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Abstract: Milk contains several important nutrients that are beneficial for human health. This review
considers the nutritional qualities of essential fatty acids (FAs), especially omega-3 (ω-3) and omega-6
(ω-6) polyunsaturated fatty acids (PUFAs) present in milk from ruminant and non-ruminant species.
In particular, the impact of milk fatty acids on metabolism is discussed, including its effects on the
central nervous system. In addition, we presented data indicating how animal feeding—the main
way to modify milk fat composition—may have a potential impact on human health, and how rearing
and feeding systems strongly affect milk quality within the same animal species. Finally, we have
presented the results of in vivo studies aimed at supporting the beneficial effects of milk FA intake in
animal models, and the factors limiting their transferability to humans were discussed.

Keywords: human health; milk; fatty acids; animal feeding; brain functions; omega-3 PUFAs; omega-
6 PUFAs; CLA

1. Introduction

In recent years, awareness of the importance of diet for human health has considerably
increased, and some consumers, mainly living in developed countries, are paying more
attention to selecting food that may directly contribute to their health [1]. Thus, food is no
longer intended only to satisfy hunger and to provide the necessary nutrients, but also to
prevent metabolic diseases and to improve the wellness of consumers [2].

Healthy nutrition, together with physical activity, positively affects metabolic health,
the immune system, and lowers the risk of chronic illnesses and infectious diseases [3]. A
variety of selected nutrients such as vitamins, minerals, dietary fibers, proteins, antioxi-
dants, and fatty acids (FAs), but also drinking enough water and limiting sugar, fat, and
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salt, significantly lower the risk of several pathologies such as overweightness, obesity,
heart disease, stroke, diabetes, neuro-pathologies, and certain types of cancer [4].

Common dietary recommendations for human health suggest limiting the consump-
tion of several foods of animal origin [4] and, in general, to reduce saturated fatty acids
(SFAs) and trans fatty acids to lower the incidence of cardiovascular disease [5]. Nonetheless,
many studies demonstrated no association between the consumption of full-fat dairy and the
risk of cardiometabolic diseases [6]. In this regard, milk deserves a dedicated discussion.

Milk is consumed by over 6 billion people around the world. Fats from milk and dairy
products are an important source of nutrients and energy, but they have been reported as
being implicated in some chronic diseases in humans [7]. Indeed, it is commonly suggested
to use low-fat or reduced-fat products [8]. Nonetheless, recent studies have shown that
milk and dairy, regardless of their fat content, may have a beneficial effect on metabolic and
cardiometabolic health [9,10]. With regard to the effects of milk on brain health, although
some studies indicated a positive impact of dairy consumption on cognitive performance and
in reducing the risk of dementia [11,12], most of the results are still controversial [13–15]. In
particular, little is known about the mechanisms linking milk/dairy intake and cognitive
performance, and, in general, there is a lack of knowledge of the efficacy of individual milk
nutrients on the central nervous system (CNS). Therefore, our review will focus on the
effects of some FAs present in milk on human health, including the impact on the CNS.

It is important to underline that the term “milk” is vague since different animal
species yield milk of different quality, with different compositions of FAs. Interestingly, the
particular species-specific milk composition, especially protein and fat content, determine
the rate of growth of the offspring of each mammalian species [16]. In addition, within the
same animal species, and even within the same breed, the quality of milk strongly depends
on several factors, such as animal feeding, rearing systems, and seasonal variability. Thus,
in our review we will analyze the differences in the FA profiles of milk produced by
different animal species, and by animals reared and fed in different ways.

2. Profile of Milk Fat

Milk contains numerous important nutrients such as FAs (oleic acid,ω-3 FAs), protein,
lactose, mineral salts (calcium, phosphorus, potassium, magnesium, sodium), and vitamins
(especially B1, B2, B6, retinol, carotenes, tocopherol). The FA profile of milk is an important
factor in determining its nutritional value [10,17], with special attention paid to essential
FAs, namely linoleic acid (LA, C18:2 ω-6) and α-linolenic acid (ALA, C18:3 ω-3), which
contribute to the human daily intake of polyunsaturated fatty acids (PUFAs). These FAs
cannot be synthesized in humans [18].

Polyunsaturated Fatty Acids (PUFAs)

FAs are important components of the human body, playing several structural and
functional roles. They are not only an important source of energy, but they are also key
components of cell membranes’ phospholipids, contributing to the fluidity, flexibility, and
permeability of the membrane [19]. Key FAs are ω-3 PUFAs, which participate in the
inflammatory cascade, reducing the oxidative stress and playing a protective role in the
cardiovascular and nervous systems [20,21]. The ALA in normal conditions cannot be
converted efficiently to more biologically active PUFAs such as very long-chain eicosapen-
taenoic acid (EPA), docosahexaenoic acid (DHA), and docosapentaenoic acid (DPA, 22:5
ω-3) [22], which have to be assumed by diet. Milk and dairy products contribute about
16–26% of the human daily intake ofω-3 PUFAs [23].

