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In behavioral neuroscience, many experiments are developed in 1 or 2 spatial dimensions,
but when scientists tackle problems in 3-dimensions (3D), they often face problems or
new challenges. Results obtained for lower dimensions are not always extendable in
3D. In motor planning of eye, gaze or arm movements, or sensorimotor transformation
problems, the 3D kinematics of external (stimuli) or internal (body parts) must often be
considered: how to describe the 3D position and orientation of these objects and link
them together? We describe how dual quaternions provide a convenient way to describe
the 3D kinematics for position only (point transformation) or for combined position and
orientation (through line transformation), easily modeling rotations, translations or screw
motions or combinations of these. We also derive expressions for the velocities of points
and lines as well as the transformation velocities. Then, we apply these tools to a motor
planning task for manual tracking and to the modeling of forward and inverse kinematics
of a seven-dof three-link arm to show the interest of dual quaternions as a tool to build
models for these kinds of applications.
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1. INTRODUCTION
Our environment is 3-dimensional (3D) and our body can be
represented as a rigid multibody system evolving in that 3D envi-
ronment, with different body parts moving relative to each other.
Accurately describing the 3D kinematics of such systems is impor-
tant for diverse applications in neuroscience which involve 3D
kinematics: (1) forward kinematics of different 3D systems: the
position and/or orientation of an end-effector (a tool held by
the hand for example), (2) 3D Reference frame transformation
or reference frame encoding [for example: 3D vestibulor-ocular
reflex (VOR), 3D visuomotor transformation, 3D eye-head gaze
shifts, 3D spatial updating, . . .], and (3) inverse kinematics: the
set of joint angles corresponding to a given end-effector posi-
tion and velocity. In practice, these models allow us to analyze 3D
data acquired through behavioral experiments as well as to make
predictions.

To model the kinematics of a rigid multibody system, we use
the framework of the geometric algebra introduced by David
Hestenes (see the textbook Hestenes, 1986), which easily applies
to and is very convenient to model mechanical systems, in par-
ticular the kinematics. Hestenes applied this approach to some
eye (Hestenes, 1994a) and arm reaching (Hestenes, 1994b) move-
ments. Actually, he chose the geometric algebra of quaternions
which have been sometimes used to model 3D eye, head and arm

movements (see for example: Tweed and Vilis, 1987; Straumann
et al., 1991; Hore et al., 1992; Haslwanter, 1995; Crawford and
Guitton, 1997). Quaternions allow us to easily deal with rotations
but not with translations. Yet we have to deal with translations
since the origins of reference frames attached to each body gener-
ally do not coincide. For example, the eye rotation center is offset
from the head rotation center. In order to deal with translations,
in addition to the rotation, we will use the geometric algebra
of dual quaternions (see Bayro-Corrochano, 2003). Dual quater-
nions also allow to elegantly represent a screw motion (Funda and
Paul, 1990b; Aspragathos and Dimitros, 1998), defined as a com-
bined rotation and translation along the rotation axis. They have
been used in Blohm and Crawford (2007) to model combined 3D
eye and head rotations in the context of 3D visuomotor transfor-
mation for reaching movements. While dual quaternions have not
been widely used in the neuroscience community, they have been
applied in other fields. Indeed, they have been employed with suc-
cess in computer vision (Walker et al., 1991; Phong et al., 1993;
Goddard and Abidi, 1998; Torsello et al., 2011) or in robotics
(Daniilidis, 1999; Bayro-Corrochano et al., 2000).

The goal of this paper is to provide a tutorial of the dual quater-
nion geometric algebra to the neuroscientists and then to show its
interests and advantages to several applications in sensorimotor
control. First, we summarize the theory necessary to introduce the
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different applications. The different dual quaternion operations
are described and we also provide our MATLAB implementation
of these operations in supplementary materials for the potential
interested reader. Then we describe several applications using the
dual quaternion formalism.

There are several reasons to use dual quaternions to repre-
sent the 3D kinematics. First, it is a compact and geometrically
meaningful way of representing 3D rotations, translations and
screw motions (Funda and Paul, 1990a; Kim and Kumar, 1990;
Aspragathos and Dimitros, 1998; Daniilidis, 1999; Kavan et al.,
2008). Furthermore, there are no singularities when representing
3D rotations (this is not the case if a Fick, Helmoltz or Euler rep-
resentation is chosen), because a rotation is represented through
a single angle θ and the axis of rotation n (Chou, 1992; Grassia,
1998). Moreover computational requirements (in terms of storage
and speed) are lower than for other methods, including homo-
geneous coordinates (Funda et al., 1990; Funda and Paul, 1990b;
Walker et al., 1991; Aspragathos and Dimitros, 1998), which could
be important for behavioral experiments needing real-time data
and processing (for example, a forward kinematic model applied
to on-line raw data) but also for post-processing treatments
in data analysis and model predictions. In an implementation
perspective again, the neuroscience researcher concerned with
the practical implementation of the transformations using dual
quaternions will most likely want to consider many transforma-
tions simultaneously. For example, when analyzing experimental
data, or when making predictions (from a few thousand to many
more). In this context, dual quaternions are much more conve-
nient than homogenous matrices for example. Indeed, we easily
deal with an arbitrary number N of simultaneous dual quater-
nions transformations (using standard matrix operations), while
for homogeneous coordinates, it requires the use of 3D tensors,
which is possible but not easy to implement. Yet neuroscience
researchers want a tool efficient and easy to use at the same time.
Last but not least the dual quaternion formalism can be used
to model point and lines transformations (Bayro-Corrochano,
2003), which is not the case for other formalisms like homoge-
neous coordinates (only point transformations). Yet applications
sometimes demand that we combine both types of transforma-
tions (see section 3.3 of this article) and dual quaternions provide
a unified and easy way to do that. We would have had to employ
two different approaches to perform kinematic operations on
points and lines if we had not used dual quaternions.

2. THEORY
In this section, we provide a tutorial or short description of the
dual quaternion algebra based on the literature (Hestenes, 1994a;
Bayro-Corrochano, 2003). The reader familiar with these con-
cepts can skip this part and move to section 3. However, as far
as we know of, many readers in the sensorimotor science com-
munity are not familiar with dual quaternions and therefore they
will find in this section many useful dual quaternions operations
which can be useful to model their 3D problem in neuroscience.
Moreover, we provide a MATLAB implementation for each of
these operations, for the reader who would like to use dual quater-
nions but who perhaps would be restrained by the implementa-
tion. This toolbox is available for download at the followings urls:

• http://www.compneurosci.com/doc/DualQuaternionTool
box.zip

• On the File exchange of Matlab Central: http://www.
mathworks.com/matlabcentral/fileexchange/39288. Users are
able to provide feedback, comment and rate the files.

In the following, we introduce the dual quaternion algebra,
based on the quaternion algebra. Then we introduce the rota-
tion and translation operations using the dual quaternion algebra.
Afterwards we describe how points and lines can be encoded
using dual quaternions, before explaining how applying the rota-
tion or translation on these objects. Then we describe what a
screw motion is and how it is encoded using a dual quaternion.
Finally we briefly talk about the implementation and conversion
to other formalisms.

2.1. BASICS
2.1.1. Quaternion geometric algebra
First let us define the geometric product of two 3D vectors �a and
�b (see Hestenes, 1994a; Bayro-Corrochano, 2003). It is denoted
�a�b and can be expressed as:

�a�b =̇ �a · �b + �a ∧ �b (1)

where �a · �b is the classical dot product yielding a scalar number
and �a ∧ �b is a new entity called a bivector, resulting from the

wedge product of �a and �b. This wedge product is antisymmetric:

�a ∧ �b = −�b ∧ �a. We will see later how to compute it in practice.
Now let us consider three orthonormal basis vectors in a right-
handed reference frame, �σ1, �σ2, and �σ3. From the definition of the
geometric product and the antisymmetric property of the wedge
product, we can get that:

�σi �σj =
{

1 if i = j
�σi ∧ �σj if i �= j

Therefore, we obtain three basis bivectors: �σ1 �σ2, �σ2 �σ3, and
�σ3 �σ1. Then the unit right-handed pseudoscalar i is defined (see

Hestenes, 1994a) as:

i = �σ1 �σ2 �σ3 = �σ1 ∧ �σ2 ∧ �σ3

i is thus an entity which is called a trivector. The i symbol is used
by analogy with the complex numbers. Indeed, using the prop-
erties of the geometric product and the definition of i, we have:
i2 = −1. i is a duality operator since we can notice that:

�σ1 �σ2 = i �σ3

�σ2 �σ3 = i �σ1

�σ3 �σ1 = i �σ2

Therefore, the three basis bivectors are dual entities to the three
basis vectors and vice-versa, which implies that for every bivector
a, there exists a corresponding vector �a such that a = i�a. In the
following, we will always use the bold notation for bivectors, and
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top arrows for vectors. In particular, the bivector obtained by the
wedge product can be expressed as:

�a ∧ �b = i(�a × �b)

where �a × �b is a vector representing the classical cross product of
the vectors �a and �b. A quaternion is the sum of a scalar and a
bivector (Hestenes, 1994a):

Q = q0 + q = q0 + i�q

and can be obtained as the geometric product of two vectors, as
shown by Equation (1). The sum of two quaternions A = a0 + i�a
and B = b0 + i�b is a quaternion C = c0 + i�c computed as follows:

C = A + B = (a0 + b0
������������������

c0

) + i( �a + �b
�

�c
)

The multiplication of two quaternions A = a0 + i�a and B = b0 +
i�b is a quaternion C = c0 + i�c. It is computed as (see details in
Appendix A):

C = AB = (a0 + i�a)(b0 + i�b) = (a0b0 − �a · �b)
�������������������������������������������������������������

c0

+ i (a0�b + b0�a − �a × �b)
�������������������������������������������������������������������������������������������������������������

�c

Other quaternion operations are also useful. The conjugate of a
quaternion A is defined by:

A∗ = (a0 + i�a)∗ = a0 − i�a

The norm of a quaternion A is denoted: ||A|| =
√

(a2
0 + �a · �a).

The inverse of a quaternion A is denoted A−1 and defined as
A−1 = A∗

||A||2 .

2.1.2. Dual quaternion geometric algebra
A dual quaternion D is defined by

D =̇ D0 + εD1

where D0 and D1 are two quaternions and ε is a mathematical
operator with the property that:

ε2 = 0 (2)

The multiplication of two dual quaternions D = D0 + εD1 and
E = E0 + εE1 is another dual quaternion F = F0 + εF1 and using
the property (2), F is equal to:

F = DE = (D0 + εD1)(E0 + εE1) = D0E0
�

F0

+ ε(D0E1 + D1E0
������������������������������������������������������������

F1

)

We notice that the dual quaternion multiplication involves three
quaternion multiplications.

Several conjugates exist for the dual quaternion D = D0 +
εD1, which are used depending on the operations needed. The
first one is obtained by applying the quaternion conjugate to each
quaternion composing the dual quaternion.

D∗ = D∗
0 + εD∗

1

The conjugate of a dual number can also be used:

D = D0 − εD1

And both operations can also be combined:

D∗ = D∗
0 − εD∗

1

The following identities are also useful:

(AB)∗ = B∗A∗

(AB) = ĀB̄

(AB)∗ = B̄∗Ā∗

The norm of a dual quaternion D is a dual number (a dual num-
ber is of the form a = a0 + εa1 where a0 and a1 are real scalar
numbers and ε is the same operator as for dual quaternions, with
the property that ε2 = 0). The dual quaternion norm is computed
in the following way (see Kavan et al., 2008):

||D|| = ||D0|| + ε

[
D∗

0D1 + D∗
1D0

2||D0||
]

scalar

where ||D0|| is the quaternion norm of D0 and [Q]scalar is the
scalar part q0 of a quaternion Q = q0 + q. The inverse of a dual
quaternion A = A0 + εA1 can be computed and is written (see
Kavan et al., 2008):

A−1 = A∗

||A||2
If the non-dual part, A0, of the dual quaternion A has a zero norm,
then A has no inverse.

In the next sections, the dual quaternions representing rota-
tions, translations and or screw motions, as well as points and
lines, are described using unitary dual quaternions, i.e., dual
quaternions with a norm equal to 1. They are unitary under the
condition that:

||D0|| = 1

D∗
0D1 + D∗

1D0 = 0

Therefore, unit dual quaternions belong to a 6-dimensional man-
ifold and are specified by six different parameters. From now on,
we always use the bivector notation in order to avoid writing the i
symbol at each equation. Anyway, remember that each bivector a
is directly related to its counterpart vector �a by the relation a = i�a.

2.2. ROTATIONS AND TRANSLATIONS
In this section, we describe the dual quaternions associated with
rotations and translations, as well as their velocity: rotational
velocity, translational velocity. These operators will be used and
combined later to carry out complex kinematic transformations.
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2.2.1. Rotation
By Euler’s theorem, any 3D rotation may be described by a unique
unitary rotation axis n and a single rotation angle θ. In the dual
quaternion framework, a pure rotation (whose rotation axis goes
through the origin of the reference frame) is described by:

Rrot = cos

(
θ

2

)
+ n sin

(
θ

2

)
(3)

where n is a bivector representing the unitary rotation axis coordi-
nates expressed in the reference frame and θ is the rotation angle.
Actually, Rrot is a quaternion, or a dual quaternion with a dual
part (the part premultiplied by ε) equal to 0.

