of interacting proteins, the Yeast
dataset contains 5,594 pairs of interacting proteins, and the
Human dataset contains 3,899 pairs of interacting proteins.
The choice of negative samples is crucial. This paper
constructs a non-interacting dataset (negative sample) based
on the protein interaction dataset (positive sample) that has
been obtained (Yanzhi et al., 2008; You et al., 2015). Sequences in
non-interacting protein pairs are randomly selected from a
positive samples, but several conditions need to be met: (1)
Non-interacting sequence pairs cannot appear in the interaction
dataset. (2) The number of protein pairs in a non-interacting
dataset should be balanced with the interacting dataset. (3) The
contribution of each protein sequence in the non-interacting
dataset should be as consistent as possible. Through this strategy,
1458 negative samples of H. pylori, 5,594 negative samples of
Yeast, and 4,262 negative samples of Human are obtained. Thus,
the H. pylori dataset has a total of 2,916 pairs of protein
sequences, the Yeast dataset has a total of 11,188 pairs of
protein sequences, and the Human dataset has a total of 8,161
pairs of protein sequences. Furthermore, in order to construct a
PPIs network model, three significant PPIs network datasets are
performed: the single-core network (CD9), the multiple-core
network (Ras-Raf-Mek-Erk-Elk-Srf pathway), and the cross-
connection network (Wnt-related Network).
EVALUATION OF THE PREDICTION
PERFORMANCE

Here, we employ five fold cross validation to evaluate the
performance of the FCTP-WSRC model. The entire dataset is
divided into five groups randomly, four of which are used as the
training samples and the remaining one as the test samples. The
average performance on five sets is used as the performance of
our method. Several evaluation indicators are used to evaluate
the performance of the development methods of this article. Brief
descriptions of these metrics are as follows: (1) sensitivity (Sn) is
the percentage of correctly identified interacting protein pairs;
(2) specificity (Sp) is the percentage of correctly identified non-
interacting protein pairs; (3) accuracy (Acc) is the percentage of
correctly identified protein pairs; (4) matthew's correlation
coefficient (Mcc) is a stricter evaluation standard considering
both under and over predictions. Some concepts and terms to
explain this parameters are defined as follows (You et al., 2013):
February 2020 | Volume 11 | Article 18
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Sn = TP
TP+FN

Sp = TN
TN+FP

Acc = TP+TN
TP+FP+TN+FN

Mcc = (TP)(TN)−(FP)(FN)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½TP+FP�½TP+FN�½TN+FP�½TN+FN�

p

8>>>>>><
>>>>>>:

(14)

where TP is the number of true positive; FN is the number of
false negative; TN is the number of true negative; and FP is the
number of false positive. In addition, the ROC curve and the area
under an ROC curve (AUC) (Huang et al., 2016a) are employed
to evaluate the performance of the FCTP-WSRC approach.
DISCUSSION

Prediction Ability
For the sake of testing the stability and reliability of the results,
we employ a fivefold cross validation for three typical dataset. For
the practicality and effectiveness of our proposed method, we
conduct ten times five fold cross validations and use the average
results as the final experimental results. We obtain the final
results of Acc, Sn, Sp, and Mcc of 96.67%, 95.42%, 97.85%, and
93.56% on the H. pylori dataset. Moreover, we obtain excellent
performance of average accuracy, sensitivity, specificity, and Mcc
of 99.82%, 99.88%, 99.77%, 99.63% on the Human dataset and
98.09%, 99.45%, 96.82%, 96.25% on the Yeast dataset,
respectively. What's more, I have compared the feature
selection PCA with the current state-of-the-art feature
selection methods EFS on the Human dataset. The Acc, Sn, Sp
Frontiers in Genetics | www.frontiersin.org 6
and Mcc of EFS are 0.9499, 0.9601, 0.9448, and 0.9045,
respectively, which are lower than our method PCA+WSRC.
The comparison of the effects of different feature numbers based
on PCA is shown in Figure 3.