The main ω-6 FA in cow milk fat, LA, is required for the synthesis of arachidonic acid
(AA, C20:4,ω-6) and eicosanoids [24]. The term conjugated linoleic acid (CLA) indicates a
group of LA isomers with conjugated double bonds, produced in the rumen as well as in
the mammary gland by ∆9–desaturase activity [25–28]. In particular, CLA refers to two
isomers: the cis-9, trans-11 (c9, t11; also known as rumenic acid, RA) and, at a much lower
concentration, the trans-10, cis-12 (t10, c12) isomer, which are mainly present in the milk of
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ruminant animals [17]. RA is the main CLA component, accounting for 90% of the total
CLA in ruminant fat [29], but a range of cis–trans or trans–trans CLA isomers with the
trans bond at C-7 to C-14 and the cis bond at C-9 to C-13 are also found. CLA isomers are
naturally produced in the rumen as intermediates of the gut bacterial biohydrogenation of
dietary LA and ALA, present in fresh grass, to stearic acid [30]. Alternatively, they may
originate from endogenous synthesis in the mammary gland by the action of stearoyl-CoA
desaturase on trans11 C18:1 (trans-vaccenic acid, tVA) [31].

3. Milk Fatty Acid Composition in Different Animal Species

Milk for human nutrition produced worldwide mainly comes from cows (about 85%),
followed by buffalo (11%), goat (2.3%), sheep (1.4%), and camel (0.2%), while milk from
other dairy species such as horse, donkey, and yak, accounts for less than 0.1% [32].

3.1. Ruminants Milk

The milk of ruminants is characterized by a high content of SFAs (about 70% of total
FAs), a low content of PUFAs (less than 3%, including ω-3 FAs and CLA, mainly RA),
and trans-FAs (~4%, including vaccenic acid or trans-11 C18:1) [33,34]. There are relevant
differences between species (Table 1): milk fat content is higher in sheep (6–7 g/100 g of
milk) than in cows (3.5–3.8 g/100 g of milk) or goats (3.6–4 g/100 g of milk) [35]. In addition,
the fat of milk from sheep and goats contains high levels of short- and medium-chain FAs
with a carbon chain consisting, respectively, of 4–10 or 11–15 carbon atoms. In fact, the FAs
known as caproic (C6:0), caprylic (C8:0), and capric (C10:0) are typical of goat milk and
represent up to 15–18% of the total milk FAs, compared to 5–9% of cow’s milk [36], which
also helps to improve milk digestibility. In cow milk fat the mainω-6 FA is LA, which is
required for the synthesis of AA (C20:4,ω-6) and eicosanoids [24].

Table 1. Milk fat and fatty acid profiles in ruminant and non-ruminant species (data from [37–42]).

Cow Buffalo Sheep Goat Horse Donkey

Fat (g/100 g) 3.3.–6.4 5.3–15.0 4.0–9.0 3.0–7.2 0.4–7.2 0.3–1.8

% of total FAs

SFAs 55.0–73.0 62.0–74.0 57.0–75.0 59.0–74.0 37.0–55.0 46.0–68.0
MUFAs 2.0–30.0 24.0–29.0 23.0–39.0 19.0–36.0 18.0–36.0 15.0–35.0
PUFAs 2.4–6.3 2.3–3.9 2.6–7.3 2.6–5.6 13.0–51.0 14.0–30.0
CLA 0.2–2.4 0.4–1.0 0.6–1.1 0.3–1.2 0.02–0.1 Trace
ω-6 1.2–3.0 1.74–2.0 1.6–3.6 1.9–4.3 3.6–20.3 6.0–15.2
ω-3 0.3–1.8 0.2–1.4 0.5–2.3 0.3–1.48 2.2 -31.2 4.0–16.3

SFAs, saturated fatty acids; MUFAs, mono-unsaturated fatty acids; PUFAs, polyunsaturated fatty acids, ω-3,
omega-3;ω-6, omega-6.

Buffalo milk contains more than twice the amount of fat (7.5–8.7 vs. 3.5–3.8 g/100 g milk)
than cow milk, resulting in higher energy content. The percentage of SFAs (65–75 g/100 g of
total FAs) is comparable to cow milk. The high fat content makes buffalo milk particularly
suitable for the production of dairy products (e.g., mozzarella cheese, a typical fresh and
stringy-textured cheese) [43].

Goat milk is recommended for consumers who are allergic to cow milk. It contains
high levels of butyric (C4:0), caproic (C6:0), caprylic (C8:0), capric (C10:0), lauric (C12:0),
myristic (C14:0), palmitic (C16:0), and linoleic (C18:2) acids, but low levels of stearic (C18:0)
and oleic (C18:1) acids. At least 20% of the FAs in goat milk are short chain FAs, which are
readily digested [44], and the content of medium-chain FAs is relatively high [45].

Sheep milk shows significantly higher levels of caproic (C6:0), caprylic (C8:0), capric
(C10:0), and lauric (C12:0) acids than cow milk [46]. These short- and medium-chain
FAs are associated with the characteristic flavors of cheeses. In addition, sheep milk is
characterized by a higher concentration of butyric acid (C4:0) and ω-3 FAs than other
ruminant milk [47].
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3.2. Non-Ruminants (Monogastric Animals) Milk

Equid milk is characterized by a total fat content (0.8–1.5%) much lower than human
milk (3.5–4.2%) and a unique lipid composition. The FA composition and, in particular,
the percentage of total PUFAs of horse and donkey milk are high. Theω-3 PUFA content
averages 8.66–11.97% and 9.45–9.64% of total FAs for horse and donkey milk, respectively.
Furthermore, eicosapentaenoic acid (C20:5 ω-3), DHA (C22:6 ω-3), and AA (C20:4 ω-6)
levels in horse and donkey milk are below 0.5 g/100 g FAs [48,49].

