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In light of the ongoing COVID-19 pandemic, predicting its trend would significantly impact 
decision-making. However, this is not a straightforward task due to three main difficulties: 
temporal autocorrelation, spatial dependency, and concept drift caused by virus mutations and 
lockdown policies. Although machine learning has been extensively used in related work, no 
previous research has successfully addressed all three challenges simultaneously. To overcome 
this challenge, we developed a novel online multi-task regression algorithm that incorporates 
a chain structure to capture spatial dependency, the ADWIN drift detector to adapt to concept 
drift, and the lag time series feature to capture temporal autocorrelation. We conducted several 
comparative experiments based on the number of daily confirmed cases in 20 areas in California 
and affiliated cities. The results from our experiments demonstrate that our proposed model is 
superior in adapting to concept drift in COVID-19 data and capturing spatial dependencies across 
various regions. This leads to a significant improvement in prediction accuracy when compared 
to existing state-of-the-art batch machine learning methods, such as N-Beats, DeepAR, TCN, and 
LSTM.

1. Introduction

The COVID-19 pandemic has presented an unprecedented challenge to the global community, affecting nearly every aspect of 
our lives. One of the key challenges has been predicting the spread of the virus, which is critical for planning and decision-making. 
However, traditional prediction models have struggled to keep up with the rapidly changing nature of the pandemic. This paper aims 
to address this issue by proposing a novel approach to predicting COVID-19 trends.

Two years have passed since the outbreak of COVID-19 with over 542 million people infected worldwide and the total number 
of deaths related to the outbreak has exceeded 5 million [1]. The pandemic is far from over with a large number of new infected 
worldwide, although many countries have declared coexistence with the virus.

As the number of infections has increased exponentially, the virus has mutated several times, with some strains proving to be 
much more transmissible than the original. This has resulted in concept drift in the daily confirmed cases of COVID-19. Concept 
drift refers to the unforeseen changes over time in the statistical properties of the target variable that a model is attempting to 
predict [2]. The patterns observed in past data may no longer be applicable to the current situation, leading to inaccurate predictions 
and suboptimal decision-making. A set of examples denoted as 𝑆0,𝑡 =

{
𝑑0,… , 𝑑𝑡

}
, where 𝑑𝑖 =

(
𝑥𝑖, 𝑦𝑖

)
is one observation (or a data 
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instance), 𝑥𝑖 is a feature vector, 𝑦𝑖 is their corresponding label, and 𝑆0,𝑡 follows a certain distribution 𝐹0,𝑡(𝑥, 𝑦). Concept drift occurs 
at timestamp 𝑡 + 1, if 𝐹0,𝑡(𝑥, 𝑦) ≠ 𝐹𝑡+1,𝑡+𝑛(𝑥, 𝑦), denoted as ∃𝑡 ∶ 𝑃𝑡(𝑥, 𝑦) ≠ 𝑃𝑡+1(𝑥, 𝑦).

The rapid mutation of the virus, from the emergence of SARS-CoV-2 to the Omicron wave, driven by the variants BA.4 and 
BA.5, has significantly changed the ability of the virus to spread. This change has caused a shift in the pattern of COVID-19 trends, 
particularly in the number of daily confirmed cases. As a result, models built using historical data of the previous virus become 
gradually invalid due to concept drift in COVID-19 daily confirmed cases data. This highlights the need for a more dynamic and 
adaptable approach to predicting COVID-19 trends.

Accurately predicting COVID-19 trends can have a significant impact on decision-making, such as adjusting medical strategies 
in advance to avoid overwhelming the healthcare system. However, predicting the number of daily confirmed COVID-19 cases in 
multiple regions is a complex problem due to the simultaneous presence and interaction of the three challenging perspectives.

• Temporal Autocorrelation: The number of future COVID-19 cases is correlated with the number of cases in previous time 
periods, since the virus is spread from infected individuals. Additionally, the spatial autocorrelation between cities may vary 
over time because of human mobility. Therefore, the first challenge is to determine how to model the dynamic temporal auto-

correlation of each city.

• Spatial Dependency: The daily confirmed COVID-19 cases of a city are not only affected by the transmission of the virus in 
nearby cities but may also synchronize with distant cities due to similarities in their characteristics. The second challenge is how 
to model the irregular and non-Euclidean autocorrelation of COVID-19 transmission between cities.

• Concept Drifts: Since 2019, the new coronavirus has mutated several times. Some variants of the coronavirus, such as Delta and 
Omicron, are spreading more easily between people, which would lead to changes in the distribution of COVID-19 confirmed 
cases data. For example, a predictive model built during the spread of the Delta virus may not be suitable for predicting daily 
confirmed cases during the spread of the Omicron virus. Additionally, vaccination and lockdown policies can cause changes in 
the trend of COVID-19.

Machine learning methods have recently made prominent achievements in various fields of prediction, such as [3–6]. These 
machine learning methods generally refer to conventional machine learning methods, i.e., batch machine learning algorithms, which 
assume that the distribution of data is static. However, the dynamic nature of COVID-19 trend data requires a different approach. In 
this paper, we propose an online machine learning method that can adapt to changes in data distribution over time, making it more 
suitable for predicting COVID-19 trends.

Existing research on COVID-19 prediction can be broadly divided into two categories. The first category consists of conven-

tional methods, including conventional machine learning algorithms and time series models, such as ARIMA, random forests, linear 
regression, and support vector machine regression (SVR) [7]. The second category consists of deep learning algorithms [8], e.g., 
N-Beats [9], LSTM [10–13]. While these methods have been effective in certain contexts, they have limitations. Although these 
researchers used different algorithms for modeling, their works only considered the temporal correlation of COVID-19 trend. More-

over, the performance of the prediction models depended heavily on how well the researchers exploited the temporal correlation on 
the characteristic case dataset. The batch machine learning algorithm achieved excellent predictive performance during the stable 
phase of the COVID-19 trend when the virus had not mutated into a more transmissible variant, and the embargo policy remained 
unchanged. However, once concept drift occurs, their batch machine learning model is likely to not work well. Existing research has 
emphasized the first challenge and has not paid much attention to the second and third challenges. Moreover, no method has yet 
considered all three challenges as a whole and addressed them simultaneously. In light of these limitations, this paper proposes a 
novel multi-task online regression algorithm that can address the dynamic nature of the COVID-19 pandemic. Our approach, which 
we call Multi-Task Correlated hoeffiding adaptive tree Regressor Chain (ChatRC), is a type of hoeffiding tree variate for multi-task 
online regression under concept drift. This approach is designed to handle the temporal autocorrelation, spatial dependency, and 
concept drifts associated with COVID-19 trends prediction.