2.2.2. Translation
A pure translation is defined by its unitary axis t and its distance d.
A translation dual quaternion Ttrans is written under the following
form:

Ttrans = 1 + ε
d

2
t

2.2.3. Rotational velocity
Potential users should pay attention to the fact that in 3-D, the
rotational velocity quaternion is not the derivative of the rota-
tion quaternion (this is also the case if classical rotation matrices
are considered). It has been shown by Hestenes (1986) that the
derivative of the rotation quaternion with respect to time can be
written as:

Ṙrot = 1

2
Rrot�rot (4)

where �rot = �rot = i ��rot is a rotational velocity dual quater-
nion which has a dual part equal to zero, and which has a
non-dual part with a zero scalar component. �rot represents the
rotational velocity. Kinematically, the norm of �rot, || ��rot|| rep-
resents the instantaneous angular velocity while the normalized

vector
��rot

|| ��rot || represents the instantaneous rotation axis. Also, it

can be shown that:

d(R∗
rot)

dt
=

(
dRrot

dt

)∗
= −1

2
�rotR

∗
rot

2.2.4. Translational velocity
The translational velocity dual quaternion is derived from the
translation dual quaternion Ttrans. Differentiating the expression
of the translation dual quaternion Ttrans, we obtain:

Ṫtrans = 0 + ε

(
ḋ(t)

2
t(t) + d(t)

2
ṫ(t)

)

= ε
v

2

where v =̇ ḋ(t)t(t) + d(t)ṫ(t).

2.3. DESCRIPTION OF POINT AND LINE POSITIONS AND VELOCITIES
Here we describe how we can describe either points (location
and velocity) or lines (location and velocity) using the dual
quaternion formalism.

2.3.1. Point position and velocity
Following what is done by Bayro-Corrochano (2003) for exam-
ple, a 3D physical point P with coordinates x in a given reference
frame R is represented by the dual quaternion X = 1 + εx.

The velocity ẋ of point P is represented by the dual quaternion
V = Ẋ = εẋ.

2.3.2. Line position and velocity
Dual quaternions provide a convenient way to represent lines
(Daniilidis, 1999; Bayro-Corrochano, 2003). A line can be rep-
resented by six coordinates (Plücker coordinates), specifying the
line orientation n and the position of an arbitrary point of the
line in space, p. The line representation is moreover independent
of the choice of the point p. A line dual quaternion L is written:

L = n + ε �p ∧ �n
�

=̇m

(5)

We can notice that m is indeed independent of the choice of p
since the cross product �p × �n depends only on the component of
�p orthogonal to �n, and this orthogonal component is obviously
the same for every point on the line L. Note also that a line dual
quaternion is unitary.

The line velocity, L̇, is obtained by computing the derivative of
the line dual quaternion L:

L̇ = ṅ + εṁ

= ṅ + ε
d(�p ∧ �n)

dt

= ṅ + ε
(
�̇p ∧ �n + �p ∧ �̇n

)
(6)

We see that the line velocity dual quaternion is related to the
rate of change of �n, as well as the rate of change of �p. Note that
Equation (6) does not depend on the arbitrary choice of �p and its
rate of change (see proof in Appendix B).

2.4. KINEMATIC OPERATIONS ON POINTS AND LINES
Now we describe the kinematic transformations on point and
lines, as the dual quaternion formalism allows us to use the same
kinematic operators for point or line transformations, which is a
major advantage.

Let us consider the reference frame R′, with the same origin as
reference frame R, but lying in a different orientation. The trans-
formation between both reference frames is a pure rotation with
axis n and angle θ. Then, a point P has the following coordinates
in the R′ frame (passive rotation):

X′ = RrotXRrot
∗ = 1 + ε

(
RrotxRrot

∗)
(7)

where Rrot is the rotation quaternion . Rrot
∗

is the conjugate
quaternion: Rrot

∗ = cos( θ
2 ) − n sin( θ

2 ). For rotations dual quater-

nions, Rrot
∗ = R∗

rot, since rotation dual quaternions have a dual
component equal to zero. Therefore, in the following, we use R∗

rot

instead of Rrot
∗

since it is shorter to write.

Frontiers in Behavioral Neuroscience www.frontiersin.org February 2013 | Volume 7 | Article 7 | 4

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Leclercq et al. 3D kinematics using dual quaternions

From another point of view, we may want to know the new
position of a mobile point P after a rotation Rrot applied to a refer-
ence position P0 = 1 + εx0 in a given reference frame R (an active
rotation):

P = R∗
rotP0Rrot = 1 + ε

(
R∗

rotx0Rrot
)

(8)

Let us now assume that reference frame R′′ has the same
orientation as R but R′′ origin is offset from R origin. The trans-
formation between both reference frames is a simple translation
along a given unitary axis t and distance d. The unitary axis t is
parallel to the line connecting the origins of frames R′′ and R and
is directed from R′′ origin toward R origin. In R′′ frame, point P
has coordinates:

X′′ = TtransXTtrans
∗ = 1 + ε(x + dt) (9)

where Ttrans is the translation dual quaternion. The conjugate
dual quaternion that we use for point transformation (see Bayro-

Corrochano, 2003) is Ttrans
∗ = 1 − ε(− d

2 t) = Ttrans. We can also
apply the same reasoning for the active translation of a given
point.

The velocity ẋ of the 3D physical point P with coordinates x in
a given reference frame R is represented by the dual quaternion
V =̇ Ẋ = 0 + εẋ. It can be of interest to compute the velocity of
P in the frame R′, which is itself rotating compared to R. In that
reference frame R′, the velocity dual quaternion V ′ is:

V ′ = d(RrotXR∗
rot)

dt
(10)

= ˙RrotXR∗
rot + RrotX ˙R∗

rot + RrotẊR∗
rot

Using relationship (4), expression (10) may be developed:

V ′ = Rrot

(
1

2
(�rotX − X�rot) + V

)
R∗

rot

We can observe that if frame R′ does not move compared to frame
R, �rot = 0, then the only difference is that V ′ has its coordinates
expressed in the R′ frame instead of the R frame.

From another point of view, we may want to know the velocity
Ṗ of a mobile point P during a rotation Rrot(t) applied to a refer-
ence position P0 = 1 + εx0 with reference velocity Ṗ0 in a given
reference frame R (an active rotation):

Ṗ = d(R∗
rotP0Rrot)

dt

= 1

2
(P �rot − �rotP) + R∗

rotṖ0Rrot

Let us now compute the velocity V ′′ of point P in the reference
frame R′′ that is translated with respect to R. The transforma-
tion between both reference frames is a simple translation motion
along a given unitary axis t and distance d(t). In R′′ frame, the

velocity of point P is:

V ′′ = d(TtransXTtrans)

dt
(11)

= ˙TtransXTtrans + TtransX ˙Ttrans
���������������������������������������������������������������������������������������������������������������������������������������������������������������������

=εḋt

+ TtransẊTtrans
�������������������������������������������������������

=Ẋ

= 0 + ε(ẋ + ḋt)

For some applications, we may be interested in applying the
kinematic operators to lines instead of points. For example, we
may be interested in the orientation of an end-effector (in addi-
tion to the position) and/or the way this orientation changes with
time. Lines provide a useful way to answer those questions. An
example will be described in the applications. The operations
are exactly identical to those described for point transforma-
tions except that another dual quaternion conjugate is used: the
quaternion conjugate, A∗, instead of the mixed conjugate, A∗ (see
Equations 7, 9). This slight difference is due to the way that points
and lines are encoded with dual quaternions (Bayro-Corrochano,
2003).

2.5. SCREW MOTION
Before moving to the applications, we describe a last (less known)
kinematic operator: a screw displacement, or screw motion. First
we explain what a screw motion is and how this kinematic oper-
ation is encoded with dual quaternions. Then we derive the
screw motion velocity. Finally we show how screw motion can be
applied easily to both points and lines.

The reader should be aware that the screw motion is not a
revolutionary kinematic operator, but it is a simple alternative,
providing a single dual quaternion directly for an operation which
can be also obtained by combining a translation along and a rota-
tion around an axis line which is offset from the origin. Whatever
the approach chosen by the user, the final result for your appli-
cation will be the same. However, screw motion dual quaternions
provide a more compact way to write the kinematics for this type
of movement.

2.5.1. Screw motion definition
A screw motion describes a rotation of angle θ about a line whose
direction is specified by a unitary axis n and whose location can
be described by an arbitrarily chosen point on the line, with coor-
dinates a, followed/combined by a translation of distance d along
this axis n. a is an arbitrary point of the line and this line does
not necessarily go through the origin, such that the screw motion
formalism also can be used to describe rotations about eccentric
points—in contrast to quaternions and rotation matrices, which
can only characterize rotations about the origin. A screw motion
can be represented by the following dual quaternion:

M =
(

cos
θ

2
+n sin

θ

2

)
+ ε

(
−d

2
sin

θ

2
+n

d

2
cos

θ

2
+(�a ∧ �n) sin

θ

2

)
(12)

Note that the quantity �a ∧ �n is independent of the vector a we
choose on the line to describe the line location. Equation (12)
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is derived (see Daniilidis, 1999; Bayro-Corrochano, 2003) by
starting from the rotation quaternion R describing a rotation of
angle θ around the unitary axis n. However, as previously noted,
the quaternion formulation implicitly assumes that the rotation
axis line passes through the reference frame origin. If the rotation
line passes through a point with coordinates a, a general expres-
sion for the rotation dual quaternion whose axis is offset by a, RT ,
is obtained by applying a translation operator TL = 1 + ε a

2 to the
quaternion R, by left-multiplying it by the conjugate of TL and
right-multiply it by TL. It is quite similar to the translation oper-
ation that we apply to lines (instead of rotation dual quaternion
here) and that we described in section 2.4 :

RT = T∗
L RTL

=
(

1 − ε
a

2

)(
cos

θ

2
+ n sin

θ

2

)(
1 + ε

a

2

)

=
(

cos
θ

2
+ n sin

θ

2

)
+ ε

(
(�a ∧ �n) sin

θ

2

)

The dual quaternion RT describes the same rotation but takes
the offset between the reference frame origin and the line into
account. RT is a transformation of R and therefore TL had to
be applied from both sides. To obtain the screw motion dual
quaternion M, we need to combine a translation T = 1 + ε d

2 n
along the line axis to the rotation RT (here we combine operators
instead of transforming one operator, so there is only a simple
left-multiplication):

M = TRT =
(

cos
θ

2
+ n sin

θ

2

)

+ ε

(
−d

2
sin

θ

2
+ n

d

2
cos

θ

2
+ (�a ∧ �n) sin

θ

2

)

2.5.2. Screw motion velocity
The screw motion velocity dual quaternion, Ṁ, is derived
from the screw motion dual quaternion expression, M, in
Equation (12). Indeed, a screw motion can be decomposed into a
translational part and a rotational part, as shown in section 2.5.1.
We have:

M = TRT

= TT∗
L RTL

Therefore,

Ṁ = ṪT∗
L RTL + TṪ∗

L RTL + TT∗
L RṪL + TT∗

L ṘTL

= ṪR
�

translational term

+ Ṫ∗
L R + RṪL
����������������������������������������������

offset term

+ 1

2
TT∗

L R�TL

�����������������������������������������������������

rotational term

(13)

where the second line is obtained through a simple calculation
(translation has no effect on a velocity dual quaternion). We can
observe the contributions of several terms related to the transla-
tional velocity along the screw axis, the translational velocity of
the screw axis itself and the rotational velocity term.

Similarly to rotation and translation operations, we may easily
apply screw motion operations on points or lines.

2.5.3. Screw motion applied to points
Let us consider now an active screw motion M = RTT applied to
a reference point P0. The resulting position is then:

P = M
∗
P0M (14)

= TRT
∗
P0RT T

If we consider again the active screw motion M = RTT applied
to the reference point P0 with velocity Ṗ0, the resulting velocity is
then:

Ṗ = d(M
∗
P0M)

dt

= Ṁ
∗
P0M + M

∗
P0Ṁ + M

∗
Ṗ0M

As will be seen in the applications, we can linearly combine
several rotations, translations and screw motions in a compact
expression, facilitating the geometrical interpretation and the
clarity.

2.5.4. Screw motion applied to lines
Let us describe the final parameters of the line L = n + εm result-
ing from applying a screw motion described by M = RTT to a
reference line L0 = n0 + εm0. Compared to the expression used
for points (see Equation 14), the only slight difference is the
use of another conjugate, as previously mentioned (see Bayro-
Corrochano, 2003).

L = M∗L0M

= T∗R∗
TL0RT T

Knowing the structure of a line dual quaternion (see Equation 5),
we can extract the line parameters n and m. Since m = �p ∧ �n
where �p is any point located on line L, we can choose a partic-
ular �p by adding an additional constraint. An example would be
to take the point �p which is the closest to the origin.

We can also compute the line velocity L̇ = ṅ + εṁ result-
ing from a screw motion M to a reference line L0 with
velocity L̇0.

L̇ = d(M∗L0M)

dt

= Ṁ∗L0M + M∗L0Ṁ + M∗L̇0M

Again, we can retrieve the parameters ṅ and ṁ. Having retrieved
a particular point p of the line, we can extract its velocity (orthog-
onally to the line orientation n).

In the Appendix C, we also describe some useful dual quater-
nions identities which may be used in the diverse sensorimotor
applications that we will present in section 3. In the next section,
we discuss the implementation of dual quaternions.

