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The well-known multivariate technique Principal Components Analysis (PCA) is usually applied to a sample, and so component
scores are subjected to sampling variability. However, few studies address their stability, an important topic when the sample size
is small. This work presents three validation procedures applied to PCA, based on confidence regions generated by a variant of a
nonparametric bootstrap called the partial bootstrap: (i) the assessment of PC scores variability by the spread and overlapping of
“confidence regions” plotted around these scores; (ii) the use of the confidence regions centroids as a validation set; and (iii) the
definition of the number of nontrivial axes to be retained for analysis. The methods were applied to EEG data collected during
a postural control protocol with twenty-four volunteers. Two axes were retained for analysis, with 91.6% of explained variance.
Results showed that the area of the confidence regions provided useful insights on the variability of scores and suggested that some
subjects were not distinguishable from others, which was not evident from the principal planes. In addition, potential outliers,

initially suggested by an analysis of the first principal plane, could not be confirmed by the confidence regions.

1. Introduction

A large number of variables is frequently required in many
research fields and, especially, in the biomedical sciences.
One of the most used methods for studying patterns in such
large databases is the Principal Components Analysis (PCA)
[1, 2]. PCA is suitable for dimensionality reduction and for
exploratory purposes, allowing for the extraction of data
features through variance maximization. However, as in any
statistical model, a validation procedure must be employed if
generalizability is required. Such procedures are even more
important when only a small number of subjects/objects are
available [3, 4]. Important statistics usually obtained in PCA
are eigenvalues and principal component (PC) scores and,
thus, nonparametric confidence intervals (C.1.) can be used to
assess their variability. The latter can be, for example, gener-
ated by a resampling technique [4] and, then, computed as
“confidence regions” around PC scores. Since the percent of
explained variance is different according to each PCA dimen-
sion, corresponding C.I. are also different, helping outlier

identification (longer intervals suggest extreme observations)
[4].

One of these resampling techniques is the nonparametric
bootstrap, in which samples are drawn with replacement in
order to mimic the empirical probability function of the
data [5]. Although visual cluttering may result, the bootstrap
(BST) can be employed for defining confidence regions
in PCA, thus helping graphical display interpretation [4].
However, few texts address the subject of PCA confidence
regions derived from BST. One of them is Linting et al. [6], in
which 90% BST ellipses were drawn for a nonlinear PCA used
to study interactions between children and caregivers in non-
maternal child care. By comparing the results with those from
a linear PCA, they suggested a guideline for users who wish
to employ the BST procedure in linear and nonlinear PCA.

Classification of electroencephalographic (EEG) signals is
an objective of many neurological studies, for example, for
staging a neurologic disease or for brain-computer interface
(BCI) systems. These systems, briefly, concern the transfor-
mation of human thoughts (through acquired EEG signals)


http://dx.doi.org/10.1155/2014/413801

into a computer system, for instance, for helping people
with motor or spelling impairments during specific tasks
[7]. The electroencephalogram is the registry of a spatial-
temporal cortical activity recorded from electrodes spatially
placed on the scalp region and is mainly characterized by
signals with different frequency bands, such as theta (4-
8 Hz), alpha (8-13 Hz), and beta (13-30 Hz), and amplitude
varying with pathological conditions and in specific behavior
states (e.g., sleep or vigil, eyes open or closed) [8, 9]. Although
online classification tasks are a prerequisite for practical
BCI purposes, extensive offline studies are needed before
establishing a trustworthy BCI device, hence indicating the
importance of validation procedures.

The aim of this paper is to present three validation
procedures for PCA using the nonparametric bootstrap,
with an application to EEG data. These procedures allow
for assessing the sampling variability of PC scores and the
number of axes to be retained for analysis, especially if
only a small number of subjects are available. The method
concerns plotting “confidence regions” and constructing a
“validation set” for PC scores (the centroids of the confidence
regions). A variant of the ordinary nonparametric bootstrap
called the partial bootstrap (PBST) was used to this end.
Furthermore, a validation procedure was employed in order
to confirm the number of nontrivial axes to be analyzed.
The assessment of sampling variability of the PC scores was
performed through the areas of the confidence regions, while
the centroids were compared to the original scores through an
unsupervised classification algorithm. An example with cor-
related attributes derived from time and frequency-domain
EEG signals was used for introducing the proposed approach.
The theory of PCA and nonparametric BST is introduced in
Sections 2 and 3, respectively, while the validation methods
are presented in Section 4. In Section 5, the method is applied
to EEG data obtained from a postural control protocol.