Donkey and horse milk have been used in human nutrition since ancient times, in par-
ticular as a cow milk substitute for allergic/intolerant people and elderly consumers [49],
and as foods with health-promoting properties related to their peculiar lipid composi-
tion and lactose contents [50]. It is noteworthy that donkey and human milk are both
characterized by a peculiarly high concentration of palmitic acid in the sn-2 position of
the triacylglycerol backbone that seems to play a crucial role in the regulation of energy
and lipid metabolism [51]. Accordingly, the administration of donkey and human milk
to rats displayed several beneficial effects on lipid and glucose metabolism compared to
animals fed cow milk [37,52–54]. It has been hypothesized that this effect depends on the
modulation of oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) levels [55], an
endogenous ligand of the nuclear peroxisome proliferators-activated receptor (PPAR)-α,
which regulates fatty acid metabolism [56,57].

3.3. Human Milk

It is noteworthy that the primary source of the nutrients and lipids, including mo-
nounsaturated (MUFAs), ω-6, and ω-3 FAs, necessary for human development is maternal
milk [58,59]. Since humans are unable to synthesize ω-6 or ω-3 FAs, all the fatty acids
secreted into human milk are derived from the maternal diet. Thus, differences in maternal
lipid nutrition during lactation can result in large differences inω-6 andω-3 FAs in human
milk [60].

In human milk, the amount of fat (3.8–4.2%) is similar to cow milk, while the compo-
sition of FAs is very different from cow milk and more similar to donkey milk. Indeed,
human milk fat is high in unsaturated fatty acids and PUFAs, particularly the essential
fatty acids LA and ALA. The beneficial effects of human milk also depend on its bioac-
tive/immunomodulatory factors (oligosaccharides, lactose, glycosaminoglycans) [61]. The
World Health Organization recommends the exclusive breastfeeding of infants for the
first 6 months of age, since maternal milk reduces the incidence of neonatal necrotizing
enterocolitis, gastroenteritis, respiratory infection, and immunologically based disease, and
improves later cognitive development [62,63].

4. Factors Affecting Fatty Acid Profiles in Milk from Different Animal Species

Dairy research initially focused on increasing milk yield and the production efficiency
of cows. During the past few decades, consumers and industry demand for healthy and
sustainable foods motivated the great research efforts aimed at investigating the factors
influencing the nutritional quality of the final product. Animal milk composition is affected
by several factors (animal breed, health status, stage of lactation, feeding regimen, and
seasons), and among them, animal diet was recognized as an effective way to maximize
the content of beneficial FAs in milk (ω-3 PUFAs, tVA, and RA) [64]. Manipulating the
diet of cows, as well as of goats and sheep, was an effective way to increase the health-
promoting FA content of milk [47,65]. Accordingly, the beneficial effect of the feeding
practices used in organic husbandry on cow, goat, and sheep milk FA composition was
demonstrated [66–70].

As demonstrated in sheep, the higher levels of ALA in milk from the grazing group
were due to the higher content of ALA in the pasture, as opposed to in alfalfa hay [71].
Thus, grazing is a useful tool for increasing the levels of milk PUFAs [72], as shown in
sheep, dairy cows, dairy buffalos, and dairy goats [69,73–76].
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In addition, it was reported that the highest PUFA values in the milk of the grazing
group occurred in June and September, in accordance with the pasture’s fatty acid profile
during the trial [77,78]. A similar result was also reported in grazing sheep [79–81]. The
higher levels of c9, t11 CLA and t10, c12 CLA detected in the milk from grazing animals
could be also due to the higher levels of LA and ALA, the main CLA precursors, which
were higher in the pasture than in the hay [82]. Indeed, according to Aii et al. [83], the
hay making process determines a loss in these fatty acids. Thus, the pasture, especially
when rich in ALA, represents a good strategy for improving the lipid composition of milk
in ruminant species. In addition, grazing, or at least using fresh forage, may represent a
low-cost approach when compared to supplementing the diet with oilseeds or fats [84].
According to Benbrook et al. [85], a significant decrease of LA, higher levels of ALA,
long-chainω-3 FAs, total CLA, and aω-6/ω-3 ratio close to 1 can be achieved in milk by
increasing the forage portion of the diet of dairy cows. Finally, Davis et al. [86] reported a
94% and 92% increase in CLA andω-3 FA, respectively, as well as a significant decrease in
theω-6/ω-3 ratio in milk from grazing dairy cows.

It is noteworthy that dairy products’ FA profiles mainly depend on raw milk content,
rather than cheese processing methods [27,87,88]. Sheep cheese has higher levels of ben-
eficial PUFAs than cow and goat cheese, making the improvement of FA profiles in this
cheese particularly interesting from a nutritional point of view [88]. Cheese fats produced
by milk from grazing animals or animals fed high amounts of fresh forage have higher
proportions ofω-3 FAs vs. conventional cheese because forages are naturally rich sources
of C18:3ω-3 [89,90]. Additionally, higher levels of PUFAs and MUFAs, lower percentages
of SFAs, higher content of C18:3 and CLA, and a better atherogenic index value have been
reported for buffalo mozzarella cheese when the animals were fed fresh forage [91].