Frontiers in Behavioral Neuroscience www.frontiersin.org February 2013 | Volume 7 | Article 7 | 6

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Leclercq et al. 3D kinematics using dual quaternions

2.6. IMPLEMENTATION OF DUAL QUATERNIONS
From an implementation perspective, we can write a quaternion
A = a0 + i�a as a four-element vector Atab:

Atab =
(

a0

�a
)

=

⎛
⎜⎜⎝

a0

a1

a2

a3

⎞
⎟⎟⎠

where �a = (a1 a2 a3)
T where T is the transpose matrix operator. If

we consider N quaternions simultaneously, we just create a 4 × N
matrix where each column is a the vector representation of the
corresponding quaternion.

Using this representation, the quaternion multiplication is
implemented using matricial operations:

AtabBtab =
(

a0b0 − �a · �b
a0�b + b0�a − �a × �b

)
(15)

We can also consider N simultaneous multiplications of two
quaternions. This is achieved by adapting the above formula to
matrices instead of vectors. These simultaneous operations are
not just for theoretical purposes or generalizations. Indeed, again
addressing to the neuroscientists communities, we often have to
deal with hundreds or thousands of trials in behavioral exper-
iments. Often, we compare our data to model predictions. In
this framework, let us consider that we use quaternions for our
model predictions. In this case, it is much faster to transform N
quaternions (corresponding to N trials) simultaneously than to
run them individually through a for loop.

A dual quaternion D = D0 + εD1 = d0 + i �d0 + ε(d1 + i �d1)

can be represented using a 8-dimensional vector Dtab (which can
also be considered as the juxtaposition of two 4-dimensional vec-
tors representing the two quaternion components of the dual
quaternion):

Dvec =
(

(D0)tab

(D1)tab

)
=

⎛
⎜⎜⎜⎝

d0
�d0

d1
�d1

⎞
⎟⎟⎟⎠

Again, we can generalize to N dual quaternions by using a 8 × N
matrix. The dual quaternion multiplication is implemented using
matricial operations and the quaternion multiplication defined in
Equation (15):

Fvec =
(

(D0)tab(E0)tab

(D0)tab(E1)tab + (D1)tab(E0)tab

)

We will not describe how all dual quaternion operators and
transformation are implemented, as most of them are easy or
just a consequence of the encoding of a general dual quaternion
that we just described. However, for the reader who would not
like to implement herself/himself all the dual quaternion opera-
tions in her/his favorite language, we provide in supplementary
materials a dual quaternion toolbox written in MATLAB provid-
ing functions implementing all the dual quaternions operations

previously mentioned. Furthermore, an example and a read me
file are also available. A document listing several quaternion and
dual quaternion Matlab toolboxes developed by others is also
provided. In this way, the potential user has access to our tool-
box but also to others, and therefore he can judge which one
is the most suitable for him/herself. We wanted to develop our
own Matlab toolbox because the other ones did not gather all the
functionalities we needed.

After introducing the dual quaternion algebra in this first part
and how it can be applied in kinematics, we now move to the
second part of this manuscript. This part describes how dual
quaternions and their derivatives can be used to easily describe
several applications from sensorimotor control in neuroscience.

3. APPLICATIONS
The dual quaternion algebra is very convenient to express the
motion of rigid bodies, especially our body parts. In the following,
we describe several applications of this theory. First we describe
the reference frame transformations required in the 3D visuomo-
tor transformation for reaching and tracking movements. Then
we describe the forward and inverse kinematics problem for a
two-link arm focusing only on the end-effector position. For
that problem, we will use point transformations. Finally we focus
on the forward and inverse kinematics problem for a three-link
arm holding a tool whose position and orientation matters. We
will use both point and line transformations. One huge advan-
tage of dual quaternions is the fact that we can use them for
both point and line transformations, which is not the case with
other formalisms (homogeneous matrices are not suitable for line
transformation for example, while dual matrices were developed
to tackle line transformations and not point transformations).

3.1. REFERENCE FRAME TRANSFORMATION: MOVEMENT PLANNING
Here we study reference frame transformations in the context of
visuomotor transformations. For instance, visually guided arm
movements to reach for a seen object. Indeed, the brain has to
transform the visual information about the target of interest into
a set of motor commands for the arm muscles. To this end, the
brain plans the movement ahead (see Shadmehr and Wise, 2005).
However, the transformation between retinal information and the
spatial motor plan is not trivial (see Blohm and Crawford, 2007),
since our eyes and head move relative to the body (and thus rela-
tive to the shoulder, insertion point of the arm). For instance, let
us consider the motion of a target in space. If the head is rolled
toward the left or right shoulder, the projection of the spatial
motion onto the retina will be different depending on the head
roll angle (Leclercq et al., 2012). Therefore, the brain should take
the head roll into account in order to generate an accurate motor
plan for the arm. This transformation amounts to expressing the
retinal motion into a spatial motion, thus it is a reference frame
transformation problem.

In the following we describe two transformations. First we
describe how we express the retinal position and motion of a tar-
get, e.g., a tennis ball, as a function of the spatial trajectory of
this target and the 3D eye-head-shoulder geometry. This trans-
formation is useful for a neuroscientist dealing with behavioral
experiments. Indeed, the spatial target position and velocity are
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often specified by designing the experiment (by choice of the
experimenter), while the retinal position and motion can not
be measured directly. These signals need to be estimated using
the transformation model that we develop in this first part and
measured and/or known signals about the 3D eye-head-shoulder
kinematics. Then we describe the inverse transformation which
computes the spatial position and velocity of a target from the
knowledge of the retinal position and velocity as well as the
3D eye-head-shoulder geometry. This transformation is impor-
tant from a neuroscience perspective as it is the transformation
that the brain should implement in order to generate a spa-
tially accurate arm movement (see Blohm and Crawford, 2007;
Leclercq et al., 2012). Furthermore, using this theoretical trans-
formation, we can easily test hypotheses about the availability,
accuracy or precision of a signal (retinal and/or extra-retinal)
in the brain. For that last application, we use the retinal posi-
tion and velocity estimated through the first transformation
described above.

In this context, dual quaternions provide a useful tool to
express these transformations since they provide a geometrically
meaningful way of expressing them, and they are easily imple-
mented using a dual quaternion toolbox (as we provide it in the
supplementary materials).

3.1.1. Computing the retinal position and motion
Figure 1 depicts a situation where a subject is confronted with a
moving object (e.g., a ball), the target (denoted P), and she/he
is going to interact with it (track or catch the target). Here we
describe how the retinal position and velocity of the target are

FIGURE 1 | The picture represents a front view of the

eye-head-shoulder system. The pointing target position (black star) and
velocity (dashed arrow) are represented. These position and velocity can be
represented in different reference frames, represented on the figure. These
reference frames are: SS (shoulder-centered shoulder-fixed), HH
(head-centered head-fixed), and EE (eye-centered eye-fixed). The offsets
between the rotation centers are also represented: the the head position in
eye-centered head-fixed coordinates, and tsh the shoulder position in
head-centered shoulder-fixed coordinates.

expressed as a function of the spatial position and velocity, using
the dual quaternion formalism to express the 3D kinematics. In
an experiment, we typically specify P position and velocity in
a spatial reference frame, for example, the environment refer-
ence frame, or the shoulder reference frame in this case since
we assume the shoulder remains fixed in the environment. So
we need to estimate what the position and the velocity of the
projection of P onto the retina are.

In order to compute the P projection trajectory onto the retina,
it is obvious that we need to know P kinematics in shoulder
(space) coordinates and also what the kinematics of the eye-head-
shoulder rigid body system are. In addition to a spatial reference
frame, a right-handed orthonormal reference frame is attached to
each rigid body (the head, the eye and the shoulder in this exam-
ple, see Figure 1). Let us assume that P trajectory is known in
the shoulder reference frame, PSS(t) = (PSS

x, PSS
y, PSS

z). PSS(t)
refers to P position in the Shoulder-centered Shoulder-fixed
reference frame (-centered refers to the reference frame origin
while -fixed denotes that the orientation of the axes is con-
stant with respect to the specified rigid body) as a function
of time.

The first step is to compute P trajectory (position and veloc-
ity) in an eye-centered eye-fixed reference frame, denoted PEE(t)

and ˙PEE. By combining eye-in-head rotation (REH quaternion),
offset between eye and head rotation centers (THE dual quater-
nion), head-on-shoulder rotation (RHS quaternion), and offset
between head and shoulder rotation centers (TSH dual quater-
nion), we obtain the following expression for P position in
eye-centered eye-fixed coordinates as a function of P position in
shoulder-centered shoulder-fixed coordinates (using point trans-
formations, as described in section 2.4; see also Appendix E for
the derivation).

PEE = REHTHERHSTSHPSSTSHR∗
HSTHER∗

EH (16)

where the rotation quaternions are expressed as a function of the
rotation angles and unitary axis.

For the P velocity, we differentiate Equation (16). And after a
few calculations (see Appendix E), we obtain:

˙PEE = 1

2
REH(�EHPEH − PEH�EH)R∗

EH

+ 1

2
REHRHS(�HSPHS − PHS�HS)R∗

HSR∗
EH

+ REHRHS
˙PSSR∗

HSR∗
EH (17)

where PEH (resp.PHS) is the target position expressed in eye-
centered head-fixed (resp. head-centered shoulder-fixed) coor-
dinates. They can be computed, similarly to the expression in
Equation (16), as:

PEH = THERHSTSHPSSTSHR∗
HSTHE

PHS = TSHPSSTSH

There are three terms in the right side of this expression:
the first one depends on the eye-in-head rotational velocity,
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�EH. The second one depends on the head-on-shoulder rota-
tional velocity, �HS. The third term is related to the target
velocity in the shoulder-centered shoulder-fixed reference frame,
˙PSS. When the eye-head-shoulder configuration is static during

a trial, only the last term remains. In this case, the only change
in velocity is due to the different orientations of the reference
frames.

The first step for computing the retinal position and motion
was to express the target position and velocity in a reference frame

centered on the eye and fixed to the eye, PEE(t) and ˙PEE. Then the
second step is to compute the projection of the target position
onto the retina and the resulting velocity of this projection, which
is the retinal position and velocity available for further processing
in the brain. Computationally, it amounts to project PEE = 1 +
ε PEE onto a sphere of radius reye (see Figure 2A). For simplicity,
we assume reye = 1 (it is just a scaling factor).

projPEE = 1 + ε projPEE

where

projPEE = PEE∥∥PEE
∥∥ = PEE

dP

where dP �
∥∥PEE

∥∥ is the distance of the target (in eye-centered
coordinates). The velocity of the projection is computed as fol-
lows:

˙projPEE =
˙PEE

dP
− ḋPPEE

d2
P

The resulting dual quaternion is ˙projPEE = ε ˙projPEE. Note that if
the motion of the target is spherical with the eye as center (isodis-
tance trajectory), then ḋP = 0, and the expression simplifies to

˙projPEE = ˙PEE

dP
. However, most of the time, the distance is not

A B

FIGURE 2 | Geometry of the velocity projection (A) and velocity

reconstruction (B). (A) Projection of P position and velocity onto the eye
(actually we plot the reversed retinal projection and velocity projection, to
be directly comparable to the spatial position and velocity). References to
the reference frame are omitted on the figure for the sake of clarity. The
two components which add to obtain proj̇PEE are represented :

proj̇PEE = ˙
PEE

dP
− ḋP PEE

d2
P

. (B) Reconstruction of P position and velocity. The

two components which add to obtain Ṗ
EE

are represented:

Ṗ
EE = dP proj̇PEE + ḋP projPEE.

constant, for example, if the target is moving in a frontoparallel
plane. ḋP can be expressed as (see Appendix F):

ḋP = PEE · ˙PEE

dP

In this first part, we have computed the retinal target pro-
jection vector in eye-centered eye-fixed coordinates from the
knowledge of target motion in spatial coordinates. This transfor-
mation is useful because we do not know the projection vector
in retinal coordinates in advance. Therefore, from an experimen-
tal or simulation point of view, this transformation is important.
Moreover the above transformation could be useful for the brain
if the target is also known to the brain in spatial (or also head)
coordinates (for example: auditory target, proprioceptive target
in addition to the visual information about the target). Indeed,
multisensory integration is carried out using multiple reference
frames (McGuire and Sabes, 2009) and therefore auditory (head
coordinates) information should be expressed in eye coordinates.
This transformation could also be useful if the brain was to imple-
ment a forward model, predicting the sensory consequences of
the arm motor command, in retinal coordinates.

Now we move to the inverse transformation, which computes
the target motion in spatial (or shoulder) coordinates, with the
retinal position and velocity as input. This transformation must
be carried out by the brain in order to specify a spatially accurate
motor plan for the arm (see Blohm and Crawford, 2007; Leclercq
et al., 2012).

3.1.2. Computing the spatial position and velocity
Now we describe the model with projPEE and ˙projPEE as inputs,
and PSS and ˙PSS as outputs. These outputs would be used to
specify the motor plan (direction, velocity) of an arm tracking
movement for example (Leclercq et al., 2012). Using this model,
predictions about the motor plan can therefore be easily com-
puted under different hypotheses of incomplete transformation.
These hypotheses are made by asking whether extra-retinal sig-
nals (3D eye and head positions, 3D eye and head velocities) are
available to the brain and whether they are biased or not, and
whether they are highly or not much variable (in the framework
of bayesian estimation for example).