2. Principal Components Analysis

Principal Components Analysis is comprehensively pre-
sented in many multivariate statistics textbooks, such as
Jolliffe [2] and Lebart et al. [10], and only a brief introduction
is given here. From p variables observed on n objects (an
n x p matrix), that is, a raw data matrix X, PCA derives new
variables as linear combinations of the original ones, defined
from a new orthogonal coordinate system onto which the
original space is projected. This new system summarizes the
total data variation in decreasing order so that the first new
variable has the largest variation, the second has the second
largest, and so on. These new variables are the principal
components. The singular value decomposition (SVD) is
used to estimate this new orthogonal space, by factoring X
as [11]

X=UxDxVT, 1

where U and V are the left and right singular vectors matrices,
respectively, UUT = I (n x n), VIV = L,(p x p), and the
superscript T indicates the transpose of the matrix. D is a
diagonal matrix with singular values A; in decreasing order
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dividing it by (1 — 1), one obtains

, p- Squaring D and

cor(X) = VxExVT, (2)

where cor(X) is the sample correlation matrix if X has
standardized variables. Matrix X is also a diagonal matrix,
with elements related to the variance of X, in which 7 > 07 >
20127 > 0, so that (n — 1)012. =A§, j=L2,...,p.

The PC scores (Z) are obtained as follows:

Z=XxV=UxD. (3)

Therefore, elements of Z are linear combinations of the
elements of X, with component coeflicients given by the
column-vector of V (which is called the loadings matrix).
The matrix V defines, thereby, an orthonormal basis and its
columns are linearly independent vectors. Indeed, Z is the
projection of X onto the orthonormal basis V.

As mentioned, of the most common uses of PCA is the
dimensionality reduction of X, keeping as much information
(variance) as possible. If the reduced dimensionality ism < p,
one may consider the model (in elementwise representation):

m
Xij = ZuitAtvtj + &js (4)
=1

where u;, and v,; are the elements of matrices U and 'V,
respectively, while ¢; represents the residual terms or the
noise present in the data, i = 1,2,...,nand j = 1,2,..., p.
The proportion of variance explained by each dimension up

to dimension m is given by

moA
j=1"]j
var% = % 100%. (5)
P
ijl j

The procedure for choosing the number of principal
components m to be retained is not well-defined. One
method is the Scree plot, based on a plot of eigenvalues
against their order [12, 13]. Some authors suggest other
empirical methods such as the retention of a number of
dimensions corresponding to a fixed proportion of explained
variance (usually 70-90%) and the Kaiser’s rule (retaining
the eigenvalues of the correlation matrix higher than unity)
[2, page 113-115] and [12, 13]. Statistical approaches have also
been proposed, such as the Bartlett’s test or eigenvalues
bootstrapping [13]. However, as Jolliffe [2, page 133] pointed
out, there is still no clear advantage of a specific method over
the others.

3. Nonparametric Bootstrap

The nonparametric BST is a computer-intensive technique,
which attempts to replicate the probability distribution of a
statistic of interest by resampling with replacement from the
original sample (the observed data) a predefined (R) number
of times [5]. Usually, this procedure generates new samples of
the same size n of the original one, providing a mathematical
framework for inferring the statistical accuracy of the desired
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estimate [14]. Thus, in summary, the statistic of interest ) is
the observed value of some unknown population parameter
0, and the nonparametric BST generates R replicated samples
of the original data (the BST samples), resulting in the set
0, = {07,0;,...,0;}. If the observed data is independent
and identically distributed, the BST estimate of the observed

value (6%) can be calculated from é:et as

R ®
o= 2% ®)

implying that 6* is an estimate of the true value 6. The accu-
racy of the BST estimates can be represented by confidence
intervals (C.I.) calculated from és*et. The percentile method
[14] is the simplest method for BST C.I. and is based on the

. n*
percentiles of 0, as

cr=[8.(5).8.(1-5)] %)

(«/2) and 0", (1-a/2) are the 100c/2% and 100(1 —

n*
where 0 ot

set
a/2)% percentiles of the é;t and « is the desired confidence
level. For example, for « = 0.05 and R = 1000, the C.I
inferior/superior limits are the 24th/976th elements of 67,
In general, it is advisable to have a large R [14], and, for PCA,
Lebart [4] advocates R > 30, while Diaconis and Efron [15]
employed 100 replications in a PCA study for grading college
students.

