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Diabetes is associated with vascular inflammation, endothelial dysfunction, and oxidative stress, promoting the development
of cardiovascular diseases (CVD). Several studies showed that a carotenoid-rich diet is associated to a reduced cardiovascular
risk in healthy and diabetic subjects, although the mechanisms of action are still unknown. Here, the potential role of
β-carotene (BC) and lycopene (Lyc) in human endothelial cells isolated from human umbilical cord vein (HUVECs) of
women with gestational diabetes (GD) and respective controls (C) has been investigated. Results showed that BC and Lyc
reduced the tumor necrosis factor alpha- (TNF-α-) stimulated monocyte-endothelium interaction (adhesion assay),
membrane exposure (flow cytometry), and total expression levels (Western blot) of VCAM-1 and ICAM-1 in both cell
types. Moreover, the treatment with BC and Lyc reduced the TNF-α-induced nuclear translocation of NF-κB (image flow
cytometry) by preserving bioavailability of nitric oxide (NO, flow cytometry, and cGMP EIA kit assay), a key vasoactive
molecule. Notably, BC and Lyc pretreatment significantly reduced peroxynitrite levels (flow cytometry), contributing to the
redox balance protection. These results suggest a new mechanism of action of carotenoids which exert vascular protective
action in diabetic condition, thus reinforcing the importance of a carotenoid-rich diet in the prevention of diabetes
cardiovascular complications.

1. Introduction

Cardiovascular diseases represent the major complications
and the main cause of reduced life expectancy in type 2 dia-
betic patients [1].

Diabetes is a chronic low-grade inflammatory condition
featured by the increased plasma levels of TNF-α, a primary
mediator of inflammation and insulin resistance [2], and
reactive oxygen species (ROS), both playing an important
role in the promotion of endothelial dysfunction and cardio-
vascular complications [3].

Nitric oxide is an important molecule playing a pleiotro-
pic role in preserving vascular wall homeostasis. It is pro-
duced by endothelial nitric oxide synthase (eNOS) via the
conversion of the amino acid L-arginine into L-citrulline.
Once released, it diffuses to the vascular smooth muscle cells
(vSMC), where it activates the enzyme guanylate cyclase
(GC), inducing the production of cyclic guanosine monopho-
sphate (cGMP), a molecule involved in vascular relaxation.
Moreover, nitric oxide (NO) modulates platelet aggregation
and monocyte adhesion and infiltration into the vascular wall
and inhibits vSMC proliferation and migration [4, 5]. Thus,
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the maintenance of nitric oxide availability is mandatory to
avoid the activation of the inflammatory process and the
endothelial dysfunction.

However, several studies found that under hyperglycemic
conditions NO rapidly reacts with superoxide anion (O2

•−) to
form peroxynitrite (ONOO−), a highly potent oxidant mole-
cule that diffuses across phospholipid membranes, resulting
in substrate nitrosylation and nitric oxide bioavailability
decline [6–8].

Several natural molecules seem to have a beneficial effect
on oxidative stress and vascular dysfunction [9–11]; among
them, carotenoids are the most characterized. Carotenoids
include a large family of fat-soluble molecules noted for their
antioxidant action [12]. However, besides their antioxidant
effect, they also exert an anti-inflammatory effect, playing
an important role in the prevention of cardiovascular com-
plications [13, 14].

Among more than 700 carotenoids discovered, the
main and better characterized are β-carotene and lycopene
with free radical scavenger activity and nutritional rele-
vance [15]. Interestingly, several studies showed that carot-
enoids are able not only to prevent but also to ameliorate
diabetes and its subsequent complications by reducing oxi-
dative stress [16, 17].

In preclinical reports using streptozotocin- (STZ-)
induced hyperglycemic rats as a model to evaluate the effect
of chronic lycopene treatment [18–20], it was found that this
molecule acts as an antidiabetic agent, attenuating endothe-
lial dysfunction by its antioxidant action.