We start the complete transformation by reversing the above

described model. From projPEE and ˙projPEE, we first compute PEE

and ˙PEE (see Figure 2B). Theoretically,

PEE = dP projPEE

We observe that dP is necessary to reconstruct PEE. It is interest-
ing to consider how the brain estimates dP . Most of the time, our
vision is binocular and dP can be estimated with the use of binoc-
ular cues (see Blohm et al., 2008). However, vision is sometimes
monocular (e.g., Leclercq et al. (2012) patched one eye in order
to have only monocular vision). In this case, no binocular clues
are available to estimate target depth. But monocular cues and a
priori information also help to have an estimation of the target
depth, but they are quite reduced for point-like target movements
in complete darkness (see Leclercq et al., 2012). A paradigm of
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tracking in depth would be interesting to test, in monocular and
binocular situations. That would allow to differentiate between
monocular and binocular clues in order to estimate depth in the
context of arm movements.

Theoretically, we also have:

˙PEE = dP
˙projPEE + ḋPprojPEE

thus ḋP also has to be estimated for the estimation of the target
velocity in space.

To compute the target position in spatial coordinates, we invert
Equation (16), using the fact that the kinematic dual quaternions
are unitary and therefore, for any unitary dual quaternion A, we
have A−1 = A∗. Applying that, we have:

PSS = THSR∗
HSTEHR∗

EHPEEREHTEHRHSTHS

where TEH = T∗
HE = 1 − ε

the
2 and THS = T∗

SH = 1 − ε
tsh
2

For the target velocity in spatial coordinates, we inverse the
relationship (17) and obtain:

˙PSS = 1

2

(
PHS�HS − �HSPHS)

+ 1

2
R∗

HS

(
PEH�EH − �EHPEH)

RHS

+ R∗
HSR∗

EH
˙PEEREHRHS

These two transformations are implemented by the brain for
the planning of spatially accurate movements, as it has been
shown by Blohm and Crawford (2007) and Leclercq et al. (2012).
These transformations are useful for the experimenter, in order
to estimate the retinal position and motion of a target, and also
to make different predictions on the motor plan generated by the
brain, depending on hypotheses made about the signals available
to the brain (accuracy, precision). However, we believe that dual
quaternions are just a tool to easily model this transformation,
and they are most likely not used by the brain as a way to imple-
ment these transformations. Most likely, these transformations
are implemented in a distributed way by a neural network. Blohm
et al. (2009) and Blohm (2012) show how these transformations
could be achieved by the brain in a distributed way using a bio-
logically inspired artificial neural network. Moreover they relate
the properties of the artificial neurons to those of real neurons.
Let us mention that dual quaternions are used in these theoretical
studies to generate a huge number of input–output pairs (retinal
motion as input and spatial motion as output).

3.2. TWO-LINK ARM MOVEMENTS: FORWARD AND INVERSE
KINEMATICS FOR END-EFFECTOR POSITION

We will now consider another example of active movements: 3D
arm movements. In section 3.2, we focus on the end-effector
trajectory of a two-link arm, describing its forward kinematics
and the inverse kinematics using the dual quaternion formal-
ism applied to point transformations. In section 3.3, we consider
a three-link arm holding a tool (a screwdriver for example) to

emphasize the end-effector orientation importance in several
everyday life situations. The dual quaternion formalism is again
used in order to model the forward and inverse kinematics for the
orientation and position of the end-effector, but it is also applied
to lines, in order to deal with the orientation transformation.

3.2.1. Forward kinematics for end-effector position
In the following, we consider the forward kinematics of the end-
effector position of a two-link arm (see Figure 3). The forward
kinematics consists in computing the end-effector position (and
sometimes orientation) from the knowledge of the joints kine-
matics (rotation angles and axes, joint velocities). The advantage
of dual quaternions to represent such transformations is the
compactness and geometrical significance to express the joint
kinematics.

Assuming a length of a (resp. b) for the upper arm (resp.
lower arm), the position PBS of the end-effector P (B for body-
fixed coordinates and S for shoulder-centered coordinates) can
be expressed as:

PBS = R∗
UBTESR∗

LUPLERLUTESRUB (18)

where S stands for shoulder, U for upper arm, E for elbow and
L for lower arm. RUB represents the upper arm rotation around
the shoulder compared to a reference position (rotation angle:
ϕ = 0). RLU represents the lower arm rotation around the elbow
compared to a reference position (θ = 0). TES = 1 + ε 1

2 (a 0 0)T

represents translation dual quaternion associated with the offset
between the elbow and the shoulder, in shoulder-centered upper-
arm fixed coordinates. PLE is the (fixed) position of point P in
lower-arm fixed elbow-centered coordinates:

PLE = 1 + εPLE = 1 + ε(b 0 0)T

FIGURE 3 | Two-link arm top view. The shoulder insertion point, elbow
and end-effector location are represented. The different reference frames
are also represented: body-fixed shoulder-centered (BS, in red), upper arm
-fixed shoulder-centered (US, in blue), and the lower arm -fixed elbow
centered (LE, in green). The rotation angles of the shoulder and elbow are
respectively denoted ϕ and θ.
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Note that we can represent the forward kinematics of the end-
effector if we know the parameters of the shoulder and elbow
rotations (for example, angle and rotation axis), whatever the
degrees of freedom.

We can also express the velocity ṖBS of the end-effector P:

ṖBS = 1

2
(PBS�UB − �UBPBS) + R∗

UB
PUE�LU − �LUPUE

2
RUB (19)

where we obviously assume that ṖLE = 0. �UB and �LU represent
the rotational velocities of the upper arm around the shoulder and
of the lower arm around the elbow.

3.2.2. Inverse kinematics from end-effector position
Estimating the joint kinematic parameters from the knowledge
of the end-effector position and velocity (and sometimes the ori-
entation, see next) is a much more difficult task in general. This
process is called inverse kinematics. It can be difficult for several
reasons. First, we could solve the inverse kinematics equations
(e.g., Equation 19) for the joint kinematic parameters, but the-
ses equations are highly non-linear and no general method exists
to solve this problem. For a particular case, it is sometimes possi-
ble and advantageous to compute analytical solutions, but it can
not always be done. Numerical methods are also widely used to
solve this problem, and in the following we will use this approach,
which allows us to develop one general method for several differ-
ent problems. Then, the kinematic system is usually redundant
(like the human arm), meaning that there is an infinity of joint
configurations that can achieve the prescribed end-effector kine-
matics. Finally, there are some geometrical configurations in
which there are singularities and which tend to complicate the res-
olution of the inverse kinematics problem. This is a well studied
problem in the field of robotics (Klein and Huang, 1983; Cheng
and Gupta, 1991; Wang and Chen, 1991; Sciavicco and Siciliano,
1996; Tolani, 2000). Here, we take the two-link arm as an example
and develop a methodology from our dual quaternion formalism
to compute the inverse kinematics numerically.

The inverse kinematics problem is complicated, especially
because the degree of freedom (dof) exceeds the dimension of the
end-effector motion (this is called redundancy). For the two-link
arm, we consider four degrees of freedom (three at the shoulder
and one at the elbow), while the end-effector motion is only 3D.
Therefore, there is an infinity of solutions to the problem.

First, we simplify the problem: we assume that the two-link
arm moves in the horizontal plane, which reduces the joint dof
to 2, yielding a well-posed problem for inverse kinematics. In this
case, the velocity dual quaternion representing the 2D velocity of
point P may be written as (see details in Appendix G.1):

ṖBS =
(

1

2
(PBSn − nPBS) R∗

UB
PUEn − nPUE

2
RUB

)
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

JDQ

(
ϕ̇ θ̇

)T
(20)

where n is the rotation axis of the shoulder and the elbow
(since we only consider planar motions) and where JDQ is an
array composed of two point velocity dual quaternions (from

an implementation perspective, JDQ is an 8 × 2 array, see sec-
tion 2.6). We can build the 2 × 2 jacobian matrix J by extracting
the 2D vector part of the velocity dual quaternion composing each
column of JDQ (see Equation 20):

J =
([

1

2
(PBSn − nPBS)

]
2Dvec

[
R∗

UB
PUEn − nPUE

2
RUB

]
2Dvec

)

The dual quaternion equation (20) can then be expressed in a
matrix form:

ṖBS = J
(
ϕ̇ θ̇

)T

where ṖBS is the 2D velocity vector component of the velocity
dual quaternion ṖBS. We then compute ϕ̇ and θ̇ as a function
of ṖBS to solve the inverse kinematics problem, assuming we
know the current position of the joints, θ and ϕ, since the jaco-
bian matrix J depends on these parameters: J = J(θ,ϕ). Indeed,
J depends on PBS, and PBS depends on the rotation dual quater-
nions RUB and RLU (see Equation 17). Since θ is the rotation angle
of RLU and ϕ is the rotation angle of RUB, it shows that J depends
on θ and ϕ. Also, RUB and PUE depend on ϕ and appear in the
expression of J.

However, we can solve for ϕ̇ and θ̇ by inverting J only if J is
invertible. It is the case in most geometrical configurations of the
two-link arm (indeed, J depends on ϕ and θ, so does the rank of
J), except when θ = 0 (or θ = 180◦), which represents a situation
where the upper and lower arms are aligned. In this case, J is not
invertible (its rank is equal to 1), and we can not apply the above
method. This situation can correspond to two cases. If ṖBS has a
component parallel to the aligned arm, then there are no solutions
for ϕ̇ and θ̇. If ṖBS is orthogonal to the aligned arm, then there
exists an infinity of solutions (in which case we can express the
general form of the solution using the pseudo-inverse formalism,
see later in the manuscript).

We notice that the differential velocity relationship linking the
joint velocities and end-effector velocity is linear if we assume that
θ and ϕ are known, and that will be the case in the numerical
approach we use to solve the inverse kinematics problem. In order
to solve the inverse kinematics problem for the joint positions, we
can numerically integrate the joint velocities across time, knowing
the joint positions at time t0 (an initial condition is needed). The
simplest numerical integration is the Euler method:

θ(t + �t) = θ(t) + θ̇(t)�t (21)

ϕ(t + �t) = ϕ(t) + ϕ̇(t)�t

where �t is the integration step and should not be too large to
achieve reasonable accuracy. Then, the new rotation dual quater-
nions can be updated as a function of θ(t + �t) and ϕ(t + �t)
and we can iterate this process.

Now we want to consider movements in 3D space, not
restricted to the plane. In this context, the shoulder has three-
dof and the elbow has one-dof. It is clear that there are too many
dof compared to the 3D motion of the end-effector, and intu-
itively many shoulder-elbow configurations will lead to the same
end-effector position and velocity. In the following we explain one
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approach which can be taken to obtain one specific solution for
the joints, as well as a general formula to express the set of all
possible solutions.

The idea is to start with the dual quaternion expression of
the velocity of the end-effector (e.g., Equation 19) and rewrite
it in a matrix expression. We move from the dual quaternion
representation to the matrix notation because we use tools from
the matrix algebra (e.g., the pseudo-inverse matrix) to derive the
inverse kinematics results (see below).

The relationship between the end-effector velocity ṖBS and
the rotational velocities of the shoulder, �UB, and the elbow,
�LU, is described by Equation (19). Using the fact that:
1
2 (PBS�UB − �UBPBS) = −ε

(�PBS ∧ ��UB

)
(see Appendix G.2)

we can show that Equation (19) can be expressed as a linear
matrix expression (see Appendix G.3 for the derivation):

− (
ÃPBS RM

UBÃPUE

)
�������������������������������������������������������������������������������������������������������������������������������

J

(
�UB

�LU

)
= ṖBS (22)

where ṖBS is the dual bivector part of ṖBS, RM
UB is the rotation

matrix associated with the rotation dual quaternion RUB [see
Equation (D.2) in Appendix D for how to compute this rotation
matrix] and ÃPBS is the anti-symmetric matrix of rank 2 associ-

ated with the cross product: if �v = �a × �b, it can also be written
�v = Ãa�b where:

Ãa =
⎛
⎝ 0 − a3 a2

a3 0 − a1

−a2 a1 0

⎞
⎠

where a = (a1 a2 a3). Note that this matrix has always rank 2 since
for an equation in �x: �a × �x = �v, the component of �x parallel to �a
can be arbitrary. All the solutions �x lie on a line.

Coming back to Equation (22), we see that the matrix J is of
size 3 × 6 and we want to solve for the unknowns �UB and �LU.
Since we consider one-dof at the elbow, the vector �LU must be
aligned with a specific rotation axis nelbow = [0 0 1] (in upper arm
fixed coordinates) since we assume that the elbow rotates around
an axis which is orthogonal to both the lower and upper arms
(see also Figure 3 to see why this axis is along the z-axis) . This
constraint can be written as �nelbow × ��LU = �0. Therefore, we add
this constraint to the kinematics equation (22) to obtain:

(−ÃPBS − RM
UBÃPUE

0 Ãnelbow

)
�����������������������������������������������������������������������������������������������������������������������������������������������������������������

J

(
�UB

�LU

)
=

(
ṖBS

0

)
(23)

Now this modified matrix J has generally rank 5 since Ãnelbow

has rank 2 (but the rank can be even lower in certain geomet-
rical configurations of the two-link arm, as explained previously
with the two-dof two-links arm). Indeed, because we can rotate
the two-link arm system around an axis linking the shoulder and
the end-effector, without changing the end-effector position and
velocity, there is an infinity of solutions (�UB , �LU) which lie in
a one-dimensional manifold, which is mathematically defined as
the kernel of J, i.e., the set Ker(J) = {x ∈ R

6 such that Jx = 0}.