4. Validation and Stability

The performance of a model is always better on data on
which the model was estimated, and this rule applies for both
exploratory and predictive methods [3,16]. In order to evalu-
ate the results obtained by the whole (or part of) observed
sample (the training set), the model can be applied to a
different data (the validation set), assessing its generalization
ability [17, 18]. The procedure of applying the obtained model
to new data is usually called validation. Therefore, modeling
demands rigorous validation procedures, since a good model
is supposed to have generalizability [16]. Basically, there are
three kinds of validation: internal, external, and relative, the
first being most commonly used due to its simplicity and
lower costs. In the internal validation, the observed data can
be split in two or more sets (such as cross-validation) or BST
methods (one for training and the others for validating the
model), while in the external validation, a new but plausible
dataset is presented to the model. For the relative validation,
a different model is applied to the available data. When the
training set has a small number of subjects, BST becomes a
good option for internal validation, since all subjects can be
used for model development (no observation is discarded),
and BST samples can be used for validation. Furthermore,
the generalization concept described above can be connected
to the concept of stability in PCA, because if the score
coordinates do not change markedly, their positions onto
principal planes can also be considered stable.

Applying nonparametric BST to, for instance, the above
defined matrix X(n x p), different matrices may be generated

by the replication of different rows, and their singular values
and singular vectors will no longer be the same. The SVD
applied to each of the R BST matrices is

X' =U'xD! xV:T, (8)

where * denotes a BST sample and r = 1,2,...,R. D has
singular values in decreasing order Ay, > A5, >---> 1, >0,
and X7 = D ?/(n — 1). Through these concepts, validation
procedures using nonparametric BST can be applied to PCA.

4.1. Assessing the Number of Nontrivial Axes. If the chosen
dimensionality is m* < p, no overlapping between BST
eigenvalues for (a0 = 0) will occur if

min (ol*) — max ((7;) >0,

min (02*) — max (03*) >0,

€)

min (o,,._,) — max(0,.) >0,

where 07 = {07,,00,...,00%}, for k = 1,2,...,m"; thus
the number m* obtained from BST can be compared to the
number m obtained by Scree plot.

4.2. Assessing the Variability of PC Scores. After the applica-
tion of BST to X, R replicated matrices are obtained. Due to
their different axes (defined by different eigenvectors), they
cannot be directly compared to the original space (defined by
the eigenvectors of the original correlation matrix), because
of axes reflection or inversion [4, 19]. Since replicated samples
do not have necessarily the same subjects compared to those
in the original sample, different eigenvalues and eigenvectors
can occur, and a correction procedure is needed, such as
that provided by Procrustes Analysis [20]. To circumvent this
problem, the PBST can be applied, consisting of projecting
replicated components scores (as “supplementary” points)
onto the orthonormal matrix V:

z, =x. xV, (10)
where Eir is the ith component score of the r replicated,
standardized object (x;,). Therefore, nR object scores can be
visualized in the original space, generating n clouds of points.
This approach has the advantage of maintaining the original
PC planes, which is a better estimate than any of the replicated
planes [4]. Thus, (10) can be expressed as

Lo = X' xV, (1
where
Xy
s X;
X =| .1 (12)
Xy

and V is limited to m dimensions (m x m) after the
dimensionality reduction procedure is applied.



Since PCA displays are usually shown in a low-
dimensional space, confidence regions are represented as
polytopes [21] or, in a two-dimensional space, as polygons
(or convex hulls) [22]. The interpretation of these polygons
basically takes into account overlapping (which suggests
similar objects) and spread (widespread polygons suggest
unstable score coordinates, while narrow polygons suggest
stability). Furthermore, these confidence regions allow for
the estimation of new PC scores (through their centroids).
Although any value of & can be used, Efron [23] states that
a = 0.10is satisfactory in most cases, while Lebart [4] pointed
out that when & = 0 untypical values (e.g., outliers) can
be easily identified (through the longer edges of the plotted
convex hull).