Ruminants’ diet may also affect the milk concentration of the other two classes of
bioactive FAs: (i) the branched-chain fatty acids (BCFAs), characterized by anti-tumor
activity [92] and the ability to decrease the incidence of necrotizing enterocolitis [93] and to
support pancreatic β-cell function [94]; and (ii) the odd-chain fatty acids (OCFAs), which
reduce the risk of type-2 diabetes [95,96] and cardiovascular diseases [96,97]. The main
source of odd- and branched-chain fatty acids (OBCFAs) in the human diet is represented
by ruminant fats. Indeed, they are synthesized de novo by the rumen microbial flora [98],
but linear OCFAs (C15:0 and C17:0) and anteiso-isomers can be also produced in the
mammary gland [98,99]. These multiple origins could explain their higher concentration
than other OBCFAs in goat [100] and cow milk [93,101,102]. Lopez et al. [103] reported
significantly higher OBCFA concentration in organic goat (4.7%) than in conventional milk
(3.4%). Significantly higher levels of total OBCFAs are reported in milk from goats fed a
diet with a high, rather than low, forage:concentrate ratio [103–105]. This high level may be
due to a better equilibrium in the rumen bacterial populations with the administration of
higher amounts of forage. In goats, milk OBCFA content was also significantly influenced
by the diet lipid supplementation [106].

In this animal species, milk OBCFA content was also significantly influenced by
the diet lipid supplementation and the forage:concentrate ratio [104–106]. Accordingly,
Vlaeminck et al. [98] observed a decrease in milk OBCFAs in cows by increasing their
dietary concentrate percentage from 20 to 70% [98]. In addition, milk from cows fed
different pasture vegetation types showed significantly different contents of OCFAs (C15:0,
C17:0, C17:1) [107].

5. Polyunsaturated Fatty Acids Effects on Human Health
5.1. Polyunsaturated Fatty Acids Effects on Metabolism

It is well known that a deficiency of ω-3 FAs is detrimental for human health [108].
The practical way to increase levels of DPA, EPA, and DHA in the body does not depend
exclusively onω3 processing, but requires their intake directly from foods and/or dietary
supplements. Indeed, the most recent dietary guidelines recommend the consumption
of foods containing high levels of ω-3 PUFAs. ω-3 PUFAs exert beneficial effects [109]
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in lowering the risk of cardiovascular disease [110], in reducing the advancement of the
atherosclerotic process in patients with coronary heart disease [20], in slowing down the
growth of cancer, and in increasing the efficacy of chemotherapeutic treatments [111], as
well as in lowering neuroinflammation and maintaining mental health [21]. In addition,
DHA and EPA are considered potent anti-inflammatory products, able to reduce the risk of
insulin resistance and ameliorate obesity-associated disorders [112,113]. Interestingly, in a
rodent model with a high-fat diet regimen, it was demonstrated that the replacement of lard
(rich in SFAs) with fish oil (rich inω-3 PUFAs) limited the development of systemic and
tissue inflammation, reduced fat accumulation in the liver and skeletal muscle, attenuated
insulin resistance and oxidative stress, and modulated mitochondrial efficiency [114,115].
Limited information is available on the biological effects of DPA in clinical studies, since
pure DPA has become commercially available only recently.

The synthetic isomeric mixture (RA:t10, c12, 1:1) of CLA has a broad range of beneficial
effects on inflammation, obesity, diabetes, and cancer [116,117]. It has been known for a
long time that CLA isomers have distinct effects, although there is no complete agreement
on their specific effects on sugar/lipid metabolism and anticancer activity. In particular,
the pro-diabetic effect of t10, c12-CLA was initially demonstrated in obese subjects [118],
while the anti-diabetic effects of RA were indicated by other studies [119–121]. Recently,
the anti-inflammatory efficacy of RA was reported, while t10, c12-CLA was indicated as
responsible for anti-carcinogenic, anti-obesity, and anti-diabetic effects [122]. In rodent
models, it was demonstrated that RA had the ability to improve antioxidant detoxifying
defences via the activation of the nuclear erythroid-related factor 2 (Nrf2)—which is the
main pathway in the maintenance of redox status and metabolic and protein homeostasis,
as well as in the regulation of inflammation [123–125]. In addition, it has been recently
shown that CLA, by inducing PPAR-α, greatly improves DHA biosynthesis from ALA in
animal models [126] and in humans [127].

Interestingly, it was demonstrated that the milk obtained from cows treated with a dif-
ferent feeding/rearing system exhibited a different profile of milk PUFAs and had selective
metabolic effects when administered to rodents. In particular, rats’ diets were supple-
mented with milk produced by dairy cows fed with a high forage:concentrate ratio (70:30;
high-forage milk), and with milk produced by cows fed with the low forage:concentrate
ratio (55:45; low-forage milk) normally used in intensive farms. The high-forage milk
had beneficial effects on the rats’ lipid metabolism, inflammation, and oxidative stress,
modulating mitochondrial function and efficiency in the liver and skeletal muscle. These
data provided the first evidence that dietary supplementation with high-forage milk in
rodents decreases lipid accumulation through an increase in fatty acid oxidation, and a
decrease in inflammation and oxidative stress [37,128]. The beneficial effects of high-forage
milk were similar to those resulting from ω-3 and RA intake [114,115,129,130], allowing
the authors to hypothesize thatω-3 and RA may be some of the key functional components
of high-forage milk.