The Prediction Performance Comparison
of FCTP-WSRC With FCTP-SVM
To further verify the effectiveness of the FCTP-WSRC approach,
we compare the predictions with the frequently used classifier
support vector machine (SVM). The kernel functions commonly
used in support vector machines are: linear kernel, polynomial
kernel and radial basis kernel function. Linear kernel is mainly
used in the case of linear separability. The dataset in this paper
has a low feature dimension and is linear inseparability.
Compared with the polynomial kernel function, the radial
basis kernel function needs to determine fewer parameters, and
the more parameters the more complicated the model. Through
experiments, we use the LIBSVM (Chang and Lin, 2011)
implementation of SVM with the radial basis kernel function:

k (x, y) = exp(
∥ x� y ∥2 ‖

2s 2 ) (15)

The prediction results of the SVM andWSRCmethods on the H.
pylori, Human and Yeast datasets are shown in Table 3, and the bar
chart is displayed in Figure 5A. From these results, we can see that
the WSRC classifier is significantly better than the SVM classifier. In
addition, the ROC (receive operator characteristic) curve illustrating
the performance of different classification methods. The curve
presents the sensitivity (the true positive rate) against the specificity
(the false positive rate). The ROC curves of FCTP-WSRC on the H.
FIGURE 3 | The comparison of the effects of different feature numbers based on principal component analysis (PCA).
February 2020 | Volume 11 | Article 18
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pylori, Human and Yeast datasets are shown in Figure 4A and those
of FCTP-SVM are shown in Figure 4B. Good performance is
reflected in curves with stronger bending towards the upper-left
corner of the ROC graph, that is, high sensitivity is achieved with a
low false positive rate. For all models, the areas under an ROC curves
(AUC) are > 97.18%. It can be seen from Figure 4 that the ROC
curves of theWSRC classifier are significantly better than those of the
SVM classifier. This clearly prove that the WSRC classifier of the
proposed method is an accurate and robust classifier for predicting
PPIs. The increased classification performance of theWSRC classifier
compared with the SVM classifier can be explained by two reasons:
(1) the obvious advantage of WSRC is that it does not need to select
and compute kernel functions. (2) Protein sequence data expressed
by FCTPmethod is very sparse, so it is suitable for PPIs prediction by
sparse representation classifier.

Comparison With Other Methods
Tables 4–6 compare the prediction performance by the
proposed method (FCTP-WSRC) and some outstanding works
Frontiers in Genetics | www.frontiersin.org 7
on theH. pylori, Yeast and Human dataset. Table 4 describes the
average accuracies of other seven methods including HKNN
(Nanni, 2005), Signature products (Shawn et al., 2005),
Ensemble of HKNN (Nanni and Lumini, 2006), PCA+ELM
(You et al., 2013), WSRC+GE (Nanni and Lumini, 2006), HOG
+SVD+RF (Ding et al., 2016), and RVM+BiGP (An et al., 2016).
Table 5 describes the average accuracies of other seven methods
including LDA+RF (Xiao-Yong et al., 2010), LDA+RoF (Xiao-
Yong et al., 2010), AC+RF (Xiao-Yong et al., 2010), AC+RoF
[41), WSRC+GE (Huang et al., 2016a), and HOG+SVD+RF
(Ding et al., 2016). Table 6 describes the average accuracies of
other seven methods including AutoCC (Yanzhi et al., 2008),
SVM+LD (Guo et al., 2015), RF+PR+LPQ (Wong et al., 2015),
PCA+ELM (You et al., 2013), WSRC+PSM (Huang et al.,
2016b), HOG+SVD+RF (Ding et al., 2016), and RVM+BiGP
(An et al., 2016). These results using distinct methods on three
datasets are intuitively shown by Figure 5B. All the results prove
that our method improves predictions by using fixed-length
feature vectors.
Network Prediction
An effective application of a good PPIs prediction method should
have a good ability to predict PPI networks. Up to now, many
machine learning approaches have been applied to predict PPIs
networks. Despite this, there is still room to improve
the accuracy and stability. Therefore, we have extended the
prediction method of PPI networks consisting of PPI pairs: the
single-core network (CD9), the multiple-core network (Ras-Raf-
Mek-Erk-Elk-Srf pathway), and the cross-connection network
(Wnt-related Network). The prediction results and the networks
are shown in Figures 6–8. The black line is predicted correctly,
TABLE 3 | The prediction performance comparison of FCTP-WSRC with FCTP-
SVM.