The main contribution of this paper is as follows:

• We propose a novel online multi-task regression algorithm to predict the daily new confirmed COVID-19 cases in multiple 
regions/zones. This algorithm, ChatRC, is a unique combination of online learning, multivariate time series, and multi-task 
learning, providing a novel approach to the dynamic and complex nature of COVID-19 prediction.

• Provide a clear description of the spatial correlation or dependence among the number of new confirmed COVID-19 cases in 
each region, which can provide helpful information to decision-makers beyond prediction.

• Make the first attempt to apply online machine learning to COVID-19 prediction. As will be shown, online machine learning can 
far exceed conventional batch machine learning when dealing with scenarios such as COVID-19 prediction that require frequent 
or real-time updates of the prediction model.

1.1. Problem statement

This section formally defines the problem in this study and provides mathematical notation annotations. Predicting COVID-19 
confirmed cases involves multivariate time series prediction, where these time series exhibit spatial correlation with each other. 
2

Therefore, it is a multi-output spatio-temporal prediction problem. Furthermore, it is a subset of multiple-output regression and 
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Fig. 1. Prediction System with Drift Adaptation Mechanism.

multivariate time series forecasting, where each output variable is a single time series that is spatially correlated or dependent on 
the others.

Multi-output spatio-temporal data has the properties and characteristics of a multivariate time series as shown in (1),

𝒚 =
{
𝑦1,… , 𝑦𝑡,… , 𝑦𝑁

}
, 𝑡 = 1,… ,𝑁. (1)

A multiple time series is composed of multiple one-dimensional time series as components, with each component having the same 
sampling time points. It can be represented in a matrix form as (2),

𝐘 =
{
𝒚1,… ,𝒚𝑚

}
, (2)

where each row corresponds to a single time point, and each column corresponds to a unary time series. The spatial dependency 𝑐𝑖,𝑗
between two time series 𝒚𝑖 and 𝒚𝑗 , can be measured by their correlation coefficient, 𝑐𝑖,𝑗 = 𝑐𝑜𝑟𝑟(𝒚𝑖, 𝒚𝑖).

The temporal autocorrelation is denoted as (3),

𝑦𝑡 = 𝜙1𝑦𝑡−1 +𝜙2𝑦𝑡−2 +⋯+𝜙𝑝𝑦𝑡−𝑝, (3)

where 𝑦𝑡 represents the number of newly confirmed COVID-19 cases on the 𝑡-th day, 𝑦𝑡−𝑝 represents the number of newly confirmed 
cases on the (𝑡 − 𝑝)-th day, 𝜙 is a weight variable, and 𝜙𝑝 represents the weight corresponding to the early 𝑝 days.

In simple terms, a forecast where there is spatial dependence or correlation between the outputs of multiple time series is called 
a multi-output spatio-temporal forecast. This type of forecasting is particularly relevant for predicting COVID-19 trends, given the 
interconnected nature of the pandemic.

In the batch machine learning perspective, COVID-19 multi-output spatio-temporal prediction can be defined as a multi-output 
regression problem. Therefore, it is critical to find a function 𝑓 (𝐗) that maps the (input) feature space 𝐗 ∈ℝ to the (target) output 
space 𝐘 ∈ ℝ in the dataset. The function 𝑓 is used to simultaneously predict the (target) output variables 𝒚 ∈ ℝ with their corre-

sponding input vector 𝒙 ∈ℝ as 𝒚 = 𝑓 (𝒙), where 𝐗 =
{
𝒙1,… ,𝒙𝑁

}
and 𝐘 =

{
𝒚1,… ,𝒚𝑚

}
. If concept drifts occur at time 𝑡 and time 𝑡 + 𝑛, 

the ideal function should be represented as (4),

𝑓 (𝒙𝑖) =
⎧⎪⎨⎪⎩
𝑓0,𝑡(𝒙𝑖), 0 ⩽ 𝑖 ⩽ 𝑡

𝑓𝑡+1,𝑡+𝑛(𝒙𝑖), 𝑡+ 1 ⩽ 𝑖 ⩽ 𝑡+ 𝑛

𝑓𝑡+𝑛,𝑁 (𝒙𝑖), 𝑡+ 𝑛 ⩽ 𝑖 <∞
. (4)

In the presence of concept drift, COVID-19 prediction is not a static pattern. Although conventional batch machine learning can 
achieve good results for a certain period, their models are not suitable once concept drift occurs. One simple way to adapt to concept 
drift is to retrain the batch machine learning model to learn new patterns whenever concept drift occurs. However, the difficult 
part is that retraining the model can be costly, and choosing the interval of training samples is a complex problem. Online machine 
learning, on the other hand, does not face these complexities. One of the most prominent ways to adapt to concept drift is through 
online machine learning, which relies on the core mechanism of learning samples one by one. This means that the model can be 
updated in real-time.

The entire prediction system drift adaptation is executed as shown in Fig. 1. When a new example arrives (𝒙, 𝒚), the model makes 
a prediction based on 𝒙 and then receives the ground truth 𝒚 for the training or learning of the new example (𝒙, 𝒚). Finally, the 
drift detector detects whether a concept drift has occurred. If it has occurred, the model will be updated. This real-time update 
mechanism allows our proposed method, ChatRC, to quickly capture the latest patterns in the data and adapt to the changing nature 
3

of the COVID-19 pandemic, providing a more accurate and dynamic prediction model.
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Table 1

The related work discusses the predictive methods used and whether the three main challenges were addressed, sorted by date.

Author Method Concept Drift Adaptation Spatial Dependency Temporal Autocorrelation Date

[14] SIPHERD NO NO YES Jul-2020

[10] LSTM NO NO YES May-2020

[15] Genetic Programming based Model NO NO YES May-2020

[16] TP-SMN-AR NO NO YES May-2020

[17] Multi-Output Gaussian Processes NO NO YES Jun-2020

[13] Hybrid MLP-LSTM NO NO YES Jul-2020

[11] RNN, LSTM, BiLSTM, GRUs, and VAE NO NO YES Jul-2020

[18] EVDHM-ARIMA NO NO YES Jul-2020

[19] ARIMA, NARNN, and LSTM NO NO YES Jul-2020

[20] SIR based GCN and LSTM NO YES YES Oct-2020

[21] LSTM NO NO YES Aug-2020

[22] ARIMA NO NO YES Oct-2020

[23] Multi-Head Attention, LSTM, and CNN NO NO YES Oct-2020

[24] RNN NO NO YES Oct-2020

[25] SVR NO NO YES May-2020

[26] VARMAX NO NO YES Dec-2020

[27] Bayesian Model Averaging based Ensemble Learning NO NO YES Jul-2022

[8] ConvLSTM — CNN merged with an LSTM NO YES YES Jul-2022

[28] SIR,Adaptive Phase-Space Approach NO NO YES Jul-2022

[29] SVR, MLP, and Prophet NO NO YES May-2021

[30] Brute force trained Ridge Regression YES NO YES Sep-2022

2. Related work

COVID-19 time series forecasting can be classified into three main challenges: temporal autocorrelation, spatial dependency, and 
concept drift. Based on Table 1, we can observe the methods used in related works and their responses to these three challenges. 
Almost all related work focuses only on temporal autocorrelation. According to the methods used, these related works can be divided 
into three categories: (i) traditional time series methods, (ii) Susceptible-Infectious-Recovered (SIR) based methods, and (iii) machine 
learning methods.