Therefore, since there is an infinity of solutions, we need some
criterion that may be optimized to choose one optimal solution
(according to this criterion), while Equation (23) is a constraint
for the optimization problem.

The matrix J−1 is not defined and thus we choose to use a gen-
eralized inverse matrix (which exists for any matrix): the pseudo-
inverse [see Klein and Huang (1983) for the use of pseudo-inverse
in inverse kinematics], also called the Moore–Penrose inverse. We
will denote it by J+. Therefore, one solution of the redundant
system given by Equation (23) is given by:

(
�UB

�LU

)
= J+ṖBS (24)

This solution is actually the solution with minimal norm (Klein
and Huang, 1983; Sciavicco and Siciliano, 1996), which mini-
mizes the joint velocities in the context of the four-dof two-link
arm. The general solution can also be expressed (see Sciavicco and
Siciliano, 1996):

(
�UB

�LU

)
= J+ṖBS + (

I − J+J
)

w

where w can be any vector in R
6, and I is the identity matrix

of order 6 (for this example). In practice, Equation (24) requires
that we explicitly compute the pseudo-inverse J+. The interested
reader can refer to Appendix G.4 to see how this can be done.

Once we have a solution for the joint velocities x =
(

�UB

�LU

)
,

we can numerically integrate the joint velocities across time,
knowing the joints positions at time t0. Several methods for
numerical integration exist (see for example, Atkinson, 1989)
and are used in the context of inverse kinematics (see Cheng
and Gupta, 1991). Here, we will use the simple Euler method to
update the rotation quaternions RUB and RLU. It is a bit more
tricky than in the simple two-dof two-link arm (see Equation 21).
Indeed, given that Ṙ = 1

2 R�, we can update the rotation dual
quaternion as:

R(t + �t) = R(t) + Ṙ(t)�t (25)

but the major problem is that in general R(t + �t) is not a rota-
tion quaternion anymore, and we have to normalize it by the
norm of R(t + �t) to ensure it is a rotation dual quaternion
again. From a computational perspective, Funda et al. (1990)
showed that the normalization operation is carried out much
faster with quaternions than with rotation matrices, which is
one of the advantages of using quaternions over rotation matri-
ces. One alternative for the computation is the following. In
angular vector notation, the magnitude of the vector represents
the rotation angle while the normalized unit vector represents
the rotation axis. Using this fact, the rotational displacement
between time t and t + �t is characterized by the angular vec-
tor ��t which is of the form θn. Then, this angular vector can
be expressed as a rotation dual quaternion (see Equation 3), �R.
Then,

R(t + �t) = R(t)�R
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However, by using such a numerical integration scheme, errors
arise since the numerical integration is not perfect. These errors
propagate from one iteration to the other and the reconstructed
end-effector location (using the forward kinematic model, see
Equation 18) will drift from the real end-effector position (see
Sciavicco and Siciliano, 1996). In order to avoid this problem,
we take the position error between the reconstructed end-effector
position, P̂BS, and the real (or desired) end-effector position, PBS,
into account. Actually, we apply the correction scheme described
in Sciavicco and Siciliano (1996). The vector error at time t is:

e(t) = PBS(t) − P̂BS(t)

= PBS(t) − FK(RLU(t), RUB(t))

where FK(.) is the forward kinematic function described by
Equation (18). We take this error into account by adding a vector
term proportional to the error in Equation (23):

J

(
�UB(t)
�LU(t)

)
=

(
ṖBS(t) + Ke(t)

0

)
(26)

where K is a positive definite (usually diagonal) matrix. We can
for example choose K as the identity matrix multiplied by a fac-
tor k1, which is tuned by the user. Then, we can simply compute
a solution using the same pseudo-inverse technique as described
above [see Equation (24) to this modified problem].

We described how we deal with the inverse kinematics of the
end-effector position of a two-link arm but we can generalize
this procedure to a n-link arm. The interested reader can refer
to Appendix G.5.

3.2.3. Inverse kinematics: numerical simulation
Here we test the numerical method for inverse kinematics devel-
oped in section 3.2.2 on the four-dof two-link arm. Figure 4
shows one particular example of inverse kinematics for this
two-link arm. First, we choose an end-effector motion with
a bell-shaped velocity profile and a straight line path in the
3D workspace (see Figure 4B), to mimic hand velocity pro-
files described in the neuroscience literature (Abend et al., 1982;
Atkeson and Hollerbach, 1985). From the subject perspective, the
hand is moving from a central position to the right, up and away
from the shoulder. The initial configuration of the arm is repre-
sented in black (see Figure 4A). From the end-effector motion, we
apply the inverse kinematics technique described in the previous
section to estimate the joint rotations over time for the movement
(Figure 4C).

The estimation accuracy was assessed by computing the norm
of the position error, i.e., the difference between the true end-
effector position and the estimated end-effector position. The
end-effector position was estimated by using the forward kine-
matic model (see Equation 19) and the estimated joint angles
(and therefore rotation quaternions). We can observe (Figure 4D)
that the position error was always smaller than 0.02 cm. This posi-
tion error depends on the value of k1 (see Equation 26) that we
use. For this simulation, we used k1 = 1000. The larger k1 the
smaller is the position error, because we penalize the position
error more with larger values of k1. But k1 can not be too large for

discrete time systems. If k1 is too large, the system will be unstable
and the error will grow. The threshold value for k1 depends on the
simulation step �t (see Appendix G.6 for details). For our sim-
ulation, we used �t = 1 ms and therefore we could not choose a
value for k1 larger than 2000.

We tested several directions in space for the end-effector
motions and our inverse kinematics algorithm was successful in
every case, inferring joint angles for the elbow and shoulder. Note
that this method does not necessarily reproduce the joints angles
observed in human subjects but it yields the solution with the
smallest joint angle rotations.

3.3. THREE-LINK ARM MOVEMENTS: FORWARD AND INVERSE
KINEMATICS FOR END-EFFECTOR POSITION AND ORIENTATION

In this section, we describe the forward and inverse kinematics
for the end-effector position and orientation of a three-link arm.
The main difference compared to section 3.2 is that we perform
line transformations (using dual quaternions) to transform the
orientation.

For this section, we decided to provide an example where we
directly use screw motion to model the joints (shoulder, elbow,
and wrist) movements, but we could have kept the same approach
as in section 3.2 by alternating rotations and translation (offsets).
Similarly, we could have used screw motion dual quaternions as
well in section 3.2 for the two-link arm example.

3.3.1. Forward kinematics for end-effector position and orientation
Here, we describe a seven-dof arm with three links (see Figure 5):
the upper and lower arms as well as the wrist. We consider a
seven-dof joint model: three for the shoulder, one for the elbow,
and three for the wrist. Up to here, we could just apply the
methodology described above in section 3.2. However, now we
consider an example where the end-effector orientation matters.
For example, Figure 5 shows that the hand holds a screwdriver,
and we are interested in the location and orientation of this
end-effector.

In order to describe the end-effector (the screwdriver) orien-
tation (in body-fixed coordinates), we now use the formalism of
line dual quaternions (see section 2.3.2). Let L0 = n0 + ε(�r0 ∧ �n0)

be the line dual quaternion describing the reference line pass-
ing through the screwdriver in its reference configuration [see
the gray configuration in Figure 5: the arm is fully extended,
ϕ = θ = α = 0◦ and n0 = (0 1 0)T and r0 = (a + b + c 0 0)T].
The forward kinematics describing the end-effector line position,
L(t) = n(t) + εm(t), is described by line transformations, using
the tools described in the previous sections (again, here we use
screw motions but we could have used rotations and translations
offsets):

L(t) = (
S∗

UBS∗
LUS∗

HL

)
L0(t) (SHLSLUSUB)

�����������������������������������������������������������

Stot

(27)

= S∗
totL0Stot

where:

• SUB = RUB = cos(ϕ/2) + nUB sin(ϕ/2) is a pure rotation
quaternion describing the 3D rotation of the upper arm around
the shoulder.
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FIGURE 4 | Numerical simulation example of inverse kinematics of the

four-dof two-link arm. For this simulation, we used k0 = 1000 and k1 = 1
(see Appendix G.4) and a simulation step of 1 ms duration. (A) Top view
(top), behind view (middle), and side view (bottom) of the computed
inverse kinematics for the joints. The end-effector (point P) motion in 3D
space is described by the blue line. The initial two-link arm configuration is
represented in black. Upper arm (dark gray) and lower arm (light gray) are
represented at different instants during the end-effector motion. (B) The
end-effector speed (left) and displacement (right) are described as a

function of time: the movement is a typical bell-shaped speed profile
lasting 800 ms and with a peak velocity of 100 cm/s. The end-effector
displacement is about 25 cm. (C) The estimated elbow (left) and shoulder
(right) rotation angles are represented as a function of time. For the
shoulder, there are three components of rotation: around the x-axis (red
line), the y-axis (green line), and the z-axis (blue line). (D) Representation
of the position error, the norm of the difference between the estimated
and actual end-effector position, as a function of time. The maximal error
is about 0.02 cm.

• SLU = T∗
ESRLUTES is a screw motion dual quaternion describ-

ing the 1D rotation of the lower arm around the elbow, whose
rotation axis is offset from the origin (the shoulder):

− RLU = cos(θ/2) + nLU sin(θ/2) is a pure rotation quater-
nion describing the 3D rotation of the lower arm around the
elbow.

− TES = 1 + εtes/2 where tes = [a 0 0]T is the offset between
the elbow and the shoulder in the reference configuration.

• SHL = T∗
WSRHLTWS is a screw motion dual quaternion describ-

ing the 3D rotation of the hand around the wrist, whose
rotation axis is offset from the origin (the shoulder):

− RHL = cos(α/2) + nHL sin(α/2) is a pure rotation quater-
nion describing the 3D rotation of the hand around the
wrist.

− TWS = 1 + εtws/2 where tws = [a + b 0 0]T is the offset
between the wrist and the shoulder in the reference configu-
ration.

We can also derive the expression for the end-effector line
velocity, L̇(t), deriving the above expressions:

L̇(t) = S∗
totL̇0(t)Stot (28)

+ S∗
UBS∗

LU

(
Ṡ∗

HLL0SHL + S∗
HLL0ṠHL

)
SLUSUB

+ S∗
UB

(
Ṡ∗

LULwSLU + S∗
LULwṠLU

)
SUB

+ Ṡ∗
UBLeSUB + S∗

UBLeṠUB

where

• Lw = S∗
HLL0SHL is the end-effector line position after applying

the wrist rotation to the reference line L0.
• Le = S∗

LULwSLU is the end-effector line position after applying
the elbow rotation to the line Lw.

Remembering the description of a screw motion velocity dual
quaternion Ṁ (see Equation 13) in terms of the pure rotational
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FIGURE 5 | seven-dof three-link arm top view. The shoulder insertion
point, elbow and wrist are represented as well as the end-effector (a
screwdriver) location and orientation. The different reference frames are
also represented: body-fixed shoulder-centered (BS, in red), upper arm
-fixed shoulder-centered (US, in blue), lower arm -fixed elbow centered (LE,
in green), and hand-fixed wrist-centered (HW, in magenta). The rotation
angles of the shoulder, elbow, and wrist are respectively denoted ϕ, θ, and
α. The configuration in gray represents the reference configuration.

component, �, the offset velocity term ṪL and the translational
velocity term along the screw axis Ṫ, we can express these screw
motion velocities for the seven-dof three-link arm. For each of
the screw motion dual quaternions considered here, only the
rotational part is moving, in which case Ṁ simplifies to Ṁ =
1
2 TT∗

L R�TL. Therefore, it is quite easy to compute L̇(t) = ṅ(t) +
εṁ(t).

From the line forward kinematics for position and velocity, we
can derive the orientation of the end-effector, n(t), as well as its
rate of change, ṅ(t). The actual position and velocity of the end-
effector position is more tricky to obtain. Indeed, we can retrieve
the quantities m(t) and ṁ(t), but with these quantities, we can
only infer the component of the end-effector position orthogo-
nal to the line orientation. And, even if the end-effector position
is known, we can not uniquely determine the end-effector veloc-
ity component along the line orientation (see also Appendix B).
Therefore, in parallel to the line transformation applied to the
end-effector line, a position transformation should be applied to
the end-effector position. The transformation equations applied
to the reference point dual quaternion P0 = 1 + εr0 are similar
to Equations (27) and (28) except that we use the conjugate def-
inition S̃∗ instead of S∗ for point transformation (as described in
section 2.4).

3.3.2. Inverse kinematics from end-effector position and orientation
In the case of line transformations, we are also interested in
estimating the joint kinematic parameters from the knowledge
of the end-effector position and orientation as well as the
velocity and orientation rate of change. The problems and the
challenges are similar to what we saw before in section 3.2.2

except for the construction of the jacobian matrix J which links
the joint-velocities to the end-effector velocity and orientation
rate of change. For the interested reader, Appendix H describes
in detail how to compute this jacobian matrix J for the three-link
arm and also generalizes to the n-link arm. Then we can proceed
similarly to what is shown in section 3.2.2 to solve the inverse
kinematics problem.