4.3. Validation of PC Score Coordinates. The area (in square
units) of a polygon can be calculated as

S = 1 [ X1 X X2 X3 X X ], (13)
20N N Y2 V3 Yo
where (x, y1), (x5, 9,) ..., (x5, y;) are the [ vertices’ coor-

dinates of the polygon, in clockwise order, and || is the
determinant of the matrix. Absolute value can be calculated,
if necessary, and the centroid coordinates (x,, y,) calculated
from any polygon are given by

!
_ 1
Xe =5 Z (%1 + %) (%210 = X¥i1) >
6S =
(14)
!
Ve = 6S Z (Dimy + ) (%1191 = x,9i01) -

1

Thus, the centroid can be considered as the BST estimate (BST
centroids) of the true component score.

The BST centroids are, therefore, estimates of the PC score
coordinates, and the comparison of original scores and BST
centroids allows for the comparison of both models, using,
for example, an unsupervised classification method. These
clustering methods concern procedures where the groups are
not known a priori and the researcher must choose, based
on previous knowledge or on some criteria, the number
of clusters present in the data. This subjective procedure is
mainly employed to visualize or suggest clusters, generating
hypothesis for later investigation [24].

One kind of unsupervised classification method is the
hierarchical algorithm, in which a nested-tree diagram (the
dendrogram) is generated, suggesting, by inspection, the
underlying clustering structure of the data. There are, basi-
cally, two kinds of hierarchical classification algorithms, the
divisive and the agglomerative, which group objects accord-
ing to some clustering rule [25]. Agglomerative Hierarchical
Algorithms (AHA) are some of the most used classification
algorithms and start by grouping two objects into a single
cluster, and at each step of the algorithm, new objects are
aggregated, forming a new cluster, and so on, until, in the last
step, all objects are joined into a single cluster. “Cutting the
tree” at some distance is one of the procedures for defining the
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FIGURE 1: Complete experimental protocol sequence for the acqui-
sition of EEG signals in 31 subjects (21 males and 10 females). P
indicates the preparation procedure; R refers to the resting interval
of three minutes; T indicates the transition between sat and upright
standing positions.

cluster structure in AHA [24, Section 3.3.2], and the Average
Linkage Algorithm is considered the most stable AHA [26].
Therefore, an AHA using this method can be used to compare
groups generated by ordinary PC scores and BST centroids.

5. Application

5.1. Subjects. A data set from a postural control protocol was
used in this study, including stabilometric and EEG signals.
Thirty-one subjects (21 males and 10 females), ages 21 to 45
(3L.0 * 6.6) years, height 154 to 187 (172.7 + 9.4) cm, and
body weight 46 to 107 (73.3 + 17.3) kg, participated in the
initial study. All subjects presented no history of neurological
pathologies, osseous, muscles or joints diseases, or equi-
librium disorders. An anamnesis was performed to obtain
information about headaches, illnesses, vertigo, eyestrain,
and the use of contact lens or glasses. Subjects using lens or
glasses were included when no problem with their use was
reported. The study was approved by a Local Institutional
Review Board (IESC/UFR] - Ref. 100/2011). None of the
authors participated as a volunteer.

5.2. Experimental Protocol. The EEG and stabilometric sig-
nals were acquired simultaneously, but only EEG signals
were analyzed here. The experiments were performed in an
electromagnetically shielded room, under controlled envi-
ronmental conditions (23°C, attenuated sound and light
control), with the subject barefooted on a force platform. The
feet position (angle: 30°; heels 2 cm apart) was previously
delineated to standardize the same support base during the
tests. The EEG signals were acquired during five minutes,
with the subject in distinct postural conditions: (i) resting in
a comfortable armchair with eyes closed (spontaneous EEG
with room lights off, denoted as “A”); (ii) the same position
as (i), but with eyes open (“B”); (iii) during stabilometric
test in upright standing position with eyes open (denoted as
“C”); and (iv) eyes closed (“D”). The trials with eyes open
condition were conducted with room lights on and with the
subject watching a white wall located 1 meter apart from
the force platform. An interval of three minutes was taken
between each condition, and the subject remained seated in
the chair during this period. The stabilometric tests were
performed one minute after the subject was standing on the
force platform, in order to allow for the recovery of balance
after rising from the chair. Figure 1 shows the experimental
protocol sequence.
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FIGURE 2: PSD of volunteers 1 (a) and 3 (b), solid line for condition A, and dashed line for condition B. (a) Maximum for condition A at 4.75
and maximum for condition B at 4.17. (b) Maximum for condition A at 4.68 and maximum for condition B at 4.40. Power for condition B