Despite the significant progress made in COVID-19 time series forecasting, there is a clear research gap in addressing all three 
challenges simultaneously, especially in the context of online learning. Most existing studies focus on temporal autocorrelation, with 
only a few considering spatial dependency and even fewer addressing concept drift. Moreover, the few studies that do consider 
concept drift often use computationally intensive methods that are not suitable for real-time implementation. Our study aims to fill 
this research gap by proposing a novel online multi-task regression algorithm that addresses all three challenges simultaneously in a 
computationally efficient manner.

In the following paragraphs, we provide a detailed review of the existing methods and highlight their limitations, further empha-

sizing the novelty and significance of our proposed method.

Some researchers have chosen conventional time series methods, such as AutoRegressive Integrated Moving Average (ARIMA) [22,

19], and its variants such as VARMAX [26], EVDHM-ARIMA [18], and TP-SMN-AR [16]. The ARIMA model is a statistical method 
used for time series forecasting. It is a linear model that uses a combination of autoregressive (AR) and moving average (MA) terms 
to model the evolution of a time series over time. One limitation of the ARIMA model is that it assumes that the time series data 
follows a stationary process, meaning that the statistical properties of the data do not change over time. However, the spread of 
infectious diseases like COVID-19 is influenced by many factors, such as public health measures, human behavior, and other external 
factors, which can cause the data to exhibit non-stationary behavior. Thus, forecasting using conventional time series methods has 
some limitations, such as not accounting for the effects of exogenous variables and generally only capturing temporal autocorrelation 
over short time periods. On the other hand, conventional time series forecasting methods have advantages, such as requiring a small 
number of data samples, having low model complexity, and high interpretability. For example, conventional methods allow for the 
decomposition of time series components, visualization of seasonal components, trend components, residual components, and other 
components.

In addition, the SIR model [31] and its variant SIPGERD [14] have also been used. The SIR model is a mathematical model 
commonly used to study the spread of infectious diseases. The model assumes that a population can be divided into three categories: 
susceptible individuals who are susceptible to contracting the disease, infected individuals who can pass the disease along to others, 
and recovered individuals who have recovered from the disease and are no longer infectious. The SIR model uses a set of differential 
equations to describe the flow of individuals between these three classes over time. Equations are built using data about the rate of 
infection, the rate of recovery, and population size. By solving these equations, the model can predict the evolution of the disease 
over time and the eventual outcome of the epidemic. However, this type of model is sensitive to its parameters and many of its 
predictions may be incorrect after concept drift occurs.

Many works also exhibit the usage of machine learning methods, such as Support Vector Machine Regression (SVR) [25,29]

and neural network-based methods — Recurrent Neural Networks (RNN) [24] and Long-Short Term Memory (LSTM) network [32,
4

11,10,20,23]. RNNs can process input data of varying length and use the previous inputs to inform the current input’s processing, 
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making them useful for predicting future trends based on temporal autocorrelation. LSTMs, a type of RNN, can better capture long-

term dependencies in data by storing and retrieving information from previous inputs using a specialized memory cell. Although 
no single method can guarantee the highest prediction performance for all datasets, LSTM and its variants have shown to be more 
accurate than other deep learning methods for COVID-19 trend prediction. Some studies have considered both spatial dependency 
and temporal autocorrelation in COVID-19 trend prediction. For instance, ConvLSTM [8] combines convolutional neural networks to 
capture spatial dependency with LSTM to capture temporal autocorrelation. On the other hand, Graph Convolutional Neural Network 
is used to capture spatial dependency in [20]. However, it is difficult to explain the captured dependence intuitively. The COVID-19 
confirmed number trend prediction with concept drift was first discussed in [30]. However, they only considered it with temporal 
information by brute-force tuning the model, which is computationally intensive and not suitable for real-time implementation, and 
did not consider the spatial factor.

Overall, all three of these challenges have been investigated and some progress has been made, providing useful insights into next 
steps. To the best of our knowledge, there is no single solution that addresses all three challenges simultaneously up to now in the 
online learning setting.

3. Method

The three challenges mentioned in the introduction — temporal autocorrelation, spatial dependency, and concept drift — exist 
simultaneously and affect each other, but previous approaches cannot solve all three problems at the same time. To handle all these 
challenges in COVID-19 multitask spatio-temporal prediction, our system comprises three main components: (i) using the lag time 
feature to capture temporal autocorrelation in the daily confirmed case numbers from COVID-19; (ii) utilizing the chain structure to 
capture the spatial dependency between zones; and (iii) employing the Hoeffding tree and ADWIN drift detector to adapt to concept 
drift in the data. This section first introduces the overall structure of the COVID-19 multi-task spatio-temporal prediction system 
referred to as “ChatRC” and then describes how the proposed approach copes with the three challenges in detail.

3.1. The ChatRC’s structure

In terms of model structure, ChatRC is a Hoeffding adaptive tree chained in order of maximum correlation. ChatRC can be 
divided into two phases: the Hoeffding adaptive tree model initialization, and the incremental learning process. The first phase has 
two components: (i) correlation calculation and output sorting, where we calculate the correlation between different output variables 
and sort them based on their correlation values; and (ii) Hoeffding tree and ADWIN drift detector initialization, where we initialize 
the Hoeffding tree and the ADWIN drift detector for each output variable. The second phase of ChatRC has five main steps: (i) 
expanding meta-features, where we add new output as features to the model based on the current state of the data; (ii) updating 
leaf node information, where we update the information stored at each leaf node based on the new data; (iii) attempting to split, 
where we try to split the tree based on the Hoeffding bound; (iv) ADWIN drift detection, where we use the ADWIN drift detector to 
detect any concept drift in the data; and (v) replacing node subtrees, where we replace the subtrees of the model if the ADWIN drift 
detector detects any concept drift.

In the next three subsections, we will describe how ChatRC tackles each of the three challenges.

3.2. Adapting to concept drift

Online learning is a practical approach for dealing with concept drift, as it enables the learning of examples one-by-one and the 
real-time updating of the model.