Moreover, other studies also indicated that dietary lyco-
pene administration markedly reduced serum lipid levels
and the formation of atherosclerotic plaques in New Zealand
White (NZW) rabbits fed a high-fat diet [21–23], further
indicating that lycopene could play a significant role in the
prevention of cardiovascular consequences.

As regard human studies, although the evidence on the
beneficial effects of carotenoids in the reduction of diabetes
incidence is controversial [24–26], it was demonstrated that
serum concentration of carotenoids was inversely associated
with future oxidative stress, inflammation, and endothelial
dysfunction [27]. In addition, prospective investigations
highlighted that adequate dietary intakes of carotenoids were
associated with a reduced risk for type 2 diabetes mellitus
(T2DM) [28–30], inducing to establish a “carotenoid health
index” to better evaluate the cardiovascular risk according
to established plasmatic carotenoid concentrations [31].

Although several in vitro cellular models have been used
to evaluate the role of carotenoids in reducing the devel-
opment and the progression of the atherosclerotic plaque
[17, 32, 33], it is however mandatory to better delineate the
molecular events involved in the beneficial effect of caroten-
oids in slowing down the endothelial dysfunction and the
atherosclerotic process in diabetes mellitus.

In this study, we used an endothelial cell model of
chronic hyperglycemia derived from the human umbilical
cord vein of women affected by gestational diabetes
(GD-HUVECs). Recently, we found that these cells exhibit
durable proatherogenic modifications of cellular homeostasis
potentially predisposing to endothelial dysfunction and

atherosclerosis development [34, 35], making them a useful
model for studying endothelial dysfunction related to diabe-
tes. Thus, we aim to investigate the molecular mechanisms of
new natural molecules such as β-carotene and lycopene on
the prevention or the delay of the vascular damage induced
by hyperglycemia.

In particular, to better outline the way of action of carot-
enoids in endothelial dysfunction prevention in diabetes, we
pretreated TNF-α-stimulated GD-HUVECs with β-carotene
and lycopene. Interestingly, we found that the exposure of
diabetic HUVECs to β-carotene and lycopene resulted in
an increased nitric oxide bioavailability, probably induced
by the scavenging action of carotenoids, and in the reduction
of the oxidative and inflammatory stress damage.

2. Materials and Methods

2.1. Materials. Phosphate-buffered saline (PBS, CAT.
D8662), Dulbecco’s modified Eagle medium (DMEM, CAT.
D6046), M199 endothelial growth medium (CAT. M4530),
0.5% trypsin/0.2%, ethylenediaminetetraacetic acid (EDTA)
solution (CAT. 59418C), bovine serum albumin (BSA),
L-glutamine (CAT. G7513), penicillin-streptomycin (CAT.
P4333), phorbol myristate acetate (PMA, CAT. P1585), iono-
mycin (Iono, CAT. I0634), anti-β-actin mouse monoclonal
antibody (CAT. A5441), 7-aminoactinomycin D (7-AAD,
CAT. A9400), and TNF-α (CAT. T0157) were purchased
from Sigma-Aldrich (Saint Louis, USA). Fetal bovine serum
(FBS, CAT. 41A0045K) was from Life Technologies (Monza,
Italy), and L-nitro-arginine-methyl ester (L-NAME, CAT.
ALX-105-003) was purchased from Alexis Biochemicals
(San Diego, CA, USA). Anti-vascular cell adhesion molecule-
1 (VCAM-1, CAT. sc-13160) and anti-intercellular adhesion
molecule-1 (ICAM-1, CAT. sc-107) antibodies were from
Santa Cruz Biotechnology (Santa Cruz, CA, USA). PE-
labeled anti-VCAM-1 (phycoerythrin-labeled, CAT. 305806)
and FITC-labeled anti-ICAM-1 (fluorescein isothiocyanate--
labeled, CAT. 313104) antibodies were from BioLegend (San
Diego, CA, USA). Anti-NF-κB p65 (CAT. 4764) primary
antibody was from Cell Signaling (Danvers, MA, USA).
Alexa Fluor 488-conjugated antibody was from Invitrogen
(CAT. 11034). DAF-2DA probe was from Calbiochem
(CAT. 251505). HKGreen-4A was synthesized by Prof. Dan
Yang’s lab [36]. An enzyme immunoassay (EIA) kit was taken
from GE Healthcare (Little Chalfont, Buckinghamshire, UK).
Lycopene (Lyc, CAT. L9879) was purchased from Sigma-
Aldrich, and β-carotene (BC, CAT. 22040) from Fluka
(Hamburg, Germany): both were dissolved in tetrahydrofuran
(THF, CAT. 401757, Sigma-Aldrich) and used as described in
our previous work [37].