was calculated as the area of the highlighted region in grey.

The EEG recordings were acquired using the BrainNet—
BNT 36 (EMSA, Brazil, http://www.emsamed.com.br) device
at a sampling frequency of 400 Hz and 16 bit A-to-D pre-
cision, with electrode position according to the Interna-
tional 10/20 System (monopolar derivations, averaged bilat-
eral earlobe reference and ground in FPz). Scalp electrode
impedances were below 5kQ throughout the session. The
EEG recordings were analog-filtered by a fourth-order low-
pass Butterworth with cutoff frequency at 100 Hz (antialias-
ing) and second-order high-pass Butterworth at 0.1 Hz and
also by a digital notch filter in 60 Hz. The power spectral
densities (PSDs) were determined by an additional offline
digital filtering using a fourth-order, forward-reverse band-
pass (1-40 Hz), Butterworth filter [27].

5.3. Data. The complete data set consisted of 5-minute EEG
recordings (O1, O2, P3, P4, C3, C4, T3, T4, T5, T6, F3,
F4, F7, F8, Fpl, Fp2, Fz, Cz, Pz, and Oz derivations) for
the conditions A, B, C, and D. In order to reduce display
cluttering, only one occipital derivation (Ol) was used in
this study. The Ol EEG signals were first segmented into
1-second zeroed-mean epochs of 400 samples. An artifacts
rejection methodology proposed by Simpson et al. [28] was
also applied, resulting in a different number of epochs for
each volunteer and condition (min = 20, max = 300). To
allow for better precision of estimates and for computational
convenience (all epochs were stored in an array) only those
volunteers with a minimum of 150 free artifacts epochs were
retained in the study (24 subjects).

5.4. Variables in the Frequency and Time Domain. A rect-
angular window was subsequently applied to each epoch,
and the averaged periodogram was calculated by the Bartlett
method. Six variables were extracted from the periodogram:

maximum of the PSD magnitude of alpha (8-13 Hz), theta
(4-8 Hz), and beta (13-30 Hz) bands in log 10 (micro V?/Hz)
and an estimate of alpha, theta, and beta band power, defined
as the trapezoidal area centered in the maximum peak of
respective bands log 10 (micro V?).

For each epoch, four statistics were estimated: the root
mean square (RMS), the difference between maximal positive
and minimal negative values (Mm); the standard deviation of
the samples (SD); and the skewness coefficient [29]. Then, the
median of each statistic for all 150 epochs was determined.

5.5. Variable Statistics. Mean * standard deviation for fre-
quency domain variables was 6.75 + 1.26 (alpha band power,
range 4.28-9.12), 5.44 + 0.73 (beta band power, range 4.11-
6.82), 6.12 + 0.96 (theta band power, range 4.54-9.12), 3.52 +
0.68 (alpha band maximum, range 2.24-4.75), 2.72 + 0.36
(beta band peak, range 2.03-3.37), and 3.07 + 0.50 (theta band
maximum, range 2.27-4.75). The Shapiro-Wilk test suggested
that the alpha and beta band power (log10) and the alpha
and beta band maximum (log 10) variables were Gaussian.
In Figure 2, PSDs of two volunteers (conditions A and B)
are shown, with the areas corresponding to power at distinct
bands highlighted. For volunteer 1, maximum peak for eyes
open was achieved at 8 Hz, a transition frequency between
theta and alpha bands (Figure 2(a)), while for volunteer 3,
the maximum peak in the same condition occurred at 10 Hz
(Figure 2(b)). For time domain variables, values were 12 +
6 (RMS, range 4-30), 12 + 6 (SD, range 4-30), 0.1 £ 0.1
(skewness, range —0.1-+0.3), and 57 + 26 (Mm, range 22-
137). There were positive and significant (P <« 0.001)
correlations (rhos Spearman coefficient, range 0.62-1.00)
between all variables, with perfect correlation (rho = 1.00)
between alpha power and alpha maximum and between RMS
and SD (redundant variables).
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FIGURE 3: Histogram of replicated eigenvalues. (a) First eigenvalues; (b) second eigenvalues; (c) third eigenvalues. An overlapping between