3.2.1. Hoeffding tree
The Hoeffding tree is a decision tree algorithm for input data streaming [33]. It has been very popular due to its attractive 

property of being guaranteed to perform as well as conventional decision tree algorithms, provided that the number of instances is 
large enough. ChatRC inherits this feature perfectly, as it is a core component of the model. The pseudocode of the Hoeffding tree is 
shown in Algorithm 1.

Each time a new example arrives, the algorithm executes the following steps: Traverse the tree based on the example’s features 
until it reaches the corresponding leaf node; it then updates the information stored at that leaf node with the example’s features or 
label information; the algorithm maintains a table for each node containing the observed features and label values, and update the 
statistical information on numerical attributes by computing the mean and standard deviation of each new example; Each leaf node 
also stores the examples observed so far.

Hoeffding Tree Regression involves evaluating potential split candidates by measuring the reduction of variance in the target 
space. When the variance of the label is high at the leaf node, the algorithm calculates the split criterion �̄�, variance reduction, of 
each feature, as a regression tree. If the difference in information gain between the two features with the highest split criterion Δ�̄�
is greater than Hoeffding’s bound, the tree will split at the best feature, creating new leaves and initializing statistical information 
for them. The Hoeffding bound 𝜖 is calculated using (5),

𝜖 =
√

𝑅2 ln(1∕𝛿)
2𝑛

, (5)
5

where 𝑛 is a number of independent instances of a random variable 𝑟 with range 𝑅.
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Algorithm 1: Hoeffiding Tree (Regression).

Data: stream data (𝐱, 𝒚)
Result: Hoeffding Tree ℎ
Let 𝐻𝑇 be a tree with a single leaf (the root), the split criterion �̄� is variance reduction ;
for all training examples (𝒙, 𝒚) in stream do

Sort example (𝒙, 𝑦𝑗 ) into leaf 𝑙 using 𝐻𝑇𝑖 ;

Update sufficient statistics in 𝑙;
Increment the number of examples seen at 𝑙, 𝑛𝑙 ;
if variance of these labels at the leaf node increases then

Calculating the �̄� of each feature ;
Compute Hoeffding bound 𝜖 =

√
𝑅2 ln(1∕𝛿)

2𝑛𝑙
;

if �̄�𝑙

(
𝑋𝑎

)
− �̄�𝑙

(
𝑋𝑏

)
> 𝜖 then

Replace 𝑙 with an internal node that splits on best feature;

for all branches of the split do

Add a new leaf 𝑙′ with 𝑛𝑖𝑗𝑘
(
𝑙′
)
= 0;

end

end

end

end

Fig. 2. Mechanisms of HAT adaptation to concept drift.

3.2.2. Hoeffding adaptive tree
Hoeffding Adaptive Tree (HAT) is an extension of the Hoeffding Tree that incorporates a concept drift detector [34]. In our work, 

we use the HAT with the ADWIN drift detector. This is because the ADWIN is a parameter-free algorithm with a better capability to 
cope with concept drift compared to the original Hoeffding tree.

Recent studies have shown that individuals who were already vaccinated and infected by the Delta strain of SARS-CoV-2 are also 
showing some level of protection against the Omicron variant [35]. This indicates that the Omicron variant is a partial mutation that 
retains some characteristics of the previous strain. Therefore, it is likely that the concept drift caused by the SARS-CoV-2 variant is 
also partial in nature.

The mechanism of model adaptation to concept drift for the HAT combined with the concept drift detector is shown in Fig. 2. It 
prunes the old subtrees of the model and replaces them with alternative subtrees with better prediction performance when concept 
drift occurs. This mechanism of adapting the model to concept drift with partial updates is more suitable for concept drift caused 
by COVID-19 virus mutations, which are partial in nature. In this way, the model is only partially changed instead of starting from 
scratch with full retraining.

Bifet and Gavalda proposed ADWIN (Adaptive Windowing), an active detection method for detecting concept drift in data 
streams [36]. It uses a variable-sized sliding window to compare the difference between two sub-windows based on a Hoeffding 
bound. This comparison determines whether the target concept has drifted. The window automatically grows when there is no 
significant change in the data and shrinks when the data changes. The ADWIN algorithm is capable of withstanding drifting data, 
even if the algorithms are not adapted for it. Concept drift is detected by keeping statistics from a variable-sized window. Using two 
windows, a statistic’s average will be analyzed at different points and the algorithm will determine the size of the window.

3.3. Capturing temporal autocorrelation

The temporal autocorrelation of COVID-19 confirmed cases data has been a major focus in related research. Specifically, this 
refers to the correlation between the daily number of COVID-19 confirmed cases and the historical daily number of confirmations, 
6

which can be expressed mathematically through (6):
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Fig. 3. Multi-task Regressor Chain.

𝑦𝑡 = 𝜙1𝑦𝑡−1 +𝜙2𝑦𝑡−2 +⋯+𝜙𝑝𝑦𝑡−𝑝, (6)

where 𝑦𝑡 represents the number of new confirmed cases on the 𝑡-th day, while 𝑦𝑡−𝑝 represents the number of new confirmed cases on 
the (𝑡 −𝑝)-th day. 𝜙 is a weight given to the historical daily number of confirmations, with 𝜙𝑝 representing the weight corresponding to 
the early 𝑝 days. We adopt a classic process called time delay embedding to capture the temporal autocorrelation in data. Specifically, 
we use 𝑦𝑡−1, 𝑦𝑡−2, ⋯ , 𝑦𝑡−𝑝 as the temporal features for the machine learning model. This approach has the advantage of preserving the 
historical information of the original data, allowing the model to only determine the optimal weighting variables.

3.4. Capturing spatial dependency

We propose a method that incorporates a multi-task chain structure to capture spatial dependencies among prediction variables. 
This structure is inspired by the Regressor Chain (RC) [37], which is a type of special stack generalization. Chain methods have 
drawn much attention from the multi-label learning community due to their simple concept and effective performance. The original 
chain method, Classifier Chain (CC) [38,39], has become a popular method in multi-label learning and has seen success in many 
real-world applications. Various variants of the chain method have also been developed, such as [40–44].

The key idea behind the original chain method is that the models that come after the first one in the chain use the outputs of the 
previous models as high-level meta-features, which helps extend the feature space and capture the dependency between the previous 
outputs and the prediction variables.