Dataset Classification
model

Acc Sn Sp Mcc AUC

H. pylori
dataset

SVM 0.9215 0.9191 0.9235 0.8552 0.9718

WSRC 0.9667 0.9542 0.9785 0.9356 0.9927
Human
dataset

SVM 0.9914 0.9911 0.9925 0.9830 0.9992

WSRC 0.9982 0.9988 0.9977 0.9963 1
Yeast dataset SVM 0.9482 0.9560 0.9411 0.9019 0.9846

WSRC 0.9809 0.9945 0.9682 0.9625 0.9986
Bolded texts are used to emphasize the results of the method designed in this article.
FIGURE 4 | (A) ROC curve of FCTP-WSRC on the H. pylori, Human and Yeast datasets. (B) ROC curve of FCTP-SVM on the H. pylori, Human and Yeast datasets.
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the red line is predicted error, and the yellow node is the
core protein.

CD9 is a four-pass transmembrane protein superfamily
composed of multiple homologous membrane proteins, which
is widely distributed in different tissues of human body and
participates in the regulation of sperm-egg binding. It plays an
important role in cell membrane biology in connection with cell
support, adhesion, movement, proliferation, fusion and
metastasis of tumor cells. This paper uses the CD9 single-core
network dataset, where a protein interacts radially with other
proteins (Yang et al., 2006). The result indicates that all 16 PPIs
could be identified by our method. The accuracy of this method
is 18.75% higher than that of Shen's work (Juwen et al., 2007).

The Ras-Raf-Mek-Erk-Elk-Srf pathway is a widely activated
mitogen-activated protein kinase signaling pathway that is
complex, highly conserved and widely found in eukaryotic
cells. It can transmit extracellular signals into the nucleus,
causing changes in the expression profile of specific proteins in
the cells, which in turn affects cell fate, and is closely related to
the development of tumors (Davis, 2010). Ras, Raf, Mek, Erk,
Elk, and Srf act as core proteins that determine signal
Frontiers in Genetics | www.frontiersin.org 8
transduction. Our method has a prediction accuracy of 95.96%,
which is better than 85.19% of Shen's work (Juwen et al., 2007).

The Wnt signaling pathway is a group of multiple
downstream channel signaling pathways that are excited by the
binding of the ligand protein Wnt and membrane protein
receptors. In biology, most PPIs network is the cross-
connection network. While Wnt-related pathways are essential
for signal transduction, the use of scientific computing methods
to predict Wnt-related network has important practical
significance (Stelzl et al., 2005). The accuracy of Shen's work is
96.04% in the network, our method is 100% which is best.
TABLE 4 | Comparing the prediction performance by the proposed method
(FCTP-WSRC) and some state-of-art works on the H. pylori dataset.

Model ACC Sn Sp Mcc

Our method 0.9667 0.9542 0.9785 0.9356
HKNN 0.8400 0.8600 0.8400 N/A
Signature products 0.8340 0.7990 0.8570 N/A
Ensemble of HKNN 0.8660 0.8670 0.8500 N/A
PCA+ELM 0.8750 0.8895 0.8615 0.7813
WSRC+GE 0.9283 0.8932 0.9613 0.8643
HOG+SVD+RF 0.8906 0.8815 0.8979 0.7815
RVM+BiGP 0.9057 0.9188 0.8955 0.8291
Here, N/A means not available. Bolded texts are used to emphasize the results of the
method designed in this article.
FIGURE 5 | (A) Results using FCTP encoding on the H. pylori, Human and Yeast datasets with different classifiers. (B) Results using different methods on three
datasets.
TABLE 5 | Comparing the prediction performance by the proposed method
(FCTP-WSRC) and some state-of-art works on the Human dataset.

Model ACC Sn Sp Mcc

Our method 0.9982 0.9988 0.9977 0.9963
LDA+RF 0.9640 0.9420 N/A 0.9280
LDA+RoF 0.9570 0.9760 N/A 0.9180
AC+RF 0.9550 0.9400 N/A 0.9140
AC+RoF 0.9510 0.9330 N/A 0.9100
WSRC+GE 0.9766 0.9528 0.9981 0.9541
HOG+SVD+RF 0.9760 0.9637 0.9859 0.9521
February 2020
 | Volume 11 | A
N / A means that the result of this indicator is not queried.
TABLE 6 | Comparing the prediction performance by the proposed method
(FCTP-WSRC) and some state-of-art works on the Yeast dataset.