the 100% C.I. of second and third eigenvalues can be seen.

5.6. PCA and Nonparametric BST. Considering the 24 sub-
jects to whom the experimental protocol was applied (con-
ditions A and B) and the extracted variables from the EEG
signal (six in frequency and four in time domains), the
resulting data matrix (X) with 48 rows and 10 columns
(variables) was constructed. The SVD algorithm was applied
to the zeroed-mean, standardized data matrix, and the U, D,
V, and Z matrices were calculated, according to (1) and (3).
The number of axes to be retained was assessed by the Scree
plot and validated through an analysis of the nonoverlapping
confidence intervals (o = 0) of the replicated eigenvalues.

The nonparametric BST was performed according to the
following steps.

(1) Resampling the rows (of X) with replacement, with
R 1000, which resulted in R replicated matrices
48 x 10.

(2) The R matrices were mean-centered and standard-
ized.

(3) The SVD algorithm was applied to all R standardized
matrices.

(4) Zy, = X" x V was obtained by (11).
(5) The extreme points of all 48 clouds were determined.

(6) The convex hulls (confidence polygons) were plotted
around each object, with « 0 to analyse likely
outliers.

(7) The BST centroids and the areas of confidence poly-
gons were calculated according to (14) and (13),
respectively.

5.7. Validation. Validation was carried out as described in
Section 4. To assess the variability of the PC scores, the
areas of their corresponding convex hulls were compared,
while BST centroids were compared to original scores by
the dendrograms originated from an AHA, average method.
The number of retained axes was assessed by the 100% C.I.
obtained by a nonparametric BST.

The significance level adopted was 5% and data processing
used the open access R statistical software [30], packages

TaBLE 1: Loadings matrix showing the coefficients for the first two
PCs in a PCA of 10 variables, relating to EEG signals from 24
volunteers.

Variables 1'PC 2°PC
Alpha power -0.33 0.10

Beta power -0.29 0.57
Theta power —-0.31 -0.38
Alpha max. —-0.32 0.10

Beta max. -0.30 0.51
Theta max. -0.30 -0.43
RMS -0.33 -0.09
SD -0.33 -0.09
Skewness -0.29 -0.21
Mm -0.34 -0.06

R.matlab [31], signal [32], e1071[33], and pracma [34]. Convex
hulls and confidence polygons are terms interchangeably
used in this text. Spearman correlation coeflicient and
Shapiro-Wilk tests were applied to verify correlation and
Gaussianity, respectively.

5.8. Results. The dimensionality suggested by the Scree plot
was two, corresponding to 91.6% of the explained variance
(Ist eigenvalue: 8.42; 2nd eigenvalue: 0.74). The coeflicients
for these two PCs are shown in Table 1. The dimensionality
analysis was also confirmed by the C.I. of replicated eigenval-
ues (Figure 3).

Since the first PC is a linear combination with almost
equal weights, none of these variables can be said to be
“more influential” Therefore, in this component, signal scores
contrast only in relation to the origin. The second PC,
however, shows a contrast between the beta and theta bands.

The histograms for the first three replicated eigenvalues
are shown in Figure 3, with original eigenvalues in dashed
lines. No overlapping between the first and two replicated
eigenvalues occurred, since min(o; 7.30) > max(o, =
1.40). On the contrary, overlapping is present in the C.IL
of the second and third replicated eigenvalues (Figures 3(b)
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FIGURE 5: Dendrogram for average AHA; original PC scores as input. Two clusters and an outlier are suggested at height = 3.47.

and 3(c)). Explained variances in replicated samples, in two
dimensions, varied from 86.1% to 95.0% (mean = 91.9%).