4. DISCUSSION
In many applications of behavioral neuroscience or vision, there
is a need to represent the 3D position and/or orientation of
objects as well as their velocity. These objects may be exter-
nal objects/stimuli that a human subject has to deal with (e.g.,
the position and orientation of a target object). For example,
in order to catch the ball, a rugby player needs to estimate the
3D motion of the ball but also the time course of its orienta-
tion, since the ball is non-spherical. This object can also be a
body part (e.g., the eye, the head, and the hand), whose posi-
tion and/or orientation is of interest for the brain to monitor
body movements. Dual quaternions provide a convenient com-
pact and geometrically meaningful way to describe either position
(through point dual quaternions) or position and orientation
(through line dual quaternions). Moreover, dual quaternions
provide a way to describe natural geometrical transformations
like rotations, translations, or screw motions, and these geo-
metrical transformations can easily be combined together and
applied to points or lines. In this paper, we described the use-
ful concepts of the dual quaternion geometric algebra and how
dual quaternions can be used to model these transformations.
We also described the dual quaternion formalism to cope with
velocity: rotational velocity, screw motion velocity, point veloc-
ity, and line velocity. Then we applied these concepts to a few
examples in behavioral neuroscience: the 3D eye-head-shoulder
system reference frame transformation needed for the accu-
rate planning of manual tracking movements. Another example
was provided with the forward kinematics for the multi-link
arm, either considering the end-effector (the hand) position
alone, or considering the end-effector position and/or orienta-
tion. Finally we also derived the inverse kinematics of the same
multi-link arm from the dual quaternion formalism. In these
applications, we do not claim that the brain actually uses dual
quaternions to implement these transformations. However, these
complex transformations are easily expressed mathematically
using dual quaternions, which helps the neuroscience researcher
to make predictions, for a theoretical goal or just in designing an
experiment.

A main advantage of dual quaternions is that we can com-
bine several rotations and/or translations. Therefore, it is quite
easy to compute and write the expression for complex systems.
We used that advantage throughout our applications. Another
advantage of using quaternions (or dual quaternions) to represent
rotations is that it is an efficient way to parameterize rotations,
without any singularity (Chou, 1992; Grassia, 1998), which occur
when using the classical ways to parameterize rotations (Euler
angles for instance). An important advantage of dual quater-
nions is the compactness in terms of memory requirements: we
only need 8 elements to represent them, compared to 12 for
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homogeneous matrices (Kim and Kumar, 1990; Funda and Paul,
1990a; Aspragathos and Dimitros, 1998; Daniilidis, 1999; Kavan
et al., 2008).

Quaternions have been widely used to model 3D eye rota-
tions (Tweed and Vilis, 1987; Hestenes, 1994a; Haslwanter, 1995;
Crawford and Guitton, 1997; Bayro-Corrochano, 2003) while
dual quaternions have been used less (see Bayro-Corrochano,
2003; Blohm and Crawford, 2007; Leclercq et al., 2012). Here,
we described how the dual quaternion formalism can be used to
model the multi-body kinematics, which can be useful for mod-
eling purposes in applications like motor planning for eye and
arm movements, 3D eye-head gaze shifts, 3D VOR, 3D updating,
computing predictions of an inverse or forward internal model.

Dual quaternions have been commonly used in robotics and
computer vision, for various purposes. Quaternion parametriza-
tion of rotations are used in graphics applications (Grassia, 1998;
Tolani, 2000; Azariadis, 2001; Kavan et al., 2008; Ding et al.,
2012). Tolani (2000) developed a real-time inverse kinematic
technique for anthropomorphic limbs. In Ding et al. (2012), they
develop an image processing technique which is built upon a so-
called dual quaternion Fourier transform. According to Grassia
(1998), quaternions are the best choice to interpolate 3D rota-
tions. Indeed, when we interpolate element by element between
two rotations quaternions, it interpolates on the geodesic (short-
est) path onto the sphere (Shoemake, 1985; Dam et al., 1998).
Dual quaternions are also used for the process of pose estima-
tion, which consists in estimating the position and orientation
of an object. In this context, dual quaternions allow to solve
simultaneously for both the position and orientation components
(Daniilidis, 1999; Bayro-Corrochano et al., 2000) in the context
of robotics (hand-eye calibration). Pose estimation is also used
with dual quaternions in computer vision (Walker et al., 1991;
Phong et al., 1993; Torsello et al., 2011), but with a projective
component in addition. In Goddard and Abidi (1998), they used

the iterative extended Kalman filter for this purpose of pose esti-
mation in order to deal with uncertainty. Forward kinematics
equations for robotic manipulators have been derived with dual
quaternions (Kim and Kumar, 1990) and compared with other
methods (Aspragathos and Dimitros, 1998). Perez and McCarthy
(2004) use dual quaternions for the synthesis of constrained
robotic systems where several serial constrained (less than six-
dof) manipulators are combined. Inverse kinematics techniques
have been developed using dual quaternions for six-dof manip-
ulators (Aydin and Kucuk, 2006; Sariyildiz and Temeltas, 2009)
and compared to other methods (Sariyildiz et al., 2011). They
are also used in the context of cooperative control of multiple
manipulators: several robotic manipulators (Adorno et al., 2010)
or a robotic manipulator interacting with a human arm (Adorno
et al., 2011). In Pham et al. (2010), they develop a control law
using dual quaternion to control simultaneously the position and
orientation of a robotic manipulator.

Thus dual quaternions are powerful mathematical constructs
that are widely used in robotics and computer vision, and could
make important contributions to neuroscience research.
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APPENDICES
A. MULTIPLICATION OF TWO QUATERNIONS: PROOF
The multiplication of two quaternions A = a0 + i�a and B = b0 +
i�b is a quaternion C = c0 + i�c. It is computed as follows:

C = AB

= (a0 + i�a)(b0 + i�b)

= a0b0 + i(a0�b + b0�a) − �a�b
= a0b0 + i(a0�b + b0�a) − (�a · �b + �a ∧ �b)

= (a0b0 − �a · �b)
�������������������������������������������������������������

c0

+ i (a0�b + b0�a − �a × �b)
�������������������������������������������������������������������������������������������������������������

�c

using the property i2 = −1 and the expression of the geometric
product of two vectors (see Equation 1).

B. PROOF THAT THE LINE DERIVATIVE L̇ DOES NOT DEPEND ON THE
CHOICE OF �P

In section 2.3.2, we saw that:

L̇ = ṅ + εṁ (B.1)

= ṅ + ε
(
�̇p ∧ �n + �p ∧ �̇n

)
(B.2)

One could argue that this line derivative expression depends on
the choice of �p to describe a point on line L, and how it changes on
this line. We prove in the following that it is not the case. Assume

we choose a particular representation: �p1 and �̇p1. Then the dual
component of expression (B.2) is:

c1 = �̇p1 ∧ �n + �p1 ∧ �̇n

Assume now that we choose another representation, �p2 and �̇p2

and that they are linked to the first one in the following way:

�p2 = �p1 + x�n
�̇p2 = �̇p1 + ẋ�n + x�̇n

Then, the dual component of expression (B.2) is:

c2 = �̇p2 ∧ �n + �p2 ∧ �̇n
=

(
�̇p1 + ẋ�n + x�̇n

)
∧ �n + ( �p1 + x�n) ∧ �̇n

= �̇p1 ∧ �n + ẋ �n ∧ �n
�

=�0
+ x�̇n ∧ �n + �p1 ∧ �̇n + x�n ∧ �̇n

= �̇p1 ∧ �n + �p1 ∧ �̇n

which proves that c2 = c1 and that the representations are indeed
independent of the choice of �p.

C. DIVERSE TOOLS AND RESULTS
C.1. Shortest rotation between two unitary vectors
Let us consider two unitary vectors �a1 and �b1. Their quaternion
representation (or dual part of their dual quaternion repre-
sentation) are A1 = 0 + a1 and B1 = 0 + b1. We can write the
following:

A1 = B1(B−1
1 A1)

= B1
(
B∗

1A1
)

(C.1)

The expression B∗
1A1 can be developed:

B∗
1A1 = −b1a1

= �b1 �a1

= �b1 · �a1 + �b1 ∧ �a1

= cos θ + n sin θ (C.2)

where θ is the rotation angle from vector �b1 toward vector
�b1, and n = �b1∧ �a1

sin θ
is the unitary rotation axis. Together, these

two parameters describe the shortest rotation from vector �b1 to
vector �a1.

This way of finding the shortest rotation between two uni-
tary vectors can for instance be used to describe the 3D eye
rotation obeying Listing’s law. As all 3D eye orientations can be
described as a rotation from a reference eye position, the Listing’s
law states that all the possible rotation axes lie in a plane, which
is orthogonal to a specific reference eye position, called the pri-
mary position. Knowing the primary position and the current
gaze position, it is easy to compute the rotation quaternion:
Rrot = cos θ + n sin θ describing the rotation angle and rotation
axis of the eye, using Equation (C.2).

C.2. Shortest screw motion between two lines
Similarly to what is shown in Appendix C.1, we can find the
shortest screw motion between two lines L0 = n0 + εm0 and
L1 = n1 + εm1, where m0 = �r0 ∧ �n0 and m1 = �r1 ∧ �n1, �r0 and �r1

being arbitrary points belonging to lines L0 and L1. “Shortest”
refers to the smallest rotation angle θ and translation distance d
along the screw axis. Indeed, in 3D space, two lines do not usually
intersect. d represents the shortest distance between the two lines,
and is therefore non-zero when the lines do not intersect. We can
write:

L1 = L0(L−1
0 L1)

= L0

⎛
⎜⎝L∗

0L1
�

S

⎞
⎟⎠

since L0 and L1 are unitary dual quaternions. It can be shown that
S indeed represents the shortest screw motion transformation
between L0 and L1 and has the following form:

S = L∗
0L1 = cos θ + sin θnS + ε (−d sin θ + dnS cos θ

+( �aS ∧ �nS) sin θ)

Frontiers in Behavioral Neuroscience www.frontiersin.org February 2013 | Volume 7 | Article 7 | 18

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Leclercq et al. 3D kinematics using dual quaternions

Therefore, we can compute the angle θ and distance d between
any two lines in space using this expression.

C.3. Screw motion velocity between two moving lines
Following what we did in the Appendix C.2, we can develop the
derivatives of the screw motion dual quaternion S, to show how to
extract quantities like the rotation angle derivative θ̇ or the screw
motion translation derivative, ḋ. Indeed, if we derive S, we directly
obtain:

Ṡ = −θ̇ sin θ + (θ̇nS cos θ + ṅS sin θ) + ε
[−(ḋ sin θ

+ dθ̇ cos θ) + (
ḋnS cos θ + dṅS cos θ − dθ̇nS sin θ

+ ( �aS ∧ �nS)θ̇ cos θ + ( �̇aS ∧ �nS) sin θ + ( �aS ∧ �̇nS) sin θ
)]

Although this expression is quite long and difficult to interpret,
it is quite easy to retrieve θ̇ and ḋ from this dual quaternion,
provided we retrieve the parameters of the screw motion S first.

D. CONVERSION FROM AND TO FICK COORDINATES
In diverse applications, we might want to go from a rotation
quaternion expression to Fick coordinates, or vice-versa. Here we
briefly describe these mathematical transformations.

Fick coordinates are commonly used in the 3D eye literature
(see Haslwanter, 1995, for more comprehensive explanations):
they describe a 3D rotation by three successive rotations in a well-
defined order. Illustrating the context of a 3D eye position, the
first Fick coordinate is a horizontal rotation of θF around a head-
fixed axis (θF is positive when the rotation is to the left). Then
the second Fick coordinate is a vertical rotation of ϕF around the
inter-aural axis (i.e., the spatial horizontal axis rotated by the first
Fick rotation). ϕF is positive when the rotation is down. Finally,
the third Fick coordinate is a torsional rotation of ψF around the
line of sight (i.e., the spatial backward–forward axis rotated by the
two first Fick rotations). ψF is positive when the rotation is clock-
wise. All the definitions given above are defined from the point of
view of the object being rotated.

A rotation quaternion is described by a rotation angle θ and a
rotation axis n and is written (see Equation 3):

Rrot = cos

(
θ

2

)
+ n sin

(
θ

2

)

D.1. Fick coordinates to rotation rotor
Here, we want to compute θ and n from Fick coordinates
(θF, ϕF, ψF). First, we compute the 3 × 3 rotation matrix describ-
ing the rotation (see Haslwanter, 1995), using c and s as shortcuts
for cos and sin:

RFick =
⎛
⎝ cθFcϕF cθFsϕFsψF − sθFcψF cθFsϕFcψF + sθFsψF

sθF cϕF sθFsϕF sψF + cθFcψF sθF sϕF cψF − cθFsψF

−sϕF cϕF sψF cϕF cψF

⎞
⎠

(D.1)

Then, we need to compute the rotor Rrot = q0 + q from the rota-
tion matrix. Funda et al. (1990) showed that if the rotation matrix

R is written:

R =
⎛
⎝ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠

then, q0 and q = (q1, q2, q3) are given by:

q0 =
√

1 + a11 + a22 + a33

2

q1 = (a32 − a23)/(4q0)

q2 = (a13 − a31)/(4q0)

q3 = (a21 − a12)/(4q0)

This transformation is for instance needed to reconstruct the
3D eye rotation quaternion, from Fick coordinates provided by a
video-based eye tracking system.

D.2. Rotation rotor to Fick coordinates
Here we compute the Fick coordinates (θF,ϕF,ψF) from a rota-
tion quaternion representation Rrot = q0 + q = cos θ

2 + n sin θ
2 .

From q0 and q = (q1, q2, q3), we can retrieve the rotation matrix
R (see Funda et al., 1990):

R =
⎛
⎝ 1 − 2q2

2 − 2q2
3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) 1 − 2q2
1 − 2q2

3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) 1 − 2q2
1 − 2q2

2

⎞
⎠ (D.2)

Then, knowing the structure of R in Fick coordinates
(Equation D.1), we can identify term by term and extract the Fick
parameters (except when there are singularities, in which case one
angle can have multiple values).