In an another set of experiments, mice were fed with high-fat diets containing either
dairy cream obtained from the milk of cows fed on pastures, or standard cream. It was
observed that the animals fed pasture dairy cream exhibited improved intestinal barriers,
and this effect was attributed to the higher LA content of pasture dairy cream [131]. On the
other hand, when mice models with chemically induced colitis were fed cow milk naturally
enriched in RA (selected from commercially available organic blends), high cyto-protective
effects were observed, presumably associated with RA’s ability to trigger Nrf2-mediated
antioxidant/detoxifying defenses [132].

The potential health benefits resulting from CLA intake, mainly obtained in animal
models, led to its recognition as a functional food [133]. In clinical studies, the health
effects produced by the intake of CLA-rich dairy products from goat or sheep milk were
evaluated [127,134,135]. Since high CLA concentration improves the nutritional value of
dairy foods, the production of dairy food enriched with RA was encouraged [136,137].
Surprisingly, despite the great number of studies that investigated the factors determining
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the concentration of health-promoting FAs in milk, only a limited number of analyses have
been focused on the biological effects produced by the intake of RA-rich dairy products
(Table 2). The main limitation of most of these studies is due to the inadequate evaluation
of the role of RA on the observed effects, and the lack of conversion of the RA-enriched
supplement into doses that can be, reasonably, consumed by humans [127,134,138]. In-
terestingly, the intake of dairy products naturally enriched in RA and tVA (organically
produced) was demonstrated to increase the content of these FAs in the milk of lactating
women [139–141]. On the other hand, results related to the protective effect of RA-rich
dairies against breast cancer are still controversial [128,129].

Table 2. Summary of the main studies focused on the biological effects produced by the intake of RA-rich dairy products
(data from [37,127,128,131,134,142–150]).

Study Treatment Outcome

Animal models

Female growing pigs RA-enriched butter Undetectable effects on blood
lipoproteins [142]

Wistar rats RA-enriched clarified butter ↑ Antioxidants [143]

Wistar rats RA-enriched butter ↑ HDL, Triacylglycerol [144]

Mice fed high fat diet Pasture dairy cream ↓ Inflammation, Triacylglycerol
↑ Protective cells in the gut [131]

Wistar rats RA-enriched butter ↑ PLA2 [145]

Mouse model of chemically
-induced (DSS) colitis RA-enriched butter ↑ Nrf-2- mediated defenses

↓ Colitis signs [146]

Wistar rats RA-enriched butter ↑Mitochondrial function [37]

Wistar rats RA-enriched butter ↓Muscle inflammation, oxidative stress
↑Mitochondrial function [128]

Clinical studies

Healthy middle-age subjects Naturally enriched dairy products Undetectable effects on blood
lipoproteins [147]

Healthy normal-weight and
over-weight subjects Naturally enriched cheese ↓ IL-6, Tnf-α [148]

Hypercholesterolemic subjects Naturally enriched cheese ↓ LDL [134]

Healthy young subjects Naturally enriched cheese ↑ IL-10
↓ NFkB, Tnf-α, IL-2, IL-8 [149]

Meta-analyses CLA enriched food ↓ LDL, cholesterol [150]

Healthy middle-age subjects RA enriched cheese ↑ Highly unsaturated fatty acids in
blood plasma [127]

RA, rumenic acid; HDL, high density lipoprotein; PLA2, phospholipase A2; DSS, dextran sulfate sodium; Nrf-2, nuclear factor E2-related
factor 2; IL-6, interleukin-6; Tnf-α, tumor necrosis factor- α; LDL, low density lipoprotein; IL-10, interleukin-10; NFkB, nuclear factor
kappa-beta; IL-2, interleukin-2; IL-8, interleukin-8; CLA, conjugated linoleic acid.

Taken together, these results indicate that, although nutritional benefits may poten-
tially be provided by the intake of dairy foods with improved RA content, additional
investigation with multi-center clinical trials is necessary to identify the population more
responsive to them.

5.2. Polyunsaturated Fatty Acids Effects on Nervous System

The brain requires an outstanding energy supply to maintain its dynamic abilities
and its complex architecture. Indeed, the adult brain, which accounts for about 2% of
body weight, utilizes 20% of the oxygen and 20–25% of the glucose [151]. In addition,
the huge brain size expansion during the first few years of life requires specific nutrients,
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such as lipids, proteins, and micronutrients, which are also necessary to support neuronal
connectivity and brain cognitive functions in adulthood. Thus, the appropriate nutritional
management of the brain has a crucial relevance throughout the whole life [152]. It has been
widely recognized that dietary regimen affects brain health and the appropriate choice
of diet can reduce the risk of mental illness. Although no single dietary component has
been identified as crucial in improving brain wellness, eating habits and the synergistic
interaction between different nutrients seem to have beneficial effects in preventing mental
health disorders [153]. Thus, diet and its bioactive components are among the modifiable
risk factors possibly influencing the development of neuro-pathologies. In particular, SFAs
and simple carbohydrates seem detrimental for the brain, while PUFAs, polyphenols, and
antioxidants appear to be neuroprotective [154–156].

