
Frontiers in Endocrinology | www.frontiersi

Edited by:
Eric Hajduch,

Institut National de la Santé et de la
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Sphingolipids are a class of essential lipids, functioning as both cell membrane
constituents and signaling messengers. In the sphingolipid metabolic network,
ceramides serve as the central hub that is hydrolyzed to sphingosine, followed by
phosphorylation to sphingosine 1-phosphate (S1P) by sphingosine kinase (SphK).
SphK is regarded as a “switch” of the sphingolipid rheostat, as it catalyzes the
conversion of ceramide/sphingosine to S1P, which often exhibit opposing biological
roles in the cell. Besides, SphK is an important signaling enzyme that has been implicated
in the regulation of a wide variety of biological functions. In recent years, an increasing
body of evidence has suggested a critical role of SphK in type 2 diabetes mellitus (T2D),
although a certain level of controversy remains. Herein, we review recent findings related
to SphK in the field of T2D research with a focus on peripheral insulin resistance and
pancreatic b-cell failure. It is expected that a comprehensive understanding of the role of
SphK and the associated sphingolipids in T2D will help to identify druggable targets for
future anti-diabetes therapy.
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INTRODUCTION

Type 2 diabetes mellitus (T2D) is a progressive metabolic disease caused by impaired responses to
insulin in the target tissues, such as the liver, skeletal muscle and adipose tissue, and inadequate
insulin production from pancreatic islets. T2D predisposes to a significantly higher risk of severe
health problems in the cardiovascular system, kidney, eyes, and nervous system, leading to reduced
life quality and even death. According to the International Diabetes Federation (IDF) statistics in
2019, 1 in 11 adults aged between 20 and 79 are living with T2D, incurring a heavy socioeconomic
burden (1). As the largest non-contagious pandemic of the 21st century, T2D is spreading rapidly
towards less developed communities and the younger population (1). Despite intensive research for
decades, the molecular mechanism underlying the pathogenesis and progression of T2D remains to
be identified.

Dyslipidemia has long been recognized as a chief causative factor tying T2D with lifestyle (2).
However, with the advancement of understanding in lipids, it is abundantly clear that circulating
lipids only represent a small portion of pathogenic factors for T2D. Intraorganic/intracellular lipids
contribute to T2D at all stages, from the early prediabetes to the establishment of complications (3,
4). Indeed, T2D is often associated with intracellular lipid dysregulation, as commonly seen in
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obesity, non-alcoholic fatty liver disease, and lipodystrophy (5, 6).
Sphingolipids are a class of essential intracellular lipids that
function as both cell membrane constituents and signaling
molecules. Sphingosine kinase (SphK), including the two
isoforms SphK1 and SphK2, is a key enzyme of the sphingolipid
metabolic pathway (7). In recent years, an increasing body of
evidence has suggested an important role of SphK in T2D, although
a certain level of controversy remains. This review intends to
provide a comprehensive review on SphK in the research field of
T2D with a focus on peripheral insulin resistance and pancreatic
b-cell failure.
SPHINGOLIPID METABOLIC NETWORK

Sphingolipids present one of eight major lipid categories. LIPID
MAPS, the largest lipid-only database, lists 1,664 curated
sphingolipid species (8). Structurally, these sphingolipid
metabolites possess a common sphingoid backbone, mainly in
18-carbon length (9, 10). Metabolically, sphingolipid products
are interconnected as a network with ceramide as the central hub
(Figure 1). In the sphingolipid biosynthetic pathway, the first
committed step is the formation of sphingoid base from amino
acid and fatty acyl-CoA via condensation and reduction (9,
11). In the following steps, ceramide is produced on the basis
of the sphingoid backbone via acylation and desaturation
(12, 13). Ceramide can be reversibly converted into complex
sphingolipids, such as sphingomyelin, glycosphingolipids and
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acylceramide (14–16). In the sphingolipid catabolic pathway,
ceramide can be hydrolyzed into sphingosine that is
subsequently phosphorylated into sphingosine 1-phosphate
(S1P) by SphK (17–19). S1P can be irreversibly lysed into non-
lipid products to exit the sphingolipid metabolic network (20).
SphK is often regarded as a key enzyme in this network primarily
for two reasons: a) SphK constitutes the checkpoint that
determines the cellular content of “bioactive” sphingolipid
products, including ceramide, sphingosine and S1P (18, 21);
b) SphK acts as a “rheostat” of sphingolipids, because ceramide
and sphingosine often exhibit cellular functions opposing S1P
(22). For example, ceramide and sphingosine induce apoptosis,
whereas S1P protects cells from death in various types of
cells (22).
STRUCTURE OF SPHINGOSINE KINASE

