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Positive-strand RNA [(+)RNA] viruses are responsible for

numerous human, animal, and plant diseases. Because of the

limiting coding capacity of (+)RNA viruses, their replication

requires a complex orchestration of interactions between the

viral genome, viral proteins and exploited host factors. To

replicate their genomic RNAs, (+)RNA viruses induce

membrane rearrangements that create membrane-linked RNA

replication compartments. Along with substantial advances on

the ultrastructure of the membrane-bound RNA replication

compartments, recent results have shed light into the role that

host factors play in rearranging these membranes. This review

focuses on recent insights that have driven a new

understanding of the role that the membrane-shaping host

reticulon homology domain proteins (RHPs) play in facilitating

the replication of various (+)RNA viruses.
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Introduction
(+)RNA viruses reorganize intracellular membranes to

assemble their RNA replication compartments, which

are intricate factories or mini-organelles featuring the

close association of both viral and host components [1].

Cellular lipid synthesis as well as appropriate lipid com-

position is required for viral replication, implying that the

membrane is an essential, functional component of the

RNA replication complex [2]. Pioneering ultrastructural

studies using three-dimensional imaging by electron
www.sciencedirect.com 
microscope tomography (EMT) have substantially

enhanced the understanding of the RNA replication

compartments induced by (+)RNA viruses [3–6]. As

noted below, various (+)RNA viruses induce membrane

rearrangements with distinct morphologies. Nevertheless,

in general, the membrane is thought to provide a surface to

help localize and increase the local concentration of com-

ponents required for viral replication [1], protect dsRNA

replication intermediates and viral proteins from sensors of

the innate immune system [7], and in some cases provide

host factors that help target viral proteins or genomic RNAs

to the appropriate membrane [8].

Host factors have been shown to be involved in every step

of viral life cycles [9�,10–12]. In keeping with this, recent

results show that host factors also are key determinants in

forming viral RNA replication compartments, including

by generating appropriate lipid composition of the mem-

branes [2,13,14�,15��,16,17] and by structurally inducing/

supporting relevant membrane curvature [17,18,19��].
Since genomic RNA replication is a highly conserved

step in the viral life cycle, understanding the role that

such host factors play in the formation and function of the

viral-induced RNA replication compartments could pro-

vide a target to develop broad-spectrum antivirals.

Reticulon homology domain proteins
The reticulons are a group of morphogenic, ER mem-

brane-shaping proteins that partition to and stabilize

highly curved ER membrane tubules [20��], and as such

are candidates for host factors that may affect the gener-

ation and/or maintenance of virus-induced membrane

rearrangements. The diversity of the reticulon gene

family varies among hosts, with four reticulon genes in

mammals (RTN1-4), two genes in yeast (RTN1 and

RTN2), and 21 and 17 genes, respectively, in the plants

Arabidopsis thaliana and Oryza sativa [21,22,23,24�]. A

related protein family that is also necessary for ER tubule

formation consists of six mammalian DP1/REEP proteins

and yeast Yop1 [20��,25]. The reticulon and DP1 families

share little overall homology but do exhibit an important

common structural feature—two elongated hydrophobic

segments that appear to form partially membrane-span-

ning hairpin domains [20��,26,27]. For simplicity, for the

rest of this review we will refer to the reticulon and DP1

families as the reticulon homology domain proteins

(RHPs). The bulk of the hydrophobic portions of the

RHPs is predicted to reside in the outer leaflet of the

phospholipid bilayer, thus inducing curvature by hydro-

phobic wedging [20��]. The oligomerization of the RHPs
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Positive and negative curvature found within viral induced replication compartments. (a) RHPs (red) induce curvature by protruding the membrane

towards the cytoplasm to form tubules. (b) BMV replicase protein 1a (blue) forms spherules by invaginating the membrane away from the cytoplasm.

(c) In viral induced vesicles that remain connected to the parental membrane, the area around the neck has positive curvature while the body of the

vesicle has negative curvature. (d) Model for potential role of RHPs in formation and/or maintenance of BMV induced spherules. 1a (blue arc) might

induce and stabilize negative curvature in the vesicle body whereas RHPs (red arcs) would partially cancel negative curvature at the body to allow

expansion of the vesicle and stabilize the spherule neck. The poliovirus membranous replication complexes found in early (e) and late (f) stages of

development both have positive curvature. For (f), cyan and orange indicate inner and outer membrane of double-membrane structures.

(d) was adapted from [16].
is important both for their ability to localize to and to form

tubular ER domains, suggesting that such scaffolding

might also have a role in curvature induction and stabil-

ization [28]. Consistent with their role in tubule for-

mation, RHPs primarily partition to and stabilize

peripheral ER membrane tubules while avoiding the

low-curvature ER domains of the nuclear envelope and

peripheral ER sheets [20��,29]. Such ER tubules are said

to have positive membrane curvature — that is, curved to

protrude into the cytoplasm (Figure 1a).