Model ACC Sn Sp Mcc

Our method 0.9809 0.9945 0.9682 0.9625
AutoCC 0.8933 0.8993 0.8887 N/A
SVM+LD 0.8856 0.8737 0.8950 0.7715
RF+PR+LPQ 0.9392 0.9110 0.9645 0.8856
PCA+ELM 0.8700 0.8615 0.8759 0.7736
WSRC+PSM 0.9709 0.9433 1 0.9433
HOG+SVD+RF 0.9483 0.9240 0.9710 0.8977
RVM+BiGP 0.9457 0.9427 0.9486 0.8974
N / A means that the result of this indicator is not queried.
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FIGURE 6 | The prediction results of single-core network of CD9.
FIGURE 7 | The prediction results of multi-core network of Ras-Raf-Mek-Erk-Elk-Srf pathway.
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Evaluating the Performance of FCTP-
WSRC by PIE Software
PIE (Protein Interaction information Extraction) the search is a
web service to extract PPI-relevant articles from MEDLINE (Sun
et al., 2012), which can be used via a web application at http://
www.ncbi.nlm.nih.gov/IRET/PIE/. It implement a competition-
winning approach utilizing word and syntactic analyses by
machine learning techniques. For easy user access, PIE the
search provides a PubMed-like search environment, but the
output is the list of articles prioritized by PPI confidence
scores. PPI score is a relative value between 1.0 (highly likely)
Frontiers in Genetics | www.frontiersin.org
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and -1.0 (highly unlikely) among retrieved articles. From
Table 7, we can see that only CD9-CD59 is negative 0.0798,
which is very close to zero obtained by the web tool PIE. That is
to see, PPI-relevant articles extracted by the PIE cannot predict
the relationship between CD9 and CD59. This also shows that
our method can be used to predict potential PPI.
Conclusion
The problem of predicting PPIs has been tackled extensively. Given
the fact that computational tools for predicting PPIs have been used
over years, only a few of them are able to predict easily, quickly, and
accurately. Above all, we have explored a novel computational tool
called FCTP-WSRC to predict PPIs efficiently. We characterize a
fixed-length feature vector of protein sequence using descriptors F-
vector, composition (C), and transition (T).

Our numerical results demonstrate that the WSRC classifier
model is feasible to perform PPIs detection. We see that FCTP-
WSRC perform significantly well when it comes to distinguish
positive samples and negative samples of protein pairs. That is to
say, these results support the notion that our FCTP-WSRC
model is a highly effective proteomics research support tool. In
the future, we will extend our approach to more significant PPI
networks with unknown biological functions.

Code is programmed by MATLAB, which can be downloaded
from https://github.com/wowkiekong/PPI-prediction. User-friendly
and publicly accessible web-servers represent the future direction for
developing practically more useful computational tools and enhancing
their impact (Chou, 2017). Our future efforts will be to establish a web-
server for the prediction method reported in this paper.
FIGURE 8 | The prediction results of cross-connection network of Wnt-related pathway.
TABLE 7 | Protein-protein interaction information obtained by a web tool PIE.

Protein-protein interaction PMID PPI score

CD9-CD19 9804823 0.7703
CD9-CD9 partner 16690612 0.9999
CD9-Integrin alpha 3 7790364 0.9999
CD9-Protein Kinase C alpha 11325968 0.7479
CD9-CD81 Partner 3 16690612 0.9999
CD9-CD53 23500527 0.818
CD9-CD81 antigen 16690612 0.9999
CD9-KIT 12036870 0.7073
CD9-Tetraspanin 4 27993971 0.9502
CD9-ADAM2 10518536 0.557
CD9-CD59 15625824 -0.0798
CD9-CD36 17684062 0.6525
CD9-Integrin alpha 5 10811835 0.8497
CD9-CD63 antigen 19640571 0.7556
CD9-DTS 8367482 0.1173
CD9-Collagen binding protein 2 9931299 0.5501
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