3.4.1. Multi task regressor chain

The chain method is originally designed for multi-label learning or multi-target regression. The conventional chain method is not 
suitable for multi-task learning because each task may have a different feature space. To address this, we propose a multi-task chain 
method, as illustrated in Fig. 3, where each model has a unique feature space. Our approach builds upon the benefits of regressor 
chains, allowing it to capture correlations or dependencies between multiple tasks while accommodating different feature spaces 
for each task. This is in contrast to existing regressor chain methods and their variants, which only work when there are multiple 
predictor output variables with the same feature space.

The spatial dependency of 𝒚𝑖 and 𝒚𝑗 can be denoted as their correlation coefficient 𝑐𝑖,𝑗 , 𝑐𝑖,𝑗 = 𝑐𝑜𝑟𝑟(𝒚𝑖, 𝒚𝑗 ). Thus, the correlation 
coefficient 𝑚 ×𝑚 matrix can be defined by (7),

𝐂𝐎𝐄 = 𝑐𝑜𝑟𝑟(𝐘). (7)

By summing each row of 𝒚𝑖, we obtain the cumulative correlation value 𝑐𝑖, which indicates the degree of association between 𝒚𝑖 and 
all other variables in 𝐘.

We choose Spearman’s rank correlation coefficient to describe the correlation and dependency among COVID-19 news confirmed 
numbers in different regions. Spearman’s rank correlation coefficient has two main advantages: it is parametric-free and does not 
require any distributional assumptions among the variables. It is represented as (8):

𝑟𝑠 = 𝑐𝑖,𝑗 = 1 −
6
∑
𝑑2
𝑖

𝑛
(
𝑛2 − 1

) , (8)

where 𝑟𝑠 is the coefficient and 𝑛 is the number of sample in the (𝒚𝑖, 𝒚𝑗 ). For each sample, 
(
𝑦𝑖, 𝑦𝑗

)
, the square of the difference in 

the ranks of the two coordinates is represented by 𝑑2
𝑖
, and the sum of each of these squares is represented by the expression ∑𝑑2

𝑖
. 

We sort the order of the target variables 𝑦 in descending order according to the 𝑐 of each output variable to obtain the maximum 
cumulative correlation value for the output of each position in the model chain. This allows us to determine the maximum spatial 
correlation among COVID-19 news confirmed numbers in different zones.

We propose an algorithm called “ChatRC” that integrates all of the previously described components to address the three chal-
7

lenges. The algorithm is presented in Algorithm 2.
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Algorithm 2: Correlated Hoeffiding Adaptive Tree Regressor Chain (ChatRC).

Data: History training dataset 𝐷 = (𝐗ℎ𝑖𝑠𝑡𝑜𝑟𝑦, 𝒚ℎ𝑖𝑠𝑡𝑜𝑟𝑦), and stream data (𝐗, 𝒚)
Result: multi-task regression model ℎ𝑗 , 𝑗 = {1, … , 𝑚}
𝐂𝐎𝐄𝑚×𝑚 = corr(𝐘) ;

𝑐𝑙 =
∑𝐂𝐎𝐄(∶, 𝑙), 𝑙 = {1, … , 𝑚} ;

for 𝑦𝑖 in 𝒚1,𝑚 do

Let 𝐻𝑇𝑖 be a tree with a single leaf (the root) for the output 𝑦𝑖;
Create the detector ADWIN and initialize estimators 𝐴𝑖𝑗𝑘 = 0;

end

for all training examples (𝒙, 𝒚) in stream do

for each 𝑦𝑖 in 𝒚 do

if 𝑖 > 1 then
𝒙 = 𝒙𝒊 ∪ (𝑦1 ⋯ 𝑦𝑖−1)

end

Sort example (𝒙, 𝑦𝑗 ) into leaf 𝑙 using 𝐻𝑇𝑖 ;

Update sufficient statistics in 𝑙;
Increment the number of examples seen at 𝑙, 𝑛𝑙 ;

if variance of these labels at the leaf node increases then

Calculating �̄� of each feature ;
Compute Hoeffding bound 𝜖 =

√
𝑅2 ln(1∕𝛿)

2𝑛𝑙
;

if �̄�𝑙

(
𝑋𝑎

)
− �̄�𝑙

(
𝑋𝑏

)
> 𝜖 then

Replace 𝑙 with an internal node that splits on best feature;

for all branches of the split do

Add a new leaf 𝑙′ with 𝑛𝑖𝑗𝑘
(
𝑙′
)
= 0;

end

end

end

if Concept drift is detected by ADWIN drift detector then
Create an alternate tree with the new best feature at its root, if there is none;

end

if the alternate subtree is more accurate then
Replace the current node with this subtree;

end

end

end

4. Experimental study

This section introduces the concept of experimental design, the dataset, and the experiment setup, including the baseline. Finally, 
we present the results of the experiment and the corresponding analysis.

4.1. Experimental design

The experiments were designed to verify the performance of our proposed method in COVID-19 spatio-temporal prediction under 
concept drift. In this paper, we designed several experiments to answer the following research questions:

1. Does the model with the ability to adapt to concept drift have higher prediction performance in COVID-19 time series prediction?

2. Does the model with the ability of chain structure to capture spatial correlation have higher prediction performance in COVID-19 
time series prediction?

3. Do online forecasting models produce higher forecasting performance than offline batch forecasting models in COVID-19 time 
series prediction?

To verify the effectiveness of our proposed methods, we selectd several state-of-the-art deep learning methods in related works, such 
as N-Beats, DeepAR, TCN, and LSTM.

4.2. Data description

The study used data sourced from JHU CSSE COVID-19 Data [45]. We focused on the state of California in the United States and 
selected all counties under its jurisdiction with an average daily infection rate of over 100. Specifically, we examined the following 
counties in California: Riverside, San Joaquin, Tulare, Solano, ContraCosta, Kern, Orange, Sacramento, San Bernardino, SantaClara, 
Ventura, Fresno, San Mateo, Alameda, Monterey, Stanislaus, Los Angeles, San Diego, San Francisco. There are twenty target zones 
in total, which we aimed to predict. The time series data covers the period from March 4, 2020, to January 19, 2021, with daily 
8

frequency. There are a total of 322 samples, each containing the values of twenty prediction zones.
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4.3. Experiment setup

Our proposed algorithm offers the advantage of simultaneously capturing spatial correlation and adapting to concept drift. To 
verify this claim, we compared our proposed algorithm with ChtRC and Mhat algorithms. In our COVID-19 time series prediction 
study, the online machine learning model demonstrated better prediction performance than the offline batch machine learning model. 
To confirm this finding, we selected several state-of-the-art batch learning deep learning algorithms in related works as comparison 
models, including N-Beats, TCN, DeepAR, and LSTM.

1. ChtRC: ChtRC stands for Correlated Hoeffding Tree Regressor Chain. The only difference between ChtRC and ChatRC is that it 
does not have the ADWIN drift detector, and therefore, it does not have the ability to adapt to concept drift.