2.2. Cell Cultures and Experimental Protocol. Primary human
umbilical vein endothelial cells (HUVECs) were explanted by
umbilical cords obtained from randomly selected mothers
affected by gestational diabetes (GD) and healthy Caucasian
mothers (Control, C), according to the previously reported
methods [38]. The characteristics of C-mothers (n = 10)
and GD-mothers (n = 12) selected for this work are described
in Table 1. All procedures were in agreement with the
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ethical standards of the Institutional Committee on Human
Experimentation (reference number 1879/09COET) and
with the Declaration of Helsinki principles. For experiments,
C- and GD-HUVECs were grown to subconfluence in a
DMEM/M199 medium (ratio 1 : 1) supplemented with 20%
FBS, 10μg/mL heparin and 50μg/mL endothelial cell growth
factor. Serum-starved cells (in medium with 0.5% FBS) were
incubated with TNF-α at concentration 1ng/mL for 16
hours, following 24-hour preincubation with β-carotene or
lycopene (2.5μmol/L).

All experiments were performed in technical duplicate or
triplicate using at least 3 different cellular strains (n = 3)
obtained from umbilical cords of C- or GD-women.

2.3. Monocyte-HUVEC Adhesion Assays. The adhesion assay
was performed in C- and GD-HUVECs in the basal state and
after incubation for 24 hours with BC or Lyc (2.5μmol/L)
before stimulation with or without 1 ng/mL TNF-α for 16
hours. The cells were grown to confluence in six-well tissue
culture plates and U937 cell lines (European Collection of
Authenticated Cell Cultures (ECACC)) were used to evaluate
the adhesion to HUVEC monolayers as previously described
[39]. One hour before the assay, HUVECs were treated with
antibodies against VCAM-1 or ICAM-1 at saturating con-
centrations (1μg/1× 106 cells) as negative technical controls.
Photos were randomly chosen high-power fields taken at a
half-radius distance from the centre of the well in one of
three comparative experiments of a similar design, showing
U937 monocytoid cell adhesion to endothelial cells.

2.4. Western Blot Analysis. C- and GD-HUVECs were stimu-
lated as described in the experimental protocol, and Western
blot analysis was performed as previously described [10]. For
the specific experiment, cells were lysed and 30μg total pro-
tein was resolved by SDS-PAGE, transferred to nitrocellulose
membrane, and immunoblotted using mouse monoclonal
anti-VCAM-1 and ICAM-1 (1 : 1000 and 1 : 500, respec-
tively) and mouse monoclonal anti-β-actin (1 : 10.000). The

membranes were then incubated with peroxidase-
conjugated secondary antibodies (1 : 10.000). Band densities
of proteins were detected and quantified by using the Alli-
ance Chemiluminescence Imaging System (UVItec Limited,
Cambridge, United Kingdom). Densities of VCAM-1 and
ICAM-1 proteins were divided by those of β-actin content,
and the ratio was indicated as arbitrary units.