The brain is the second organ richest in lipids after adipose tissue, with 35% of brain
lipids made by PUFAs. The biosynthesis of PUFAs in the brain is very low, and most of
them are biosynthesized in the liver, although the contribution of diet is also critical and
mainly dependent on fish consumption, which is often under the recommended daily
intake [157–159]. The most abundant PUFAs in the brain areω-6 AA andω-3 DHA, which
are components of plasma membranes’ phospholipids in neuronal cells [21]. ω-3 DHA
is indispensable in maintaining membrane integrity and, as a consequence, membrane
ionic permeability, neuronal excitability, mitochondrial activity, and synaptic functions.
Thus, DHA is crucial for the normal development of the CNS, and its deficiency can
impair cerebral functions, leading to neuropsychiatric disorders such as depression or
dementia [159]. Animal models with a chronic deficiency of dietary ω-3 PUFAs, from
conception to the early stage of development, exhibited a decreased concentration of DHA
in neuron membranes, leading to retarded visual acuity, impaired learning ability, and
several neurological disorders [21,157]. Since having the correct supply of ω-3 PUFAs
during development is so important for brain activity, the fetus receives the necessary
PUFAs through the placenta, and the newborn receives them by breast-feeding [21]. This
is one of the reasons for highly recommend breast-feeding for infant nutrition. Since
breastfeeding may not always be possible or suitable, infant formula is the industrial
substitute for newborn nutrition [160]. In this regard, it has been demonstrated that
adding DHA to formulas for bottle-fed human infants increases their blood concentration
of DHA to values similar to breast-feeding infants and significantly improves mental
development [157]. The importance of the correct supply ofω-3 PUFAs during the brain
development was also demonstrated using an interesting experimental paradigm. Rats
were exposed to a diet deficient inω-3 FAs during the brain maturation period. When they
became adults, their diet was switched to a Western diet, and they were subjected to mild
traumatic brain injury, a risk factor for the development of psychiatric illness. In the animals
exposed to this diet switch, compared to controls, the mild brain injury induced more severe
anxiety-induced disorders, and the downregulation of the brain’s levels of brain derived
neurotropic factor (BDNF) and its signalling pathway was observed [161]. These data
underlined how incorrect dietary habits during development might lower the threshold
for neurological disorders later in life. Interestingly, patients with depression display
lower levels ofω-3 PUFAs [162] and decreased serum levels of BDNF [163]. Accordingly,
the administration of ω-3 PUFAs stimulated BDNF expression and adult hippocampal
neurogenesis in mice [164–166].

Since BDNF is a protein known to couple energy metabolism and synaptic plastic-
ity [158], it is possible to suggest that dietary PUFA is acting as an energy modulator in
cognitive functions, affecting, in particular, the synaptic regions [167]. From this point of
view, it is interesting to underline that some neurodegenerative diseases, as well as aging
processes, share, as a common feature, synaptic dysfunctions, and therefore are defined as
“synaptopathies” [168–172]. Interestingly, PUFAs play critical roles at the synapses, where
they are involved in synaptogenesis, synapse maintenance, and synapse function [168].
Thus, understanding PUFAs’ action mechanisms at synaptic areas will open the way to
an innovative and promising strategy to treat synaptopathies using PUFA dietary sup-
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plementation which may restore the impaired synaptic functions [168]. Recently, using a
very elegant experimental approach, it was demonstrated that DHA is able to mitigate the
presynaptic over-inhibition of animal model autism spectrum disorders [173].

Interestingly,ω-6 andω-3FAs are precursors of highly bioactive molecules, produced
by the enzymatic (i.e.,cyclooxygenases and lipoxygenases) or non-enzymatic metabolism of
α,β-unsaturated aldehydes (e.g., 4-hydroxynoneal and 4-hydroxyhexenal), cyclopentenone
metabolites (e.g., isoprostanes and neuroprostanes), nitrated fatty acids (e.g., NO2-CLA,
NO2-LA), and specialized pro-resolving mediators (e.g., lipoxins, resolvins and maresins)
involved in the initiation, progression, and resolution of the inflammatory process [21]. The
brain is particularly susceptible to oxidative stress because it has a high demand for oxygen,
high concentrations of iron, and relatively low antioxidant capacity, as well as high content
of PUFAs, which are source of oxygen radicals through lipid peroxidation [174,175]. Oxida-
tion of membrane PUFAs alters the fluidity of membranes, damages membrane receptors
structures, causes mitochondrial dysfunction, and deteriorates cellular components, thus
contributing to neuronal degeneration and impaired neuronal communication [167].

Interestingly, it was observed that DHA from dietary sources is incorporated into
mitochondrial and synaptosomal membranes in mouse brains [176]. Mitochondrial phos-
pholipids are particularly rich in DHA that promotes mitochondrial biogenesis and modu-
lates the expression of genes associated with energy metabolism and ATP production [177].
Alteration of the mitochondrial oxidative capacity is linked to brain aging and plays a cru-
cial role in the onset and progression of neurodegenerative diseases, such as Alzheimer’s,
Parkinson’s, Huntington’s disease, and ischemic stroke [159,178]. Interestingly, the ability
ofω-3 PUFA to reverse inflammation, oxidative stress, and altered mitochondrial functions
has been demonstrated as observed in animal models of obesity [179]. These data suggest
that these FAs have a pivotal role in mitochondrial functions and efficiency.