E. DERIVATION OF PEE AND ˙PEE

First we derive step by step the expressions for the pointing target
P in eye coordinates. First we show that:

PEE = REHTHERHSTSHPSSTSHR∗
HSTHER∗

EH (E.1)

Indeed, we obtain this result by applying one operation (rotation
or translation) at a time:

PEE = REHPEHR∗
EH

= REHTHEPHHTHER∗
EH

= REHTHERHSPHSR∗
HSTHER∗

EH

= REHTHERHSTSHPSSTSHR∗
HSTHER∗

EH

where PEH, PHH, and PHS are the coordinates of the point-
ing target in eye-centered head-fixed coordinates, head-centered
head-fixed coordinates, and head-centered shoulder-fixed coordi-
nates.

For the P velocity, we differentiate Equation (E.1).
Differentiating the first line, we write:

˙PEE = ˙REHPEHR∗
EH + REHPEH ˙R∗

EH + REH
˙PEHR∗

EH (E.2)
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Using the rotational velocity operator (Equation 4),
Equation (E.2) may be written:

˙PEE = 1

2
REH(�EHPEH − PEH�EH)R∗

EH + REH
˙PEHR∗

EH

= REH

(
1

2
(�EHPEH − PEH�EH) + ˙PEH

)
R∗

EH

Because THE is time-invariant (the offset between eye and head
rotation centers is obviously fixed in a head-fixed reference
frame), we have then

˙PEH = ˙PHH

Similarly to Equation (E.2), we have:

˙PHH = ˙RHSPHSR∗
HS + RHSPHS ˙R∗

HS + RHS
˙PHSR∗

HS (E.3)

= RHS

(
1

2
(�HSPHS − PHS�HS) + ˙PHS

)
R∗

HS

Finally, we assume THS is time-invariant. Thus,

˙PHS = ˙PSS

The final expression for P velocity in an eye-centered eye-fixed
reference frame is therefore:

˙PEE = REH

[
1

2
(�EHPEH − PEH�EH) (E.4)

+ RHS

(
1

2
(�HSPHS − PHS�HS) + ˙PSS

)
R∗

HS

]
R∗

EH

= 1

2
REH(�EHPEH − PEH�EH)R∗

EH

+ 1

2
REHRHS(�HSPHS − PHS�HS)R∗

HSR∗
EH

+ REHRHS
˙PSSR∗

HSR∗
EH

F. PROOF OF ḊP EXPRESSION
Here we compute the expression of ḋP, which is the rate of change
of the distance between the eye and the target P. Without loss of
generality, we can write:

PEE = 1 + ε
(
x(t) y(t) z(t)

)
Therefore,

˙PEE = 0 + ε
(
ẋ(t) ẏ(t) ż(t)

)
The distance between the eye and the target P, denoted dP , is
computed from the expression of PEE:

dP =
√

x2 + y2 + z2

Then, ḋP can be developed:

ḋP = xẋ + yẏ + zż√
x2 + y2 + z2

= PEE · ṖEE

dP

G. FORWARD AND INVERSE KINEMATICS: DERIVATION OF RESULTS
G.1. Computation of the 2D velocity of the end-effector position
We show that:

˙PBS =
(

1

2
(PBSn − nPBS) R∗

UB
PUEn − nPUE

2
RUB

)
�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

JDQ

(
ϕ̇ θ̇

)T

Indeed,

˙PBS = 1

2
(PBSnϕ̇ − ϕ̇nPBS) + R∗

UB
PUEnθ̇ − θ̇nPUE

2
RUB

=
[

1

2
(PBSn − nPBS)

]
ϕ̇ +

[
R∗

UB
PUEn − nPUE

2
RUB

]
θ̇

=
(

1

2
(PBSn − nPBS) R∗

UB
PUEn − nPUE

2
RUB

)
�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

JDQ

(
ϕ̇ θ̇

)T

where n is the rotation axis of the shoulder and the elbow (since
we only consider planar motions)

G.2. Proof that 1
2

(
PBS�UB − �UBPBS

) = −ε
( �PBS ∧ ��UB

)

First, using the definition of a point position dual quaternion
PBS = 1 + εPBS, we develop the left side of this equation:

1

2
(PBS�UB − �UBPBS) = 1

2
[(1 + εPBS)�UB − �UB(1 + εPBS)]

= ε
1

2
(PBS�UB − �UBPBS)

Then, let us compute the quaternion multiplications of the two
bivectors PBS and �UB, using the quaternion properties devel-
oped in section 2.1:

PBS�UB = (
i�PBS

) (
i ��UB

)
= −�PBS ��UB

= −�PBS · ��UB − �PBS ∧ ��UB

Similarly, we have:

�UBPBS = − ��UB · �PBS − ��UB ∧ �PBS

Therefore,

1

2
(PBS�UB − �UBPBS) = ε

1

2
(PBS�UB − �UBPBS)

= ε
1

2

(
−�PBS ∧ ��UB − (− ��UB ∧ �PBS)

)
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= ε
1

2

(
−�PBS ∧ ��UB − (�PBS ∧ ��UB)

)
= −ε

(�PBS ∧ ��UB

)

G.3. Derivation of the matrix expression for ṖBS
Here, we start from Equation (19) which expresses the velocity of
the point end-effector P as a function of the rotational velocities
of the shoulder and elbow, using the dual quaternion formalism.
As a reminder, this equation is:

ṖBS = 1

2
(PBS�UB − �UBPBS)

+ R∗
UB

PUE�LU − �LUPUE

2
RUB (G.1)

where PUE is the position dual quaternion of point P in an upper-
arm fixed elbow-centered reference frame:

PUE = R∗
LUPLERLU

Using the relationship derived in Appendix G.2,

1

2
(PBS�UB − �UBPBS) = −ε

(�PBS ∧ ��UB

)
we can develop Equation (G.1) as:

ṖBS = 1

2
(PBS�UB − �UBPBS) + R∗

UB
PUE�LU − �LUPUE

2
RUB

= −ε
(�PBS ∧ ��UB

)
+ R∗

UB

[
−ε

(�PUE ∧ ��LU

)]
RUB

= −ε
[(�PBS ∧ ��UB

)
+ R∗

UB

(�PUE ∧ ��LU

)
RUB

]
= −ε

[
i
(�PBS × ��UB

)
+ R∗

UBi
(�PUE × ��LU

)
RUB

]

Using the rotation matrix RM corresponding to the rotation
dual quaternion R [see Equation (D.2) in Appendix D for how
to compute this rotation matrix from the rotation dual quater-
nion], the rotation of a point P, written as P′ = R∗PR in dual
quaternion formalism, is written as �P′ = RM �P in matrix notation.
Furthermore, a cross product of two vectors �v = �a × �b can also be
written as �v = Ãa�b where

Ãa =
⎛
⎝ 0 − a3 a2

a3 0 − a1

−a2 a1 0

⎞
⎠

where a = (a1 a2 a3). Note that this matrix has always rank 2 since
for an equation in �x: �a × �x = �v, the component of �x parallel to �a
can be arbitrary. All the solutions �x lie on a line.

Using these two properties, ṖBS can be developed further and
its vector velocity component, ṖBS, can be written in matrix
form as:

ṖBS = − (
ÃPBS RM

UBÃPUE

) (�UB

�LU

)

G.4. Computation of the pseudo-inverse J+
In this appendix, we provide a brief tutorial on the computation
of the pseudo-inverse J+ to the interested reader. We also explain
how to deal with solutions which are close to singularities.

In practice, Equation (24) requires that we compute explic-
itly the pseudo-inverse J+, by applying for example an algorithm
based on the svd (singular value decomposition) of J [see Klein
and Huang (1983), it is also what Matlab does to compute it].
The advantage is that the pseudo-inverse exists whatever the
rank k of the matrix J which is of size n × m, even if k <

min(n, m). However, the computation time is quite large. If the
matrix J has rank k = min(n, m), we can solve Jx = v̇ (where
v̇ is the velocity of the end-effector) without explicitly comput-
ing the pseudo-inverse (Klein and Huang, 1983). Indeed, in the
case where the system is underdetermined, k = m, m < n, the
pseudo-inverse is:

J+ = JT(JJT)−1

while if the system is overdetermined, k = n, n < m, then:

J+ = (JTJ)−1JT

Taking advantage of this formulation, if the system is underdeter-
mined, we solve classically for:

(JJT)w = v̇ (G.2)

where w is an intermediate variable from which x is computed by
takingx = JTw. If the system is overdetermined, then the solution
x is obtained by solving:

(JTJ)x = JT v̇ (G.3)

Using these methods, a solution for x is obtained much faster
than by explicitly computing the pseudo-inverse J+. However,
these methods do not work properly if there are singularities
in the kinematic system. Singularities happen for example when
the two links of the arm are aligned. In this case, the rank
of the jacobian J is diminished by at least 1, and we can no
longer apply this technique. Either, we manually remove one
linearly dependent row of J, or we compute the explicit pseudo-
inverse. Moreover, it can be that there are no solutions when
a singularity is met. If the two links are aligned and if the
velocity of the end-effector has a component aligned with the
two links, there are no solutions (see Sciavicco and Siciliano,
1996).

Finally, in the vicinity of a singularity, the joint velocities may
become very large. A solution to this last problem can be found
by applying the damped least-squares (DLS) inverse instead of the
pseudo-inverse. It consists in using the term JJT + k0I (where I is
the corresponding identity matrix, and k0 is a scalar to be chosen)
instead of JJT in Equation (G.2) or JTJ + k0I in Equation (G.3).
The equations are therefore better conditioned. As k0 increases,
the joint velocities decrease but at the price that they do not obey
perfectly the equations Jx = v̇.
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G.5. n-link arm: forward and inverse kinematics of the end-effector
position

In the main text, we have introduced the problem of inverse kine-
matics and its various difficulties through the example of the
four-dof two-link arm: how to deal with redundancy, how to deal
with singularities, how to deal with imperfect numerical inte-
gration. In the following, we describe how to build the jacobian
matrix for a general serial manipulator (something like an arm
with n links). The methodology and the problems are the same
but the size of the system is bigger.

The forward kinematic of a n-link arm end-effector
position is:

PN = (
R∗

N TN−1R∗
N−1 . . . T1R∗

1

)
P0 (R1T1 . . . RN1 TN−1RN

)
= R∗

N

(
N−1∏
i = 1

TiR
∗
i

)

�������������������������������������������������������������������������������

S̃∗
tot

P0

(
N−1∏
i = 1

RiTi

)
RN

�����������������������������������������������������������������������������

Stot

where P0 is the end-effector position dual quaternion in the
end-effector fixed reference frame, Ri = cos θi

2 + ni sin θi
2 is the

rotation quaternion representing the rotation from link N − i + 1
to link N − i (link 0 is the inertial base reference frame) in N − i
link-fixed coordinates, and Ti = 1 + ε

di
2 ti is the translation from

link N − i + 1 to link N − i (link 0 is the inertial base reference
frame) in N − i link-fixed coordinates.

Its velocity can be derived:

ṖN =
⎛
⎝ N∏

j = 1

Rj

⎞
⎠

∗
Ṗ0

⎛
⎝ N∏

j = 1

Rj

⎞
⎠

+
N−1∑
i = 1

⎡
⎣
⎛
⎝ N∏

j=i+1

Rj

⎞
⎠

∗
2Ṫi

⎛
⎝ N∏

j=i+1

Rj

⎞
⎠
⎤
⎦

+
N∑

i = 1

⎡
⎣
⎛
⎝ N+1∏

j=i+1

Rj

⎞
⎠

∗
Pi�i − �iPi

2

⎛
⎝ N+1∏

j=i+1

Rj

⎞
⎠
⎤
⎦

where RN+1 = 1, which is set in order to avoid writing one
additional line for the term of the sum where i = N, and
where

Pi =
⎡
⎣
⎛
⎝ i−1∏

j = 1

RjTj

⎞
⎠ Ri

⎤
⎦

∗
P0

⎡
⎣
⎛
⎝ i−1∏

j = 1

RjTj

⎞
⎠Ri

⎤
⎦

where Ṫi is the translation velocity dual quaternion from link
N − i + 1 to link N − i, �i is the rotational velocity between link

N − i + 1 to link N − i, and Ṗ0 is the end-effector velocity dual
quaternion in the end-effector fixed reference frame (most of the
time, Ṗ0 = 0). From this expression, we can build the jacobian J
and then write the inverse kinematic equations Jx = v̇:

⎛
⎜⎜⎜⎜⎜⎜⎝

N∏
j = 1

RM
N−j+1 . . .

N−i∏
j = 1

RM
N−j+1 . . .

����������������������������������������������������������������������������������������������

i=1,...,N−1

. . .

⎛
⎝N−i∏

j=0

RM
N−j+1

⎞
⎠(−ÃPi

)
. . .

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������

i=1,...,N

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ṗ0

.

.

.

Ṫi

.

.

.

�i

.

.

.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= Ṗ
N

Then, we predict the rotation and translation dual quater-
nions at time t + �t, Rj(t + �t), and Tj(t + �t), similarly to
Equation (25).