2. Mhat: Mhat stands for Multi Hoeffding Adaptive Tree. The only difference between Mhat and ChatRC is that it does not have 
a chain structure on models for capturing spatial information. It is composed of Multi-label single Hoeffding Adaptive Tree and 
does not have any structure on output.

3. N-Beats: N-Beats is a deep learning model for time series forecasting [46]. The model learns different levels of abstraction from 
the data, allowing it to detect both short-term and long-term patterns in the data. In addition, N-Beats is trained with a novel 
objective, which enables it to make multi-step ahead predictions, making it suitable for applications that require long-term 
predictions. N-Beats has achieved state-of-the-art performance on a wide range of time series forecasting tasks, such as energy 
demand forecasting and stock price prediction.

4. TCN: TCN (Temporal Convolutional Network) is a type of deep learning model designed for processing time series data [47]. 
It uses a variant of the Convolutional Neural Network (CNN) architecture. TCNs learn spatial and temporal patterns from input 
data by applying convolutional filters. Compared to conventional time series models, TCNs have several advantages. They can 
learn complex patterns in the data and make more accurate predictions. Moreover, they can handle large amounts of data 
effectively. Furthermore, TCNs can be trained using end-to-end learning, meaning they can learn directly from the data without 
being hand-coded. TCNs are a powerful tool for processing time series data and making predictions based on that data. They 
have been applied successfully to a wide range of time series prediction tasks, including forecasting, anomaly detection, and 
classification. Sciannameo et al. also applied TCNs to COVID-19 spatial-temporal prediction with promising results [8].

5. DeepAR: DeepAR is a deep learning model for time series forecasting developed by Amazon Web Services [48]. To model 
temporal dependencies, it uses RNN and Long Short-Term Memory (LSTM). Multivariate time series are easy to forecast with 
DeepAR. To make predictions, it uses both global and local models, enabling it to learn from the patterns in the whole dataset 
and also take into account the individual characteristics of each series. Therefore, DeepAR is perfect for forecasting multiple 
products or multiple roads with many related time series. DeepAR shows state-of-the-art performance on a wide range of time 
series forecasting tasks, including demand forecasting, supply chain optimization, and financial forecasting.

6. LSTM: The Long Short-Term Memory (LSTM) is a popular method for predicting the number of daily confirmed COVID-19 cases 
because it is a powerful tool for modeling temporal autocorrelation in the data. LSTMs are a variant of RNNs that utilize gates to 
regulate the information flow through the network, enabling them to capture long-term dependencies in the data. In a time series 
of daily COVID-19 confirmed cases, there may be complex patterns that are influenced by factors such as the effectiveness of 
public health measures, individual behavior, and the emergence of new variants of the virus. LSTMs are well-suited to this type 
of prediction problem because they can learn the dependencies in the data and make accurate predictions about future cases. 
Furthermore, LSTMs are widely used in many applications and have demonstrated state-of-the-art performance on a broad range 
of time series prediction tasks, making them a popular choice for predicting daily confirmed cases of COVID-19.

All deep learning baselines are implemented using TensorFlow. The Hoeffding Tree and HAT are implemented using River [49]. For 
a fair comparison, all parameters of each baseline are carefully tuned according to the recommended settings. We have selected the 
data from 4 March 2020 to 20 December 2020 as the training data, while the data from 21 December 2020 to 19 January 2021 
is used as the test data. To evaluate the predictive performance of these multi-output methods, we have calculated the average 
root-mean-square error (aRMSE) as (9),

aRMSE = 1
𝑚

𝑡=1∑
𝑚

√∑𝑁
𝑖=1

(
𝑦𝑡
𝑖
− 𝑦𝑡

𝑖

)2
𝑁

, (9)

average mean absolute error (aMAE) as (10),

aMAE = 1
𝑚

𝑡=1∑
𝑚

1
𝑁

𝑖=1∑
𝑁

||𝑦𝑡𝑖 − 𝑦𝑡𝑖
|| , (10)

and average mean-square log error (aMSLE) as (11),

1
𝑡=1∑ 1

𝑖=1∑(
𝑡 𝑡

)2
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aMSLE =
𝑚

𝑚
𝑁

𝑁

log (𝑦𝑖 + 1) − log (𝑦𝑖 + 1) . (11)
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Fig. 4. Heat map of Spearman’s rank correlation coefficient matrix between new confirmed for all zones.

4.4. Spatial dependency analysis

Our study reveals significant spatial dependencies in the spread of COVID-19, which is a critical aspect of our proposed prediction 
model. By capturing these dependencies, our model can provide more accurate and nuanced predictions. Fig. 4 presents a heatmap 
generated by Spearman’s Correlation Coefficient matrix, where higher values indicate stronger monotonicity. The heatmap shows a 
substantial correlation between the number of daily confirmed COVID-19 cases in each city, which can be attributed to two aspects. 
Firstly, the similarity in symptoms is due to the same or similar pattern of viral transmission over time. Secondly, the regional 
mobility of virus carriers and infected individuals can result in an interaction effect on the number of confirmed cases. Fig. 5 shows 
the cumulative correlations between the target variable and all others. It gives the following order listed in 𝒄: ‘California’ ≻ ‘Riverside’ 
≻ ‘SanJoaquin’ ≻ ‘Tulare’ ≻ ‘Solano’ ≻ ‘ContraCosta’ ≻ ‘Kern’ ≻ ‘Orange’ ≻ ‘Sacramento’ ≻ ‘SanBernardino’ ≻ ‘SantaClara’ ≻ ‘Ventura’ 
10

≻ ‘Fresno’ ≻ ‘SanMateo’ ≻ ‘Alameda’ ≻ ‘Monterey’ ≻ ‘Stanislaus’ ≻ ‘Los Angeles’ ≻ ‘San Diego’ ≻ ‘San Francisco’. The cumulative 
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Fig. 5. The cumulative correlations between the target variable and others.

spatial correlations or dependence of ‘California’ are ranked first, undoubtedly because it refers to the total daily new confirmed 
cases in the state.

Based on Fig. 4 and 5, we can analyze the causes of the outcomes depicted from multiple views. By taking into account factors 
such as geographic proximity, coastal location, population density, public health measures, and others, we can better understand the 
reasons behind the observed synchronicity in the daily COVID-19 caseload among various counties in California.

Our analysis of the spatial dependencies in COVID-19 cases across various counties in California reveals some interesting patterns. 
These patterns, which are likely influenced by factors such as geographic proximity, coastal location, population density, and public 
health measures, provide valuable insights into the spread of the virus.