2.5. cGMP EIA Kit Assay. Control and GD-HUVECs were
grown to confluence in six-well tissue culture plates and
were stimulated as described in the experimental protocol.
To stimulate endogenous NO production, C- and GD-
HUVECs were incubated with ionomycin (2μmol/L for
24 h) with or without L-NAME preincubation (1mmol/L
for 45 minutes). Intracellular cGMP levels were evaluated
by using a commercial enzyme immunoassay (EIA) kit,
following the instruction provided by the supplier.

2.6. Flow Cytometry Analysis. At the basal state and after
stimulations, nonpermeabilized cells were detached by
5mM EDTA, washed, and resuspended in 0.5% BSA solu-
tion. Cells were treated and incubated with anti-VCAM-1
PE conjugate (1 : 100) and with anti-ICAM-1 FITC conju-
gate (1 : 100) as previously described [38]. To determine
cytoplasm-nucleus translocation of NF-κB p65, cells were
permeabilized by an Intrasure kit (CAT. 641778, BD Biosci-
ences), processed, and incubated with anti-NF-κB p65
(1 : 100) primary antibody and then secondary antibody
Alexa 488 conjugate (1 : 100). Nuclear staining was per-
formed by incubating the cells with 7-AAD (1 : 100) for 10
minutes at room temperature, and all samples were analysed
by imaging flow cytometry (ImageStream AMNIS by using
IDEAS software, BD).

To evaluate NO levels, 5× 105 C- and GD-HUVECs were
incubated with the cell-permeable fluorescent nitric oxide
probe DAF-2DA (2μmol/L for 30 minutes at 37°C). For the
evaluation of intracellular levels of peroxynitrite (ONOO−),
about 5× 105 cells were incubated with the HKGreen-4A
probe as previously described [38]. 10.000 events for each
sample were analysed using a FACS Calibur or FACS Canto
II flow cytometer (BD Bioscences, California, USA). All data
were analysed using FACS Diva (BD Bioscences), FlowJo
v.8.8.6 (TreeStar, Ashland, OR), and CELL Quest 3.2.1 soft-
ware (BD Biosciences).

All results are expressed as the percentage (%) of positive
cells or the MFI (mean fluorescence intensity) ratio, calcu-
lated by dividing the MFI of positive events by the MFI of
negative events (MFI of secondary antibody).

2.7. Statistical Analysis. Results are presented as the means
± standard deviation (SD) of at least 3 different experiments
using at least 3 different cellular strains (n = 3) both of
C-HUVECs and of GD-HUVECs. Student’s t-test and
ANOVA test followed by the Bonferroni multiple compari-
son test for post hoc comparisons were used to analyse the
differences between the two cell strains and between the
different treatments. Significance was defined as a p value
less than 0.05.

Table 1: Clinical characteristics of control (C, n = 10) and
gestational diabetic (GD, n = 12) women.

Characteristic C-women GD-women

Age (years) 35± 7.1 34± 5.67
Height (cm) 163.75± 5.66 162.4± 7.93
Pregestational weight (kg) 68.14± 13 67.1± 10.73
BMI (kg/m2) 27.49± 5.18 27.81± 2.97
OGTT values (mmol/L)

Basal glycaemia 4.5± 0.24 5.1± 0.24∗∗

1 h glycaemia 8.1± 0.99 10.2± 1.16∗∗

2 h glycaemia 6.54± 1.14 8.04± 1.71∗

OGTT gestational week 27.9± 2.4 24.4± 4.7
SBP (mm/Hg) 107.6± 8.87 105.5± 10.7
DBP (mm/Hg) 71.4± 9.1 68.4± 10.57
Data are expressed as the mean ± SD. BMI: body mass index, OGTT: oral
glucose tolerance test, SBP: systolic blood pressure, DBP: diastolic blood
pressure. ∗∗p < 0 05; ∗p < 0 0001.
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3. Results

3.1. Effect of Carotenoids on Monocyte-HUVEC Interaction.
The effects of carotenoids on human monocyte line U937
adhesion rate to control and GD-HUVECs, in basal or
TNF-α-stimulated conditions, were investigated.