G.6. Threshold value for the feedback term in the numerical
procedure

As explained in section 3.2.3 where we developed the numeri-
cal simulation example, we can take into account the difference
between the true end-effector position and the end-effector posi-
tion estimated through the reconstructed joint angles. To do so,
we tune a parameter, k1. The larger k1 the smaller is the position
error, because we penalize the position error more with larger val-
ues of k1. But k1 can not be too large for discrete time systems.
If k1 is too large, the system will be unstable and the error will
grow. The threshold value for k1 depends on the simulation step
�t. Indeed, the position error is described by a linear differential
equation (see Sciavicco and Siciliano, 1996):

ė + Ke = 0

where e is the position error and K is the feedback matrix, that we
fix for the following to be equal to k1 multiplied by the identity
matrix I (we penalize the errors in all the dimensions similarly).
In discrete time, we have:

e[k + �t] − e[k]
�t

= −Ke[k]

which is reformulated as:

e[k + �t] = (I − K�t)e[k]
= (1 − k1�t)Ie[k]

From this expression, we see that 0 < k1 < 2
�t for the system to

be stable (in discrete time, the eigenvalues must lie inside the unit
imaginary disk in order to be stable).

H. INVERSE KINEMATICS FROM THE END-EFFECTOR POSITION AND
ORIENTATION

H.1. Three-link arm
In order to build the jacobian matrix, we need to transform
Equation (28) [where Ṡx is the unknown and L̇(t) is known for
our inverse kinematics application] into a matrix equation.

First, we need to use the matrix expression for a screw motion
transformation applied to a line or a line velocity (which have the
same structure). Let us consider a line L0 = n0 + εm0 to which
we apply a general screw motion S: a rotation of angle θ around a
line whose orientation is s and that is offset by a from the origin
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(it can be the position of any point on the line), followed by a
translation d along the line axis s. Then, the expression:

L(t) = S∗L0S = n(t) + εm(t) (H.1)

can be described by the following matrix expression (see proof in
Appendix I.1):

(
RM 03×3

ÃaRM − RMÃa + RMdÃs RM

)
�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

J

(
n0

m0

)
=

(
n
m

)
(H.2)

where RM is the rotation matrix associated with the rotation
quaternion cos(θ/2) + s sin(θ/2), 0 is the 3 × 3 matrix whose
entries are all 0 and Ãa (resp. Ãs) is the anti-symmetric matrix
associated with the cross product, a × · (resp. s × ·).

If we transform L0 through N screw motions S1, . . . , SN :

L(t) =
(

N∏
i = 1

Si

)∗
L0

(
N∏

i = 1

Si

)
= n(t) + εm(t) (H.3)

then the corresponding matrix expression can be computed by
combining N matrices of the type of J in Equation (H.2):

N∏
i = 1

JN−i+1

(
n0

m0

)
=

(
n
m

)
(H.4)

Let us consider the expression of L(t) given by Equation (H.1).
The line velocity, L̇(t) is given by:

L̇(t) = Ṡ∗L0S + S∗L0Ṡ + S∗L̇0S (H.5)

= ṅ(t) + εṁ(t)

where L̇0 = ṅ0 + εṁ0, S is the screw motion operator and Ṡ its
velocity. Let us write the matrix expression of this equation. The
third term of Equation (H.5) consists simply of a screw motion
transformation of the same form as shown in Equation (H.1),
applied to the line velocity. The sum of the two first terms gathers
the velocity component due to the screw motion velocity applied
to the line L0. In Appendix I.2, we show that if we parameterize
S as S = TT∗

L RTL as described in sections 2.5.1 and 2.5.2, then we
have:

Ṡ∗L0S + S∗L0Ṡ = −R∗ (εḋ (�n0 ∧�s))R (H.6)

+ R∗ (ε
(
�n0 ∧ �̇a

))
R − ε

((
R∗n0R

) ∧ �̇a
)

+ T∗
L

( �� ∧ �n1 + ε
( �� ∧ �m1

))
TL

where n1 + εm1 = (
TT∗

L R
)∗

L0
(
TT∗

L R
)
. The first term of

Equation (H.6) represents the influence of the translation
velocity ḋ along the screw axis s onto the ṁ component of L̇.
The second term represents the influence of the offset velocity
ȧ between the screw motion line and the origin onto the ṁ

component again. Finally, the last term represents the influence
of the rotational velocity � around the screw motion line onto
both the ṅ and ṁ components of the line velocity. In matrix
terms, Equation (H.6) may be written:

(
03×1 03×3 −Ãn1

−RM (�n0 ∧�s) RMÃn0 − ÃRM n0
−ÃaÃn1 − Ãm1

)
�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

K

⎛
⎝ ḋ

�̇a
��

⎞
⎠=

(
ṅ
ṁ

)

(H.7)
From all these expressions, we can now build the matrix

expression for Equation (28), knowing that for our application,
L̇0 = 0 (the screwdriver end-effector has no intrinsic velocity in
the reference configuration). Therefore we have:

(
JUBJLUKHL JUBKLU KUB

03×3 ÃnLU 03×3

)
�������������������������������������������������������������������������������������������������������������������������������������������������������������������������

A

⎛
⎝�HL

�LU

�UB

⎞
⎠ =

⎛
⎝ ṅ

ṁ
03×1

⎞
⎠ (H.8)

where A is the jacobian matrix of size 9 × 9 of rank 8, which is
consistent with the fact that there are seven-dof and six parame-
ters coding for the line L. In Equation (H.8), we have:

• JUB, JLU, and JHL are matrices of the form J described in
Equation (H.2). JUB has only a rotational component, while
JLU and JHL also have an offset component for their rotation
axis, aLU and aHL.

• KUB, KLU, and KHL are matrices of the form of the last column
of matrix K in Equation (H.7), since in the seven-dof three-link
arm, we only consider rotational velocities. They are therefore

of the type: Ki =
(

−Ãn′
i−Ãai Ãn′

i
− Ãm′

i

)
for i = 1, 2, 3 where n′

i

and m′
i are obtained as follows:

(
n′

1
m′

1

)
=

(
RM

UB 03×3

03×3 RM
UB

)
JLUJHL

(
n0

m0

)
(

n′
2

m′
2

)
=

(
RM

LU 03×3

−RM
LUÃaLU RM

LU

)
JHL

(
n0

m0

)
(

n′
3

m′
3

)
=

(
RM

HL 03×3

−RM
HLÃaHL RM

HL

)(
n0

m0

)

Then we can use the techniques described in the previous sec-
tions, using the jacobian matrix to solve the inverse kinematics
problem. In the following, we generalize this method to a n−link
arm whose end-effector orientation matters.

H.2. n-link arm
Again the end-effector reference orientation and position in
the base frame is modeled by a line L0 = n0 + εm0. The N-
link motions can each be described by a screw motion Si, i =
1, . . . , N. Therefore we have:

L(t) =
(

N∏
i = 1

Si

)∗
L0

(
N∏

i = 1

Si

)
= n(t) + εm(t)
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The line velocity can be expressed as:

L̇(t) =
(

N∏
i = 1

Si

)∗
L̇0

(
N∏

i = 1

Si

)

+
N∑

i = 1

⎡
⎣
⎛
⎝ N∏

j=i+1

Sj

⎞
⎠

∗ (
Ṡ∗

i Li−1Si + S∗
i Li−1L̇i

)⎛⎝ N∏
j=i+1

Sj

⎞
⎠
⎤
⎦

where Li =
(∏i−1

j = 1 Sj

)∗
L0

(∏i−1
j = 1 Sj

)
. Now, in matrix terms,

using the properties that we derived above, we obtain:

⎛
⎜⎜⎜⎜⎜⎜⎝

N∏
i = 1

JN−i+1

i=1,...,N

. . .

⎛
⎝N−i+1∏

j = 1

JN−j+1

⎞
⎠Ki . . .

⎞
⎟⎟⎟⎟⎟⎟⎠

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

A

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ṅ0

ṁ0
...

ḋi

ȧi

�i
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(

ṅ
ṁ

)

(H.9)
where Ji is of the form described by Equation (H.2), using the
rotational and translational parameters of link i:

Ji =
(

RM
i 03×3

Ãai R
M
i − RM

i Ãai + RM
i diÃsi RM

i

)

and where Ki has the following structure:

Ki =
(

03×1 03×3 −Ãn′
i

−RM
i (ni−1 × si) RM

i Ãni−1 − ÃRM
i ni−1

−Ãai Ãn′
i
− Ãm′

i

)

where:

•
(

ni

mi

)
=

(∏i
j = 1 Jj

)(
n0

m0

)

•
(

n′
i

m′
i

)
=

(
RM

i 03×3

−RM
i Ãai RM

i

)(∏i−1
j = 1 Jj

)(
n0

m0

)

We can of course add constraints by including them into the
jacobian matrix A of Equation (H.9), for example if we want to
impose a rotation axis for �i. Then, using this jacobian matrix
A, we can proceed like described before to find a solution for the
inverse kinematics problem.

I. MATRIX EXPRESSIONS FOR SCREW MOTION POSITION AND
VELOCITY TRANSFORMATIONS

I.1. Screw motion transformation
Here we want to express the following line transformation under
a matrix form

L(t) = S∗L0S = n(t) + εm(t) (I.1)

where L0 = n0 + εm0. A screw motion S can be parameterized
as S = TT∗

L RTL (see section 2.5.1), where R is a pure rotation

dual quaternion, TL = 1 + ε 1
2 a represents the offset of the rota-

tion axis from the origin and T = 1 + εds is the translation along
the screw axis. Therefore, we write:

L(t) = (T∗
LR∗TLT∗)(n0 + εm0)(TT∗

LRTL) (I.2)

We can show that T∗(n0 + εm0)T = n0 + ε(m0 + ds × n0).
Performing one transformation, rotation or translation, at a time,
we can write in matrix form:(

n(t)
m(t)

)
=

(
I3×3 03×3

Ãa I3×3

)(
RM 03×3

03×3 RM

)(
I3×3 03×3

−Ãa I3×3

)
(

I3×3 03×3

dÃs I3×3

)(
n0

m0

)

=
(

RM 03×3

ÃaRM − RMÃa + RMdÃs RM

)
�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

J

(
n0

m0

)

I.2. Screw motion velocity
Here we demonstrate that if we parameterize S as S = TT∗

L RTL as
described in sections 2.5.1 and 2.5.2, then we have:

Ṡ∗L0S + S∗L0Ṡ = −R∗ (εḋ (�n0 ∧�s))R

+R∗ (ε
(
�n0 ∧ �̇a

))
R − ε

((
R∗n0R

) ∧ �̇a
)

+T∗
L

( �� ∧ �n1 + ε
( �� ∧ �m1

))
TL

where n1 + εm1 = (
TT∗

L R
)∗

L0
(
TT∗

L R
)
. Indeed, using

Equation (13), we have:

Ṡ∗L0S + S∗L0Ṡ = (R∗Ṫ∗)L0(TT∗
L RTL) + (T∗

L R∗TLT∗)L0(ṪR)
�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

translational velocity component

+ (R∗ṪL + Ṫ∗
L R∗)L0(TT∗

L RTL) + (T∗
L R∗TLT∗)L0(Ṫ∗

L R + RṪL)
�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

offset velocity component

+
(

− 1

2
T∗

L�R∗TLT∗
)

L0(TT∗
L RTL) + (T∗

L R∗TLT∗)L0

(
1

2
TT∗

L R�TL

)
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

rotational velocity component

Using the following properties:

• velocity dual quaternion due to translational velocity:
(0 + εv)
�������������������������

Ṫ

(n + εm) = ε vn
	

A

• invariance of this velocity dual quaternion due to translations:
(1 + εa)
�������������������������

T

εA = εA

• rotation of this velocity dual quaternion due to translations:
R∗(0 + εA)R = ε(R∗AR)

The velocity component due to the translational velocity along
the screw axis can be developed as follows:
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translational velocity component

= (R∗Ṫ∗)L0(TT∗
L RTL) + (T∗

L R∗TLT∗)L0(ṪR)

= R∗Ṫ∗L0R + (T∗
L R∗TLT∗)L0(ṪR)

= R∗
[
−ε

ḋ

2
s(n0 + εm0) + (n0 + εm0)ε

ḋ

2
s

]
R

= R∗
[
ε(− ḋ

2
sn0 + ḋ

2
n0s

]
R

= −R∗ (εḋ ( �n0 ∧�s))R

The velocity component due to the screw axis offset velocity
can be expressed as:

offset velocity component

= (R∗ṪL + Ṫ∗
L R∗)L0(TT∗

LRTL) + (T∗
LR∗TLT∗)L0(Ṫ∗

LR + RṪL)

= R∗ṪLL0R + Ṫ∗
L R∗L0R + R∗L0Ṫ∗

L R + R∗L0RṪL

= R∗(ṪLL0 + L0Ṫ∗
L)R + Ṫ∗

L(R∗L0R) + (R∗L0R)ṪL

= R∗ (ε
(
�n0 ∧ �̇a

))
R − ε

((
R∗n0R

) ∧ �̇a
)

Finally, the velocity component due to the rotational velocity is:

rotational velocity component

=
(

−1

2
T∗

L�R∗TLT∗
)

L0(TT∗
LRTL)

+ (T∗
L R∗TLT∗)L0

(
1

2
TT∗

L R�TL

)

= −1

2
T∗

L�L1TL + 1

2
T∗

L L1�TL

= 1

2
T∗

L (L1� − �L1) TL

= T∗
L

( �� ∧ �n1 + ε
( �� ∧ �m1

))
TL

where L1 = n1 + εm1 = (R∗TLT∗)L0(TT∗
LR).
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