The highest correlation value of 0.98 between Orange County and California suggests a strong monotonic relationship between 
their respective COVID-19 daily cases. Orange County, which is the third-most populous county in California [50] and the sixth-

most populous in the United States, has several similarities with California, such as a coastal location and high population density. 
It is also the second-most densely populated county in the state behind San Francisco [51]. Orange County is located along the 
Southern California coast, and California boasts a significant coastal region, with many of its largest cities situated along the coast. 
Interestingly, despite not being the most densely populated or populous city in California, Orange County exhibits a strong monotonic 
relationship with the state in terms of COVID-19 daily cases, with the highest correlation value of 0.98. This suggests that the rate of 
spread of the epidemic in Orange County is similar to the rate of spread in the majority of other cities in California. These similarities 
may contribute to the observed correlation.

The three cities with the highest correlation values to California as a whole are Orange, San Bernardino, and Ventura, with corre-

lation values of 0.98, 0.97, and 0.97, respectively. These three counties in California share several similarities, such as their coastal 
location and high population density. Orange County is situated on the Southern California coast, while San Bernardino County is 
located east of Los Angeles, and Ventura County is located north of Los Angeles along the Pacific coast. All three counties experience 
a similar maritime climate due to their coastal location. Additionally, these counties have a significant number of residents, with 
Orange County being the third-most populous county in California, San Bernardino County being the fifth-most populous county in 
the state, and Ventura County being the 14th-most populous. These similarities may contribute to the observed monotonic correlation 
in the daily COVID-19 cases between these counties and the state.

The lowest correlation value of 0.76 between San Francisco and Tulare counties suggests relatively low synchronicity between 
their COVID-19 daily cases. San Francisco is a densely populated coastal county, while Tulare is an inland county with lower 
population density. Additionally, San Francisco is part of the San Francisco Bay Area, which has a strong technology industry, while 
Tulare is a major agricultural county. These differences in population density and geographic location may contribute to the observed 
low synchronicity in their COVID-19 daily cases. The city with the highest synchronicity with San Francisco, Contra Costa, has a 
correlation value of 0.89 and is a coastal city in close proximity to San Francisco. This proximity can lead to increased movement 
of people, goods, and services between these cities and San Francisco, which may contribute to the higher synchronicity. They may 
also share similar industries, such as tourism and shipping, and experience a similar maritime climate.

Taking Los Angeles as another example, the four cities with the highest monotonicity with Los Angeles are Orange, San 
Bernardino, Ventura, and San Diego, with correlation values of 0.92, 0.91, 0.89, and 0.89, respectively. These four cities are rela-

tively close to Los Angeles, with Orange, Ventura, and San Diego all being densely populated coastal cities. San Bernardino, on the 
other hand, is not a coastal city but still has a high correlation with Los Angeles. The high population density in these cities may 
affect the transmission dynamics of COVID-19, as it can lead to increased human contact and higher transmission rates.

Understanding the complex interplay of these factors is crucial for effective public health strategies. However, as this paper 
focuses on prediction, we provide only a brief analysis of these aspects. In terms of prediction, the later meta-models employ higher-

level information from across the entire state of California, enhancing prediction accuracy by utilizing hierarchical forecasting 
data. Furthermore, the spatial dependencies among regions allow these meta-models to extract valuable insights, thus improving 
11

prediction precision. The arrangement of these predictive meta-models enables the overarching model to effectively maximize spatial 
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Table 2

Performance comparison of the proposed model and its benchmarks.

aRMSE aMAE aMSLE

ChatRC 443.35 114.85 0.14

ChtRC 630.69 156.84 0.18

Mhat 645.26 162.92 0.19

N-Beats 9375.44 3417.35 2.73

TCN 1254.87 822.62 0.57

DeepAR 9539.31 3800.75 28.43

LSTM 9507.02 3740.12 9.69

dependence or correlation, potentially leading to increased prediction performance. This is a key strength of our proposed model, 
as it allows us to leverage spatial dependencies to improve prediction accuracy. The use of spatial correlation to improve predictive 
performance is also evidenced in related works [8,20].

4.5. Performance comparisons with benchmarks

4.5.1. Adapting to concept drift can improve performance

Our study demonstrates the importance of adapting to concept drift in improving the performance of predictive models. To 
assess if algorithms adapting to concept drift are better suited for predicting new COVID-19 confirmed cases, we compared ChatRC 
with ChtRC, where ChtRC is ChatRC without the ADWIN drift detector. According to Table 2, we can see that ChatRC outperforms 
ChtRC in all three evaluation metrics, i.e., aRMSE, aMAE, and aMSLE. Specifically, ChatRC achieves an aRMSE of 443.35, which is 
significantly lower than ChtRC’s aRMSE of 630.69. Similarly, ChatRC’s aMAE and aMSLE values are also lower than those of ChtRC. 
These results suggest that incorporating the ADWIN concept drift detector in ChatRC can improve its prediction accuracy compared 
to the model without the detector (ChtRC).

Moreover, concept drift is a common phenomenon in COVID-19 daily case time series data. For example, Omicron spreads more 
effectively than the original strain, leading to unsatisfactory prediction performance from models based on the original strain during 
the Omicron propagation period. ChatRC’s ADWIN detector enables the model to adapt to concept drift by replacing the original 
subtree with a more accurate one. This partial model update leads to better prediction accuracy, allowing the model to capture 
changing patterns in the data more effectively. In contrast, ChtRC lacks this ability to adapt to concept drift, which could explain its 
inferior performance compared to ChatRC. Thus, the performance comparison between ChatRC and ChtRC indicates that adapting to 
concept drift through the ADWIN detector can improve the model’s prediction accuracy. The suitability of online machine learning 
for addressing this problem also confirms the impact of concept drift on model prediction performance.

4.5.2. Capturing spatial dependency can improve performance

Our study also highlights the importance of capturing spatial dependencies in improving the performance of predictive models. To 
evaluate whether algorithms capturing the spatial dependency between daily confirmed COVID-19 cases across regions can enhance 
predictive performance, we compared ChatRC and Mhat. Mhat is ChatRC without a chain structure for capturing spatial dependency, 
meaning that it is just multiple single Hoeffding adaptive trees for each single target without modeling them together. Mhat lacks 
the ability to capture spatial dependency among multiple regional COVID-19 caseloads. According to Table 2, ChatRC outperforms 
Mhat with a lower aRMSE of 443.35 compared to Mhat at 645.26, a lower aMAE of 114.85 compared to Mhat at 162.92, and a 
lower aMSLE of 0.14 compared to Mhat at 0.19. This result indicates that ChatRC, which captures the spatial dependency between 
daily confirmed COVID-19 cases across regions, enhances predictive performance compared to Mhat, which does not capture spatial 
dependencies.