CLA is able to cross the blood–brain barrier and be incorporated and metabolized in
the brain, where it plays different roles [180,181]. Peculiarly, CLA has been shown to induce
the biosynthesis of endogenous PPAR-α ligands, PEA and OEA, likely through a positive
feedback mechanism where PPAR-α activation sustains its own cellular effects through
ligand biosynthesis [182]. In addition to PPAR-α, PEA and OEA can activate, indirectly or
directly, other receptors such as transient receptor potential vanilloid 1 (TRPV1) [183,184],
which are also implicated in metabolism regulation and anti-inflammatory activity [185].
These data further extend CLA anti-neuroinflammatory actions, demonstrated in cultured
astrocytes [186] and in vivo, where it has been shown that chronic dietary CLA intake
reduces prostaglandin E2, decreases the activity of the endocannabinoid system, and
inhibits angiogenesis in the mammalian brain [187–189]. In a murine model of auto-
immune disease, it has been shown that the protective effect of CLA on age-dependent
biochemical signs of neurodegeneration and depression are associated with the activation
of Nrf2-mediated cytoprotective defences [190,191]. In addition, CLA protects against
the disease-associated decline of synaptogenesis [190]. Moreover, RA has been shown
to protect mouse cortical neurons from glutamate excitotoxicity [192]. Interestingly, the
CLA supplementation of pregnant rats affects brain functions in offspring. Indeed, a
maternal CLA-rich diet during gestation and lactation results in beneficial effects on
neurodevelopment, improving learning and memory in the newborn rats [193] (Figure 1).
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Figure 1. Effects of docosahexaenoic acid (DHA), conjugated linoleic acid (CLA), andω-3/ω-6 on
human wellness. The nutritional supply of DHA, CLA, andω-3–ω-6 PUFAs has a great impact on
human health, affecting the metabolism of peripheral organs and the brain’s functions.

6. Conclusions

FAs composition of dairy products varies among different species, and it is strongly
influenced by animal nutrition. Milk and dairy products greatly contribute to human daily
intake of FAs that, beside their function as structural components of cells and metabolic
substrate, also play a crucial role as signaling molecules. Peculiarly, a higher content of
potentially beneficial FAs adds nutritional/functional value to dairy products. Numerous
comparative evaluations have been conducted in different animal species, nutritional
strategies have been developed, and increased commercial attention is accompanying
“enriched” products. Unfortunately, there are very few in vivo data supporting their
beneficial activities, and most of them have been obtained by using pure FAs (mainly
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ω-3 PUFAs), rather than FAs naturally incorporated into enriched milk/cheese, which
may possess distinct biological activities compared to the pure FAs. Thus, although our
review provides various evidence of the beneficial effects of dietary PUFAs, characteristic
of milk and dairy products, on metabolic and neuronal functions, more preclinical and
clinical studies are warranted to confirm and further investigate the effects of milk and
dairy products on human health (Figure 2).
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Figure 2. Animal feeding systems affect the profile of milk PUFAs (rumenic acid, RA; docosahexaenoic acid, DHA). Studies
related to the effects of milk administration on metabolic and brain health yielded controversial results. Administration of
pure PUFAs increases DHA brain content, stimulates brain-derived neurotrophic factor (BDNF) expression in several brain
areas, and activates the nuclear erythroid-related factor 2 (Nrf2) in the brain. These factors participate in redox homeostasis
and modulate inflammatory state, contributing to neuroplasticity and neuroprotection.
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DHA Docosahexaenoic acid
RA Rumenic acid
ALA α-linolenic acid
tVA Trans-vaccenic acid
OEA Oleoylethanolamide
PEA Palmitoylethanolamide
PPAR Peroxisome proliferators-activated receptors
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OBCFAs Odd-branched-chain fatty acids
BDNF Brain derived neurotropic factor
Nrf Nuclear factor erythroid 2-related factor 2
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40. Gantner, V.; Mijić, P.; Baban, M.; Škrtić, Z.; Turalija, A. The overall and fat composition of milk of various species. Mljekarstvo
2015, 65, 223–231. [CrossRef]

41. Tudisco, R.; Chiofalo, B.; Presti, V.L.; Morittu, V.M.; Moniello, G.; Grossi, M.; Musco, N.; Grazioli, R.; Mastellone, V.; Lombardi,
P.; et al. Influence of Feeding Linseed on SCD Activity in Grazing Goat Mammary Glands. Animals 2019, 9, 786. [CrossRef]
[PubMed]

42. Tudisco, R.; Morittu, V.M.; Addi, L.; Moniello, G.; Grossi, M.; Musco, N.; Grazioli, R.; Mastellone, V.; Pero, M.E.; Lombardi, P.;
et al. Influence of Pasture on Stearoyl-CoA Desaturase and miRNA 103 Expression in Goat Milk: Preliminary Results. Animals
2019, 9, 606. [CrossRef]

43. Muehlhoff, E.; Bennet, A.; McMahon, D.; Food and Agriculture Organisation of the United Nations (FAO). Milk and Dairy
Products in Human Nutrition (2013). Dairy Technol. 2014, 67, 303–304.