Role of RHPs in brome mosaic virus RNA
replication complex formation
The replication cycle of brome mosaic virus (BMV), a

small alphavirus-like virus, has been well characterized,
Current Opinion in Microbiology 2012, 15:519–524 
making BMV an advantageous model to study some of

the general features of (+)RNA virus RNA replication

[30]. EM shows that for BMV, RNA synthesis localizes to

50–80 nm vesicular compartments, also known as spher-

ules, in which the outer perinuclear ER membrane is

invaginated away from the cytoplasm and into the ER

lumen [31]. The interior of these vesicles is connected to

the cytoplasm through a neck-like opening, providing a

channel for ribonucleotide import and product RNA

export. The only BMV protein necessary to induce

spherule formation is replication factor 1a [31]. The

self-interacting 1a protein is membrane associated, loca-

lizes to spherule interiors, and is present at high enough

levels to imply that it must form a shell covering much of

the spherule interior [31–33]. Such a rigid protein shell
www.sciencedirect.com
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could contribute substantially to forming and maintaining

the high-energy membrane deformation state of the

spherules (Figure 1b). However, in addition to 1a, RHPs

also were recently shown to play key roles in BMV RNA

replication compartment formation and function [19��].

Using a loss-of-function experimental approach, RHPs

were shown to be required for efficient BMV RNA

replication in yeast [19��]. In keeping with the altered

RNA replication phenotype, BMV 1a interacts with and

incorporates RHPs into the spherule interior, and delet-

ing all three yeast RHPs abolishes 1a-induced spherule

formation [19��]. Topologically, the spherule body has

negative curvature in that the membrane of the vesicle

sunshine is curved away from the cytoplasm, although

the neck has positive curvature and can be thought of as

a tubule cut in half (Figure 1c). RHPs polymerize into

short arcs to form perfect cylindrical tubes [34] and are

involved in forming nuclear pores [35], which are

topologically equivalent to spherule necks. Thus,

RHPs are likely necessary for both spherule formation

and maintenance of an open channel to the cytoplasm

to facilitate import of RNA templates and nucleotides

and export of progeny RNA (Figure 1d). In addition to

stabilizing spherule necks, a subset of RHPs must also

be incorporated within the vesicular portion of spher-

ules as partial RHP depletion results in spherules with

reduced diameter [19��]. In this instance, the positively

curving RHPs might partially cancel the negative mem-

brane curvature induced by 1a, allowing expansion of

the spherule body (Figure 1d). Although RHPs are

involved in shaping smooth ER [36], the site of many

lipid synthesis steps [37], RHP deletion did not alter

fatty acid levels or composition, suggesting that their

main contribution to RNA synthesis is in RNA replica-

tion compartment formation. Further supporting this

notion, RHP-GFP fusions retain 1a interaction but shift

1a-induced membrane rearrangements from spherules

to double-membrane layers of ER surrounding the

nucleus [19��].

Role of RHPs in Picornaviridae RNA
replication
The importance of RHPs in (+)RNA virus replication was

first demonstrated when human reticulon 3 (RTN3) was

found to interact with the 2C proteins of poliovirus,

coxsackievirus A16 (CA16) and enterovirus 71 (EV71)

[38]. Moreover, immunoprecipitation showed that EV71

2C protein interacts with the reticulon homology domain

of RTN1C, RTN2, and RTN4. siRNA knockdown of

RTN3 resulted in inhibited synthesis of viral double-

stranded RNA (dsRNA) and proteins in EV71-infected

cells [38]. Ectopic expression of a form of RTN3 that was

not degraded by siRNA in siRTN3 knockdowns rescued

EV71 infectivity, suggesting that RTN3 plays a key

role in EV71 replication. Although ultrastructural studies

were not performed, immunofluorescence showed
www.sciencedirect.com 
that endogenous RTN3 colocalized not only with

EV71 2C but also with dsRNA, implying that RTN3

is likely associated with the viral replication compartment

[38]. The 2C protein is one of the most highly conserved

viral proteins among all picornaviruses and poliovirus 2C

has been proposed to be involved in the formation of the

vesicle-associated replication compartments [39].