Figure 1 shows that, in the basal state, the monocyte-
GD-HUVEC interaction was significantly higher compared
to C-HUVECs (p < 0 0002). The exposure to 1 ng/mL TNF-α
further increased this difference (p < 0 05). Interestingly, pre-
treatment with 2.5 μmol/L of BC or Lyc for 24 hours signifi-
cantly resulted in the reduction of monocyte adhesion
induced by TNF-α to both cell types (p < 0 05).

3.2. Effect of Carotenoids on Adhesion Molecule Membrane
Exposure and Expression. The exposure of the adhesion
molecules on the endothelial cell membrane is the major
mechanism responsible for the monocyte-endothelial cell
interaction. We thus evaluated VCAM-1 and ICAM-1

membrane exposure and total protein expression in C- and
GD-HUVECs with or without the pretreatment with BC or
Lyc (2.5 μmol/L for 24 h) and in the presence or absence of
the inflammatory stimulus TNF-α.

Figure 2 shows that both basal VCAM-1 (Figure 2(a))
and ICAM-1 (Figure 2(b)) exposure is greater on GD-
HUVEC membrane compared to control cells (p < 0 001
and p = 0 05, respectively). TNF-α increased the exposure
of VCAM-1 and ICAM-1 in both cell types (p < 0 05). The
increased exposure induced by TNF-α was significantly
reduced in the presence of 2.5 μmol/L for 24 h BC or Lyc
(p < 0 05). Interestingly, in GD-HUVECs, Lyc is able to
reduce ICAM-1 exposure on the endothelial membrane also
in the basal state (p < 0 05).

After 16 h of 1 ng/mL TNF-α stimulation, a signifi-
cant increase in VCAM-1 (Figure 2(c)) and ICAM-1
(Figure 2(d)) total protein levels was observed. The increase
was more pronounced in GD-HUVECs as compared to
C-HUVECs (p < 0 05). Remarkably, in TNFα-stimulated
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Figure 1: Effect of carotenoids on TNF-α-induced monocyte interaction in C- and GD-HUVECs. Monocyte-HUVEC adhesion in C- and
GD-HUVECs untreated (Basal) and incubated for 24 h with BC or Lyc (2.5 μmol/L) and then stimulated for 16 h with or without TNF-α
(1 ng/mL). In the histogram (upper side), quantitative data express the number of U937 cells adhering within a high-power field
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C- and GD-HUVECs, the pretreatment with 2.5 μmol/L for
24 h of BC (left) or Lyc (right) significantly decreased adhe-
sion molecule protein levels (p < 0 05), supporting the idea
of the potential role played by these carotenoids in the reduc-
tion of the monocyte adhesion.

3.3. Effect of Carotenoids on NF-κB p65 Nuclear
Translocation. Figure 3 shows the nucleus-NF-κB p65 colo-
calization rate expressed as the histogram (Figure 3(a)) and
single-cell images (Figure 3(b)) in the presence or absence
of BC and Lyc (2.5 μmol/L for 24 h) in C- and GD-
HUVECs with or without the inflammatory stimulus TNF-α.

As expected, compared to C-HUVECs, GD-HUVECs at
basal condition showed an enhanced NF-κB p65 nuclear
translocation level (p < 0 01), which was further significantly
increased following TNF-α stimulation in both cell types
(p < 0 05), and it resulted to be more evident in GD-
HUVECs (p < 0 005 vs. C-HUVECs). Interestingly, 24 h pre-
treatment with BC or Lyc was associated to a significant reduc-
tion of TNF-α-induced NF-κB nuclear translocation in both
GD- and C-HUVECs (p < 0 05). It is noteworthy how in BC
and Lyc pre-treated control cells a reduction of NF-κB nuclear
translocation was also evident in basal condition.