The projection of all replicated matrices in the original
orthonormal basis provided 48000 points, which were syn-
thetized by the convex hulls encompassing all 1000 replicated
samples for each score. The number of replications varied
between 931 (subject 17) and 1077 (subject 24), with mean =
1000. The principal plane is depicted in Figure 4(a), where
the first PC has 84.4% of explained variance, while, in
Figure 4(b), convex hulls are drawn around the original
coordinates of the 48 scores. Extended overlapping convex
hulls suggest signals with similar characteristics; therefore,
their BST centroids are closer in the display. The area of the
convex hulls varied between 0.96 and 7.79 (mean = 2.25). The
two largest areas correspond to signals 6 (7.79) and 2 (7.37),
while the smallest areas correspond to signals 29 (0.96) and
23 (1.02). Since these areas are located on opposite sides of the
first PC, it can be said that this PC also discriminates between
larger and smaller areas.

The areas of signals number 2 and number 6 also deserve
attention. The convex hull corresponding to the latter is
placed onto the second and third quadrants, while the former
is placed on the third one. Signal 2 (female; Figure 3(a); solid
line) had the highest and coincident measures for alpha (9.12)
and theta (9.12) power and for alpha (4.75) and theta (4.75)

maximum (maximum peak was at 8 Hz in the transition
frequency between alpha and theta bands). Also, this subject
had the highest RMS (30.1), SD (30.1), skewness (0.31), and
Mm (136.7). Signal 6 (male; Figure 3(b); solid line) had the
highest values of beta power (6.82) and maximum beta (3.37).
An analysis on overlapping polygons revealed a similarity for
other signals, for each side of the first PC. The BST centroids
are shown in Figure 4(c).

Scores from the original first principal plane were used
as inputs for the AHA. According to the chosen separation
distance (height), it was possible to identify (at least) two
clusters, one with signals 1, 5, 6, 24, 26, 28, and 36 and another
with all other signals (Figure 5). Signal number 2 was merged
at the highest separated height, suggesting that this signal is
an outlier. Figure 6 shows the Dendrogram obtained from the
BST centroids, in which signal numbers 2 and 6 could be
considered as another cluster.

6. Discussion

Validation is an important step in any statistical model and
PCA is not an exception to this rule [3]. In PCA, distances
between scores in a sample cannot be supposed to represent
unbiasedly the true distances, especially if the sample size is
small [35], and, in this context, an analysis of the sampling
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FIGURE 6: Dendrogram for average AHA; BST centroids as input. Three clusters are suggested at height = 3.07.

variability of the scores is important, allowing for smaller
inferential errors.

As predicted by Efron and Tibshirani [14], increased pro-
cessing power made the BST an important tool in statistical
inference and model validation [36, 37]. However, when BST
is applied to models that incorporate the SVD algorithm,
care must be taken, due to reflection, stretching, or rotation
of the principal components [4, 19]. To overcome these
problems, this paper used “supplementary points” projected
onto the space spanned by the principal components through
a Partial BST, thus avoiding techniques such as the Procrustes
Analysis simplifying the validation analysis [4]. Hence, the
nonparametric BST is a reliable tool for result validation, as
long as one takes into account the mentioned problems of
different vector spaces generated by BST.

As mentioned, the C.I. of the replicated eigenvalues
indicated that two PCs had to be retained. Indeed, an
overlapping between the second up to the fifth replicated
eigenvalues was present (not shown). The studied dataset
had two highly positively correlated variables, a common
feature when analyzing spectral power and time-domain
EEG, and high correlation between variables usually results in
a small number of axes to be retained (typically two). Thus,
confidence regions were drawn in two dimensions, but, for
dimensionalities larger than two, confidence polygons could
be easily plotted using the described technique. Additionally,
it should be noted that the first PC represented an overall
average, a very common situation in biological data.