Because of the limitations of conventional, two-dimen-

sional electron microscopy, the RNA replication struc-

tures induced by poliovirus and other enteroviruses had

been previously described as either single-membrane

[40] or double-membrane vesicles (DMVs) [41]. How-

ever, EM tomograms of enterovirus-infected cells

showed that, during the exponential phase of viral

RNA synthesis, closed smooth single-membrane

tubules constitute the predominant virus-induced mem-

brane structure, whereas DMVs become increasingly

abundant at the expense of these tubules as infection

progresses [42�]. Similar observations have been made

in poliovirus-infected cells. Early in infection, polio-

virus induces the formation of single-membrane con-

necting and branching tubular compartments [43�]. As

infection progresses, the tubular compartments gradu-

ally transform into double-membrane structures [43�].
Unlike the negatively curved spherular compartments

induced by BMV, the enterovirus71-induced and polio-

virus-induced tubule-like and vesicle-like structures are

both positively curved (Figure 1e and f). Thus, RHPs

may play a role in forming the single-membrane

tubules, analogous to their normal role in shaping

smooth ER [36], whereas later on they would stabilize

the positively curved DMVs. The transformation from

single-membrane tubules to DMVs would require both

close apposition of the inner tubule membrane with a

source for the outer membrane and the induction of

curvature to wrap this outer membrane around the

tubules, which is another role that RHPs might be

involved in.

Potential RHP role in forming replication
compartments of other (+)RNA viruses
A yeast-two hybrid system used to screen a liver cDNA

library showed that RTN3 interacts with the NS4B

protein of hepatitis C virus (HCV) [44]. When expressed

individually or in the context of the entire HCV poly-

protein, NS4B localizes to the ER [45]. Moreover, NS4B

is a key organizer of the HCV RNA replication compart-

ment by inducing the formation of ER-derived membra-

nous vesicles, which accumulate in large cytosolic

clusters, referred to as the membranous web [46].

Although the role that RTN3 plays in HCV RNA replica-

tion was not investigated further in these studies, given

the particular functions of NS4B in inducing HCV RNA

replication compartments, it is tempting to speculate that

RTN3 might be involved in modulating the formation of

the membranous web.
Current Opinion in Microbiology 2012, 15:519–524
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Dengue virus (DENV) infection induces several distinct

ER-derived membrane structures, including vesicle

packets (VPs) and convoluted membranes (CMs)

[5,47]. EM tomography shows that the inner vesicles of

VPs are invaginations of the outer ER membrane [5],

thus, the inner vesicle interiors are connected to the

cytoplasm by neck-like pores similar to those in the

spherules induced by BMV and many other (+)RNA

viruses. Likewise, SARS coronavirus-infected cells con-

tain a mixture of VP and CM rearrangements [4]. How-

ever, tomographic reconstructions failed to reveal any

membrane openings between the SARS virus-induced

DMV interiors and the cytoplasm, as was observed for

BMV and DENV, suggesting that the DMVs might be

more related to the DMVs formed by poliovirus. On the

basis of such ultrastructural data, alpha-like and some

flavi-like viruses appear to induce structures with nega-

tive membrane curvature along the dome of the vesicle

[5], with areas of positive curvature along the neck, while

picorna-like and coronavirus-like viruses induce struc-

tures with positive membrane curvature [4,42�,43�].
Despite the topological differences, one common theme

might be the role of RHPs in forming the various RNA

replication compartments, perhaps but not necessarily

limited to those viruses that use membranes derived from

the ER.

Concluding remarks
With RHPs now identified as playing crucial roles in the

replication of multiple (+)RNA viruses, the stage is set to

identify not only additional participating host factors, but

also the detailed molecular mechanisms of how different

viruses orchestrate the varied and often complex mem-

brane rearrangements associated with their replication

processes. Moreover, the role of RHPs in (+)RNA repli-

cation aside from genome amplification remains to be

explored, as do the potential interactions of RHPs with

other cellular pathways that contribute to virus replica-

tion, such as factors that regulate membrane synthesis/

composition [2], trafficking, and membrane remodeling.

Although mainly found in the ER, RHPs also localize to

the Golgi and plasma membrane, implying a potential

role in membrane trafficking [48]. Along these lines,

poliovirus vesicle formation has been linked to COPI

vesicle trafficking [49], tombusvirus (TBSV) recruitment

of another set of membrane-shaping proteins ESCRT

(endosomal sorting complexes required for transport)

proteins apparently facilitates the assembly of TBSV-

induced spherules [18] and enteroviruses and flaviviruses

exploit host phospholipid-modifying enzyme PI4KIIIb

and replicate their respective viral RNA on phosphatidy-

linositol-4-phosphate lipid-enriched membranes [50��].
Cryo-EM tomography and super resolution imaging

should help to resolve the three-dimensional organization

at molecular resolution of viral and host proteins that are

part of replication compartments and to enhance our

understanding of the role that RHPs and other host
Current Opinion in Microbiology 2012, 15:519–524 
factors play in forming the membrane-associated RNA

replication compartments.
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