3.4. Effect of Carotenoids on NO Bioavailability. As shown in
Figure 4, as compared to basal condition, TNF-α stimulation
significantly decreased nitric oxide levels both in C- and in
GD-HUVECs (p < 0 05). Pretreatment with 2.5μmol/L
β-carotene and lycopene restored NO bioavailability in both
the cell types. Moreover, after TNF-α exposure, both the cell
types displayed decreased levels of cGMP, a biological target
of NO activity, compared to their basal condition, and this
was more evident in GD-HUVECs (p < 0 05). Notably,
cGMP content significantly increased after pretreatment with
BC and Lyc in both TNF-α-stimulated C-HUVECs and
TNF-α-stimulated GD-HUVECs (p < 0 05). As a positive
control, eNOS activator ionomycin (Iono) stimulation was
used and a significant increase in nitric oxide bioavailability
and cGMP levels (p < 0 05) was observed in C-HUVECs,
the effect that was abolished by the preincubation with the
eNOS inhibitor L-NAME (p < 0 05).

3.5. Effect of Carotenoids on Peroxynitrite Production. To
better understand if the increased NO levels after BC
and Lyc stimulation were associated with a reduced peroxy-
nitrite formation, we evaluated the intracellular ONOO− pro-
duction in C- and GD-HUVECs in the presence or absence
of an inflammatory stimulus.

Figure 5 shows that, in the basal state, GD-HUVECs dis-
play greater peroxynitrite levels compared to C-HUVECs
(p < 0 05). The pretreatment with 2.5 μmol/L of BC or Lyc
for 24h decreased the peroxynitrite levels in both TNFα-
stimulated cell types. This result is more evident in GD-
HUVECs (p < 0 05). The potent oxidant molecule PMA
(200ng/mL) and Ionomycin (50 nmol/L) pretreatment for
30 minutes highly increased the percentage of positive
cells for peroxynitrite probe (p < 0 05), mostly in control
with respect to GD-HUVECs, confirming the efficiency
of the assay.

4. Discussion

Cardiovascular complications are the major consequences of
chronic hyperglycemia and represent the main reason for
impaired life expectancy in diabetic patients [40]. In fact, car-
diovascular events represent the most prevalent cause of mor-
bidity and mortality in diabetic patients [40]; thus, an optimal
control of both hyperglycemia and cardiovascular risk factors
is necessary to prevent adverse outcomes in type 2 diabetic
patients [41]. More in depth knowledge of the complex of
mechanisms controlling vascular damage in diabetes suggested
that some natural molecules could be able to address multiple
aspects of diabetes and its complications and, most impor-
tantly, to reduce disease-related morbidity and mortality [14].

Although several studies have been performed regarding
the potential protective role of some natural antioxidant mol-
ecules, disparate results have been obtained regarding the
beneficial effect of antioxidant therapy in the reduction of
diabetes incidence and the prevention of its cardiovascular
complications [42].

Carotenoids are among the main characterized natural
antioxidants studied in order to find new potential protective
molecules for chronic inflammation and oxidative stress [12].
However, controversial data have been found on their effects.
Indeed, it is likely that the structure of carotenoids makes
these molecules highly susceptible to oxidation under certain
conditions, such as the oxygen partial pressure (PO2) and
their high amount [43–46], inducing a reduction in their
nutritional value and their beneficial action [47, 48].

In addition, several studies also showed that the mecha-
nisms of action and the antioxidant capacities of carotenoids
could be totally different and strongly dependent upon their
interaction with other antioxidant compounds [49]. Indeed,
an increase in the concentration of one might reduce the
absorption of another with a great antioxidant capacity
reducing the overall effectiveness [50]. In fact, the effect of
antioxidant molecules has to be considered the result of a
complex network involving several reactive species and other
biological targets, and the redox regulation has to consider
not only the ROS imbalance in a quantitative manner but
also their chemical structure, cellular location, formation
and degradation rate, and physiological functions [51]. Fur-
thermore, the presence of chemical interactions between
reactive oxygen species, which influence the response of
organism to environmental challenges and stressors ensuring
its homeostasis, must be considered. Then, it is necessary not
to discard the idea that inappropriate removal of ROS could
be also be self-defeating [52].