Agglomerative Hierarchical Algorithms are one of the
unsupervised methods most used in classification studies
[10]. Since PCA is sensitive to outliers, an initial analysis of the
first principal plane together with the Dendrogram built from
the original scores (Figures 4(a) and 5) would suggest that
signal 2 was an outlier. However, this interpretation was not
confirmed, since the confidence polygons of signals 2, 24, 28,
and 36 had overlapping regions corresponding to condition
A, thus suggesting a similarity among them (Figure 4(b)).
Furthermore, when the BST centroids were used as input
data, signal 2 was first merged with signal 6, suggesting a
different group (Figure 6). This feature was not detected when
the original scores were used as input data for the classifier.

As mentioned, PCA is widely used in biomedical signal
analysis. For example, Casarotto et al. [38] employed PCA
for reducing ocular artifacts in event-related potentials (in

39 children) by subtracting the principal component related
to the electrooculogram (EOG) from the raw EEG. Since
EOG is always present and has amplitude similar to EEG,
reducing artifacts from this source is very important, and the
authors concluded that the approach allowed for an efficient
reduction of ocular artifacts. Kobayashi and Kuriki [39]
employed PCA to increase the signal-to-noise ratio (SNR) in
evoked neuromagnetic signals applied to four male subjects.
The raw spontaneous neuromagnetic fields were recorded
by a superconducting quantum interference device (SQUID)
system and superposed to simulated evoked fields to mimic
real signals. The authors retained three PCs for analysis and
concluded that the suppression of the first PC improved the
SNR compared to the common averaging method. Also Daf-
fertshofer et al. [40], analyzing six electromyographic (EMG)
signals from thoracic and lumbar muscles, obtained during
a treadmill walking experiment, found that the first two
PCs accounted for 88% of the data variance. The second PC
suggested a contrast between right and left thoracic muscles,
while the first PC represented an overall average. Analysis
of gait kinematic data in stroke patients was performed in
twenty-seven subjects by Milovanovic and Popovi¢ [41] who
found differences between patients and healthy subjects by
PCA. In that study, the authors retained the first two principal
components and concluded that the first PC is related to
severity of hemiplegia.

However, none of the studies above included a discus-
sion about the generalization potential of their results. The
methodology described here would be very useful to this
end, owing to the small number of subjects in many of
these studies. Furthermore, since PC scores can be used as
input data in classification algorithms for BCI purposes, this
assessment is especially important for avoiding inaccurate
analysis in the training dataset.

The results suggested two and three main clusters for
the analyzed dataset, mainly due to the importance of the
first PC. As it is well-known, the occipital area (O1 and O2
derivations) is recognized as a visual area in the human
cortex, while the parietal area (P3 and P4) is known to be part
of the associative cortex, which corresponds to the sensory-
motor integration within postural control. When individuals
are in standing up position (orthostatic posture), especially
in the eyes closed condition, other sensory (vestibular and
proprioceptors) systems play an important role in balance,
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increasing the activity in other cortex regions [42]. Therefore,
we analyzed only stable postural conditions in which the
volunteers were kept in “sat” position, to minimize the influ-
ence of other EEG derivations. Usually the cortical activity
during balance perturbation is investigated in time domain
by the coherence average method, to analyze the latency of
the evoked potential after stimulation onset [43]. However,
the evoked potential evaluation is not an automatic process
of stimuli response identification, and objective response
detection (ORD) techniques in frequency domain, such as
the spectral F-test (SFT) and the event-related desynchro-
nization/synchronization index (ERD/ERS), have been used
to this end [44, 45].

In summary, this paper showed how BST methods can
be applied to validate the most important PCA results, what
is particularly relevant in small data sets, a common feature
in EEG studies. One of the presented methods is a new
procedure, which consists in estimating new PC scores as
centroids of confidence regions calculated by a PBST of
the original data (the BST centroids) and in using these
centroids as a validation set. A comparison was performed
on two Agglomerative Hierarchical Algorithms, one with
the original and the other using the estimated component
scores as inputs, and the estimated scores allowed for the
detection of a cluster not discovered by the original scores.
Furthermore, the confidence regions were able to help result
interpretation, for instance, by the analysis of their overlap. As
discussed, in this case, the area of a polygon increases together
with the variability of the PC, providing additional insights
about the data, for instance, concerning outliers and remote
observations in the multidimensional space [46]. Studies
using more complex classification algorithms and data with
dimensionality larger than two would be useful for further
developing this work.
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