ChatRC captures the spatial dependency between daily confirmed COVID-19 cases across regions by using a chain structure. 
This allows the model to consider the relationship between the daily case numbers in neighboring regions and incorporate that 
information into its predictions. On the other hand, Mhat is based on multiple single Hoeffding adaptive trees for each single target, 
without modeling the regions together. This approach lacks the ability to capture spatial dependency among multiple regional 
COVID-19 caseloads.

In addition, ChatRC’s performance improvement can be attributed to the inherent spatial dependence and high degree of mono-

tonicity in the number of daily COVID-19 confirmed cases in neighboring regions, as demonstrated by the Spearman correlation 
analysis in Fig. 4. By incorporating spatial information into its predictions, ChatRC can take advantage of this correlation and 
improve its prediction accuracy.

This comparison underscores the strength of our proposed model, ChatRC, in capturing spatial dependencies in the spread of 
COVID-19. By using a chain structure, our model can consider the relationship between daily case numbers in neighboring regions 
and incorporate that information into its predictions, leading to improved predictive performance. This is a significant advantage 
over models that do not capture spatial dependencies, as demonstrated by the inferior performance of Mhat.

4.5.3. Online learning more suitable

Our study also highlights the importance of capturing spatial dependencies in improving the performance of predictive models. 
12

To determine whether online machine learning outperforms batch machine learning in predicting daily confirmed COVID-19 cases, 
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we compared various batch machine learning algorithms with online learning algorithms. The batch learning algorithms we tested 
were N-Beats, TCN, DeepAR, and LSTM, while the online learning models included ChatRC, ChtRC, and Mhat.

Among the online learning models, ChatRC achieved the best performance, with an aRMSE of 443.35, aMAE of 114.85, and 
aMSLE of 0.14. ChtRC and Mhat achieved slightly worse performance, with aRMSE of 630.69 and 645.26, aMAE of 156.84 and 
162.92, and aMSLE of 0.18 and 0.19, respectively. On the other hand, among the conventional batch machine learning models, 
LSTM achieved the best performance, with an aRMSE of 9507.02, aMAE of 3740.12, and aMSLE of 9.69. The other models in batch 
learning algorithms — N-Beats, TCN, and DeepAR — all had significantly worse performance, with aRMSE ranging from 1254.87 to 
9375.44, aMAE ranging from 822.62 to 3417.35, and aMSLE ranging from 0.57 to 28.43. These ranges of errors further emphasize 
the superiority of online learning models, particularly ChatRC, over conventional batch machine learning group models in predicting 
rapidly changing data patterns, such as those seen in the daily confirmed cases of COVID-19.

Online machine learning is particularly well-suited for dynamic, non-stationary time series data, which often exhibit concept 
drift or changes in the underlying data distribution over time. This is because online learning algorithms can continuously learn and 
update their models in response to new data, without requiring the entire dataset to be reprocessed. In contrast, conventional batch 
learning methods require the entire dataset to be processed during training, and do not adapt well to changing patterns in the data. 
In the case of COVID-19 time series data, the patterns and underlying data distributions have been changing rapidly due to various 
factors such as virus mutations, policy changes, and vaccination campaigns. Therefore, online machine learning algorithms like 
ChatRC, ChtRC, and Mhat are better suited for predicting the number of daily confirmed COVID-19 cases compared to conventional 
batch learning algorithms like N-Beats, TCN, DeepAR, and LSTM.

Moreover, since all conventional batch machine learning models used here are the deep learning family and the sample size 
is relatively small at 322, it is not surprising that these models have lower predictive performance than the online learning group 
models. Deep learning models typically require a large amount of training data to achieve high performance due to their high model 
capacity and the large number of parameters to be learned. Therefore, training deep learning models with a small sample size may 
result in overfitting, where the model is too complex and tailored to the training data, causing poor generalization performance on 
new data.

In contrast, online learning models update their models with each new data point, allowing them to adapt quickly to changing 
patterns in the data. This is particularly important for predicting COVID-19 daily confirmed cases, where the data patterns can 
change rapidly due to various factors, such as virus mutations and policy changes. Online learning models also tend to have lower 
model capacity and fewer parameters, making them more suitable for training with a smaller sample size.

This comparison highlights the strength of our proposed model, ChatRC, and other online learning models in handling dynamic, 
non-stationary time series data, such as the daily confirmed cases of COVID-19. Our model and other online learning models can 
continuously learn and update their models in response to new data, leading to improved prediction accuracy. This is a significant 
advantage over conventional batch learning methods, which require the entire dataset to be processed during training and do not 
adapt well to changing patterns in the data.

5. Conclusion

The ChatRC proposed in this paper is capable of capturing both temporal autocorrelations and spatial dependencies in data, updat-

ing the model, and making more accurate predictions than conventional machine learning models in real-time scenarios with concept 
drift. Online machine learning is better suited for predicting COVID-19 than conventional machine learning, and this improvement 
in prediction performance due to the learning mechanism is significant. In addition to temporal autocorrelation, capturing spatial 
dependence can also enhance the model’s predictive performance. The high monotonic correlation of trend data between multiple 
regions of COVID-19 in California, USA, used in this paper is one of the key reasons why capturing spatial correlation improves the 
model’s prediction performance.

The limitations of this study can be analyzed from multiple perspectives, particularly with respect to addressing the three main 
challenges of COVID-19 daily case prediction: concept drift, temporal autocorrelation, and spatial dependence. Future applications 
of our algorithms for 3D engineering tasks will also be interesting and worth exploring [52,53].

In terms of handling conceptual drift, this paper employs a Hoeffding tree with ADWIN concept drift detectors. While the Ho-

effding tree’s performance has demonstrated advantages in numerous works, this integrated solution may not be the optimal choice. 
As the Hoeffding tree is inherently a tree-based method, it cannot output prediction intervals using quantile loss, providing only a 
single prediction. The ADWIN concept drift detector is a generic detector, and although our experiments have shown it improves the 
model’s predictive performance, we have not compared it to other concept drift detectors.

In terms of capturing spatial dependence, our experiments have shown the effectiveness of the chain structure. However, we have 
not compared it to the increasingly popular graph neural networks and graph algorithms, which may be better suited for capturing 
spatial dependence using graph-based components.

Another limitation of this study pertains to its scope. While the research focuses on designing the most suitable data-driven algo-

rithm for predicting daily new COVID-19 cases, other daily data related to COVID-19, such as the number of deaths and recoveries, 
may be correlated. Joint modeling of these variables could potentially yield better predictions and extract useful information from 
data correlations. Future work should consider exploring these aspects to further improve prediction models and gain deeper insights 
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into the relationships among various COVID-19 data types.
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