Hence, there is still not a definite scenery regarding the
potential benefic effect of carotenoid diet administration in
diabetes cardiovascular complication prevention and their
mechanism of action, so further analyses are needed.

In the present study, we investigated the mechanisms
potentially involved in carotenoid prevention of vascular
inflammation and atherogenesis under chronic hyperglyce-
mic condition.

In particular, we evaluated the effect of β-carotene
and lycopene on the modulation of the inflammatory and
nitro-oxidative state of GD-HUVECs, which represent a
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Figure 2: The effect of carotenoids on adhesion molecule membrane exposure and total expression after TNF-α-stimulation in C- and
GD-HUVECs. VCAM-1 (a) and ICAM-1 (b) membrane exposure in C- and GD-HUVECs untreated (basal) and incubated for 24 h with
BC or Lyc (2.5 μmol/L) and then stimulated for 16 h with or without TNF-α (1 ng/mL). Quantitative data in histograms result from 4
different experiments (n = 4). The results are expressed as the percentage of positive cells for surface exposure on the plasma membrane of
VCAM-1 and ICAM-1 in not permeabilized cells. Representative Western blot and its histogram for VCAM-1 (c) and ICAM-1 (d) total
protein expression in C- and GD-HUVECs untreated (Basal) and incubated for 24 h with 2.5μmol/L of BC (left panels) or Lyc (right
panels) and then stimulated for 16 h with or without TNF-α (1 ng/mL). Quantitative data in histograms result from 3 different
experiments (n = 3). The results for the VCAM-1 or ICAM-1 and β-actin ratio are expressed as arbitrary units, and data are shown as fold
increase vs. basal condition of the mean ± SD from three independent experiments. ANOVA and Bonferroni multiple comparison test:
∗p < 0 05 vs. basal C-HUVECs, ∗∗p < 0 05 vs. TNF-α C-HUVECs, ∗∗∗p < 0 05 vs. basal GD-HUVECs, #p < 0 05 vs. TNF-α GD-HUVECs.
Student’s t-test: in (a) and (b), †p < 0 001 and §p = 0 05 basal GD-HUVECs vs. basal C-HUVECs, ‡p < 0 05 TNF-α GD-HUVECs vs.
TNF-α C-HUVECs; in (c) and (d), †p < 0 03 and ‡p < 0 05 TNF-α GD-HUVECs vs. TNF-α C-HUVECs.
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useful cellular model of endothelial dysfunction occurring
during hyperglycemic conditions [34]. Cells were exposed
in vitro to β-carotene and lycopene concentration compara-
ble to circulating levels of those molecules reached after oral
administration, in vivo.

The results obtained suggest a new hypothesis regarding
the mechanism of action of carotenoids in the prevention
of diabetes-related cardiovascular complications.

At first, in order to evaluate carotenoids’
anti-inflammatory action, we determined the monocyte-
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Figure 3: The effect of carotenoids on TNF-α-increased NF-κB p65 nuclear translocation levels in C- and GD-HUVECs. The histogram (a)
and representative single-cell images (b) of NF-κB p65 cytoplasm-nucleus translocation in untreated (basal) or TNF-α stimulated C- and
GD-HUVECs after preincubation for 24 h with of BC or Lyc (2.5 μmol/L). In (a), data in the histogram result from 3 independent
experiments (n = 3) and are expressed as the percentage of positive cells for nucleus-NF-κB p65 colocalization. In (b), nuclei are stained in
red and NF-κB p65 in green for each experimental condition. ANOVA and Bonferroni multiple comparison test: ∗p < 0 05 vs. basal
C-HUVECs, ∗∗p < 0 05 vs. TNF-α C-HUVECs, ∗∗∗p < 0 05 vs. basal GD-HUVECs, #p < 0 05 vs. TNF-α GD-HUVECs. Student’s t-test:
†p < 0 01 basal GD-HUVECs vs. basal C-HUVECs, ‡p < 0 005 TNF-α GD-HUVECs vs. TNF-α C-HUVECs.
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endothelial cell interaction rate, finding that β-carotene and
lycopene significantly reduced monocyte-HUVEC adhesion
in TNF-α-stimulated C- and GD-HUVECs (Figure 1). Coher-
ently, we also observed that BC and Lyc significantly decreased
TNF-α-induced VCAM-1 and ICAM-1 membrane exposure
and the total protein expression in both control and GD cells
(Figure 2).