There are two mammalian SphK isoforms, designated as SphK1
and SphK2, which are encoded by two different genes located on
distinct chromosomes. SphK1 and SphK2 are evolutionarily
highly conservative (18, 19). Both of them possess five
conserved regions, C1-C5 (18, 19). The C1-C3 and C5
domains in SphK share a high level of sequence homology
with phosphofructokinase (PFK)-like superfamily members,
such as NAD kinase and diacylglycerol kinase (23). However,
the crystalized structure of SphK1 reveals that its lipid-binding
pocket is distinctive from NAD kinase and diacylglycerol kinase,
FIGURE 1 | Sphingolipid metabolic network. SPT, serine palmitoyltransferase; KDSR, 3-keto-dihydrosphingosine reductase; CerS, ceramide synthase; DEGS,
dihydroceramide desaturase; CDase, ceramidase; SphK, sphingosine kinase; SPGL1, sphingosine 1-phosphate lyase.
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indicative of the substrate specificity (24). Whilst the structure of
SphK2 has not been characterized yet, sequence alignment
analyses reveal that compared with SphK1, SphK2 possesses an
additional N-terminal extension and a large insertion at its C-
terminal lipid-binding domain (24, 25). SphK2, but not SphK1,
possesses a nuclear localization sequence and a nuclear export
sequence, which are located in its N-terminal extension and C-
terminal insertion, respectively (26). Thus, SphK2 can shuttle
between the nucleus and cytoplasm, whereas SphK1 is solely a
cytosolic protein. SphK2 is also found to function in the
endoplasmic reticulum (ER) and mitochondria (27–29), which
might be related to its putative transmembrane domain and BH3
domain (30, 31).
BIOLOGICAL FUNCTIONS OF
SPHINGOSINE KINASE

Both SphK1 and SphK2 are ubiquitously expressed in tissues and
blood. SphK1 contributes more to the level of S1P in circulation,
while SphK2 is the predominant SphK isoform in the liver, kidney,
pancreatic islets and brain (32–34). The ablation of either Sphk1 or
Sphk2 does not cause any infertility or lethality in mice, whereas
knockout of both enzymes results in embryonic death, indicating
they are redundant in some essential physiological functions (35).
At the cellular level, the primary biological actions of SphK1 are to
promote cell proliferation, migration and survival and to inhibit
apoptosis, and thus upregulation of SphK1 is often associated with
cancer progression, metastasis and a poor prognosis (13, 36, 37). In
addition, SphK1 modulates immune response and inflammation
(38, 39). In general, the biological function of SphK2 has not been
well characterized. In some cases, SphK2 and SphK1 play similar
roles because of their overlapping enzymatic activity in the
conversion of ceramide and sphingosine into S1P; whereas in
others, SphK2 exhibits different or even opposite effects due to
distinct tissue distribution and subcellular localization. In particular,
the role of SphK2 is highly controversial in terms of pro-apoptotic
(27, 31, 40) versus anti-apoptotic (41–43). The mechanism
underlying this discrepancy warrants further elucidation.
ACTION MODES OF
SPHINGOSINE KINASE

SphK1 and SphK2 exert their biological functions mainly via the
following three approaches:

a) S1P Receptor-Dependent Mode: SphK often functions via its
enzymatic product S1P. Once generated by SphK, S1P can be
exported out of the cell where it binds to a group of five distinct,
specific G protein-coupled receptors (S1P1-5) (44, 45). S1P can
also travel to its target tissues via its carriers, such as albumin and
ApoM-containing high-density lipoproteins (46, 47). Circulating
S1P is mainly sourced from the SphK1 in erythrocytes (48).
However, a recent study has found that SphK2 also determines
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the circulating level of S1P in the liver, where it dictates S1P
clearance via a route of dephosphorylation, re-phosphorylation
and lysis (49). Circulating S1P is undoubtedly implicated in
whole-body metabolic regulation, but its physiological effects
remain elusive. Plasma S1P is found increased in humans and
rodents with obesity and insulin resistance (50), whereas another
study identifies an opposite trend that serum S1P is decreased
along with the development of human insulin resistance and
T2D (51). However, the ApoM-bound S1P is recently found
metabolically protective against insulin resistance (52). More
extensive studies are required to clarify the role of circulating
S1P. Cells from different tissues can express one to five different
kinds of S1P receptors (53). Upon activation by S1P, S1P
receptors trigger cell signaling coordinately or differentially.
For instance, both S1P1 and S1P4 are required for T cell
migration (54), while both S1P1 and S1P2 convey S1P-
mediated protection from excitotoxicity in hippocampal
neurons (55). In contrast, S1P1 and S1P2 exhibit opposite
effects on pain sensitivity and endothelial dysfunction (56, 57).
In addition, S1P receptor signaling is often crosstalk with other
receptor-dependent pathways, such as growth factors and
cytokines (58–62), leading to a complexity of the actions of S1P.

b) Intracellular PartnerMode: SphK and S1P can directly bind to
intracellular partners, independent of S1P receptors. For
instance, at the plasma membrane, SphK1 and S1P interact
with the RING domain of tumor necrosis factor receptor-
associated factor 2 (TRAF2), priming the ubiquitination of
receptor-interacting serine/threonine-protein kinase 1 (RIP1)
and subsequent activation of nuclear factor-kB (NFkB) (63,
64). In the nucleus, SphK2 and its product S1P physically
interact with histone deacetylases HDAC1 and HDAC2,
implicating in the epigenetic regulation (26). At the inner
membrane of mitochondria, SphK2 and S1P bind to
prohibitin 2, which is essential for respiratory complex IV
assembly and mitochondrial fitness (29). More intraorganellar
partners of SphK are to be identified, e.g., in the ER where
SphK1 regulates unfolded protein responses (27, 65),
endosomes where SphK1 modulates endocytotic recycling
(66, 67) and lysosomes where SphK2 mediates autophagy (68).

c) Substrate Depletion Mode: Reducing levels of ceramide and
sphingosine is often regarded as a mean of S1P-independent
function of SphK. For examples, SphK1 counteracts ceramide-
induced apoptosis, constituting the basis of cancer drug
resistance (69). Overexpression of SphK1 prevents ceramide
accumulation in myocytes ameliorates muscle insulin
resistance in diet-induced obese mice (70). SphK has also been
found to regulate certain cellular functions via sphingosine,
independent of ceramide or S1P: sphingosine specifically
impairs SphK1-mediated endocytotic membrane trafficking
(66); sphingosine induces cell cycle arrest in SphK1/SphK2
double knockout murine embryonic stem cells (71);
sphingosine accumulation suppresses insulin signaling in
SphK2 deficient hepatocytes (7); and sphingosine impairs
insulin-mediated glucose uptake in L6 myotubes exposed to
palmitate (72).
February 2021 | Volume 11 | Article 627076
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SPHINGOSINE KINASE AND HEPATIC
INSULIN RESISTANCE

The liver is the central organ in maintaining glucose homeostasis.
Hepatic insulin resistance is considered a key pathogenic onset of
prediabetes (73). Aberrant lipid metabolism in the liver impairs
hepatocyte’s response to insulin, leading to increased glucose
production and decreased glucose disposal (73). Conventionally,
lipid dysregulation that results in hepatic insulin resistance
mainly refers to ectopic fat deposition, as seen in steatotic
livers. In accord, 70-80% of T2D subjects have non-alcoholic
fatty liver diseases (NAFLD), and the incidence rate of NAFLD in
obese, diabetic individuals is more than 90% (5, 74). In the past
decade, the role of signaling lipids, including SphK-related
sphingolipids like ceramides, sphingosine, and S1P, is emerging
in the pathogenesis of hepatic insulin resistance (3, 7, 75).