44. Jenness, R. Composition and Characteristics of Goat Milk: Review 1968−1979. J. Dairy Sci. 1980, 63, 1605–1630. [CrossRef]
45. Boza, J.; Sanz Sampelayo, M.R. Aspectos nutricionales de la leche de cabra (Nutritional aspects of goat milk). ACVAO 1997, 10,

109–139.
46. Goudjil, H.; Fontecha, J.; Luna, P.; De La Fuente, M.A.; Alonso, L.; Juárez, M. Quantitative characterization of unsaturated and

trans fatty acids in ewe’s milk fat. Le Lait 2004, 84, 473–482. [CrossRef]
47. Mohapatra, A.; Shinde, A.K.; Singh, R. Sheep milk: A pertinent functional food. Small Rumin. Res. 2019, 181, 6–11. [CrossRef]
48. Salimei, E.; Chiofalo, B. Asses: Milk yield and composition. In Nutrition and Feeding of the Broodmare; Miraglia, N., Martin-Rosset,

W., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2006; pp. 117–131, EAAP Publication No. 120.
49. Salimei, E.; Fantuz, F. Equid milk for human consumption. Int. Dairy J. 2012, 24, 130–142. [CrossRef]
50. Young, W.P.; George, F.W.H. Milk and Dairy Products in Human Nutrition: Production, Composition and Health, 1st ed.; John Wiley &

Sons, Ltd.: New York, NY, USA, 2013.
51. Innis, S.M. Palmitic Acid in Early Human Development. Crit. Rev. Food Sci. Nutr. 2016, 56, 1952–1959. [CrossRef] [PubMed]
52. Trinchese, G.; Cavaliere, G.; Canani, R.B.; Matamoros, S.; Bergamo, P.; De Filippo, C.; Aceto, S.; Gaita, M.; Cerino, P.; Negri, R.;

et al. Human, donkey and cow milk differently affects energy efficiency and inflammatory state by modulating mitochondrial
function and gut microbiota. J. Nutr. Biochem. 2015, 26, 1136–1146. [CrossRef] [PubMed]

53. Lionetti, L.; Cavaliere, G.; Bergamo, P.; Trinchese, G.; De Filippo, C.; Gifuni, G.; Gaita, M.; Pignalosa, A.; Donizzetti, I.; Putti,
R.; et al. Diet supplementation with donkey milk upregulates liver mitochondrial uncoupling, reduces energy efficiency and
improves antioxidant and antiinflammatory defences in rats. Mol. Nutr. Food Res. 2012, 56, 1596–1600. [CrossRef] [PubMed]

http://doi.org/10.1016/S0021-9258(18)99355-5
http://doi.org/10.1093/jn/130.9.2285
http://www.ncbi.nlm.nih.gov/pubmed/10958825
http://doi.org/10.1016/j.idairyj.2006.06.021
http://doi.org/10.1002/jsfa.3504
http://doi.org/10.1016/0889-1575(92)90037-K
http://doi.org/10.1016/S0021-9258(18)96781-5
http://doi.org/10.1093/jn/133.9.2893
http://doi.org/10.1007/978-0-387-74087-4_1
http://doi.org/10.1016/j.biochi.2017.08.006
http://www.ncbi.nlm.nih.gov/pubmed/28804001
http://doi.org/10.1002/ejlt.200700080
http://doi.org/10.3168/jds.2017-13550
http://doi.org/10.1016/j.jfca.2017.03.008
http://doi.org/10.1111/j.1439-0396.2008.00824.x
http://doi.org/10.15567/mljekarstvo.2015.0401
http://doi.org/10.3390/ani9100786
http://www.ncbi.nlm.nih.gov/pubmed/31614628
http://doi.org/10.3390/ani9090606
http://doi.org/10.3168/jds.S0022-0302(80)83125-0
http://doi.org/10.1051/lait:2004017
http://doi.org/10.1016/j.smallrumres.2019.10.002
http://doi.org/10.1016/j.idairyj.2011.11.008
http://doi.org/10.1080/10408398.2015.1018045
http://www.ncbi.nlm.nih.gov/pubmed/25764297
http://doi.org/10.1016/j.jnutbio.2015.05.003
http://www.ncbi.nlm.nih.gov/pubmed/26118693
http://doi.org/10.1002/mnfr.201200160
http://www.ncbi.nlm.nih.gov/pubmed/22930490


Nutrients 2021, 13, 1111 14 of 19

54. Trinchese, G.; Cavaliere, G.; De Filippo, C.; Aceto, S.; Prisco, M.; Chun, J.T.; Penna, E.; Negri, R.; Muredda, L.; Demurtas, A.; et al.
Human Milk and Donkey Milk, Compared to Cow Milk, Reduce Inflammatory Mediators and Modulate Glucose and Lipid
Metabolism, Acting on Mitochondrial Function and Oleylethanolamide Levels in Rat Skeletal Muscle. Front. Physiol. 2018, 9, 32.
[CrossRef] [PubMed]

55. Carta, G.; Murru, E.; Lisai, S.; Sirigu, A.; Piras, A.; Collu, M.; Batetta, B.; Gambelli, L.; Banni, S. Dietary triacylglycerols with
palmitic acid in the sn-2 position modulate levels of N-acylethanolamides in rat tissues. PLoS ONE 2015, 10, e0120424. [CrossRef]

56. Contreras, A.V.; Torres, N.; Tovar, A.R. PPAR-α as a key nutritional and environmental sensor for metabolic adaptation. Adv.
Nutr. 2013, 4, 439–452. [CrossRef]

57. Pontis, S.; Ribeiro, A.; Sasso, O.; Piomelli, D. Macrophage-derived lipid agonists of PPAR-α as intrinsic controllers of inflammation.
Crit. Rev. Biochem. Mol. Biol. 2016, 51, 7–14. [CrossRef] [PubMed]
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