Moreover, it is noted that NF-κB plays a fundamental
role in the expression of proinflammatory molecules such
as cytokines, chemokine, and adhesion molecules [53] and
several studies demonstrated that it is highly involved in
metabolic disorders and atherosclerosis [54, 55], thus

evaluating the effect of carotenoids treatment on NF-κB
nuclear translocation.

Interestingly, we found that, under a TNF-α-stimulated
state, carotenoid treatment significantly reduced NF-κB
nuclear translocation in control cells as well as in GD-
endothelial cells (Figure 3). Notably, these data highlight
the ability of carotenoids to inhibit the inflammatory path-
way not only in healthy conditions, as previously found
[37], but also in a hyperglycemic state, suggesting their
anti-inflammatory role in diabetes.

In this regard, we consider the effect of BC and Lyc pre-
treatment in the modulation of nitric oxide bioavailability,
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Figure 4: The effects of carotenoids on NO bioavailability in C- and GD-HUVECs. (a) Nitric oxide generation measured by DAF-2DA
cytometric analysis and (b) cGMP levels measured by an EIA kit in HUVECs pretreated with BC or Lyc (2.5mmol/L) in the presence or
absence of 16 h stimulation with TNF-α (1 ng/mL). The stimulation with ionomycin (Iono, 2μmol/L) for 24 h with or without L-NAME
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which is involved in the modulation of the NF-κB pathway
[56] and thus in the vascular homeostasis balance.

Of note, in endothelial cells chronically exposed to high
glucose and inflammation, despite an increase in NO pro-
duction [57], the bioavailability of nitric oxide is decreased,
as we previously demonstrated [34], probably as results of
the “quenching” of NO, which rapidly reacts with the high
levels of superoxide to produce peroxynitrite [58].

Here, we further confirm that the exposition to the proin-
flammatory stimulus TNF-α promotes a decline in NO levels
and a decrease of the production of cGMP, its biological tar-
get, both in C- and in GD-HUVECs (Figure 4). However,
remarkably, we also found that the exposure to β-carotene
and lycopene induced an increase in NO bioavailability, par-
ticularly in GD-HUVECs.

In this regard, not surprisingly, the pretreatment with BC
and Lyc resulted in the decreased peroxynitrite production in
both TNF-α-exposed control and GD-HUVECs (Figure 5),
confirming their antioxidant action and their role in the pro-
motion of nitric oxide level maintenance.

All together, these results indicate that carotenoids con-
tribute to restore endothelial homeostasis in an endothelial
cell model chronically exposed to high-glucose levels by pro-
moting nitric oxide bioavailability, exerting both antioxidant
and anti-inflammatory actions.

5. Conclusion

In conclusion, data obtained in the present study elucidate
the mechanisms of action of carotenoids in the modulation
of the inflammatory and oxidative state induced in vitro by

the proinflammatory molecule TNF-α on an endothelial cel-
lular model of chronic hyperglycemia.

Then, while care must be taken regarding the safety of
chronic and high-dose carotenoid supplementation, our
results show that a diet amount administration of these
natural food components could be important for the man-
agement of the vascular homeostasis in hyperglycemic
conditions, speculating that a carotenoid-rich diet could
prevent cardiovascular complications in diabetic patients.
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