The role of SphK1 in hepatic fitness is discrepant, mainly
because it simultaneously possesses both prosurvival and
proinflammatory properties. As a prosurvival factor, SphK1
protects hepatocytes from a variety of stress stimuli. SphK1
protects NAFLD livers from ischemia/reperfusion injury by
reducing reactive oxygen species and alleviating oxidative stress
(76). SphK1 also mitigates palmitate-induced ER stress-
associated apoptosis in hepatocytes (65). In contrast, as a
proinflammatory and profibrogenic factor, SphK1 promotes
NAFLD progression to non-alcoholic steatohepatitis (NASH).
The hepatic SphK1 mRNA level is profoundly increased in
subjects with advanced fibrotic livers (77). Ablation of Sphk1
ameliorates CCl4 or bile duct ligation (BDL)-induced liver
fibrosis in mice, at least in part, by suppressing the activation
and migration of hepatic stellate cells and Kupffer cells (78).
SphK1 promotes protein kinase C-d activation, triggers NFkB
signaling and promotes proinflammatory cytokine production,
contributing to D-GaIN and lipopolysaccharide-induced acute
liver failure (79). The role of SphK1 in steatosis is context-
dependent. Overexpression of SphK1 by adeno-associated virus
(AAV) in the liver reduces the level of hepatic triglyceride in
mice on a low fat, but not high fat, diet (80). In contrast,
knockout of SphK1 suppresses hepatosteatosis in mice on a
high-fat diet (HFD) (81).

SphK1 was hypothesized to reinforce hepatic insulin
sensitivity as it converts ceramides to S1P. On the one hand,
ceramides, in particular, C16 ceramide, impairs hepatic insulin
signaling (82, 83). In normal livers, the predominant form of
ceramides is C24 ceramide that is believed to be beneficial to
insulin sensitivity (84). However, feeding mice with a diet rich in
saturated fat can selectively increase the C16 ceramide level in
the liver, which represents an explanation of the hepatic insulin
resistance in diet-induced obese mice (82). On the other hand,
S1P activates PI3K/Akt pathway via its receptors (85, 86). In
support of this notion, overexpression of SphK1 significantly
enhances hepatic insulin signaling and improves glucose
tolerance in KK/Ay diabetic mice (87). Acid sphingomyelinase-
induced Akt phosphorylation is abrogated in livers of Sphk1-/-

C57BL/6 mice (88). However, other studies hold a conclusion
against this notion. Depletion of Sphk1 does not alter insulin
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sensitivity in HFD-fed C57BL/6 mice (65). Liver-specific
overexpression of SphK1 has no impact on insulin sensitivity
and glucose tolerance in high-fat, high sugar diet-fed C57BL/6
mice (80). The phospho-Akt levels are indistinguishable in the
livers of wild-type and Sphk1-/- mice upon insulin challenge (89).
The insulin response is unchanged in SphK1-knockdown
hepatocytes as compared with control cells (7). Furthermore,
S1P impairs hepatic insulin signaling via binding to S1P receptor
subtype 2 in HFD-fed New Zealand Obese mice (90). Therefore,
to characterize the hepatocyte-autonomous role of SphK1 in
hepatic insulin signaling, the use a tissue-specific knockout
mouse model is recommended. Recently, the liver-specific
Sphk1-/- C57BL/6 mice have been generated (91). This mouse
strain displays no prominent physiological and pathological
abnormalities under a basal condition (91). However, it is still
intriguing to know if the liver-specific knockout of Sphk1 affects
the metabolic vulnerability of mice upon dietary or other
pathologic insults.

In general, research on SphK2 is not as comprehensive as
SphK1 due to its complex subcellular localization. However, the
metabolic role of SphK2 in the liver has been recently addressed.
SphK2 appears a metabolically protective factor in the liver.
SphK2 protects mice from both alcoholic and non-alcoholic fatty
liver disease (92, 93). Ablation of Sphk2 results in an elevated
level of hepatic lipid accumulation and proinflammatory
cytokine production, predisposing to liver injury in C57BL/6
mice exposed to 60-day chronic alcohol feeding (92). Sphk2-/-

also promotes the establishment of hepatosteatosis in mice after
2-week HFD feeding (93).

SphK2-mediated regulation of hepatic insulin signaling is
likely related to its subcellular localization. Pharmacological
inhibition or siRNA-mediated knockdown of SphK2 mitigates
insulin-repressed gluconeogenic gene expression, leading to
increased hepatic glucose production in C57BL/6 mice treated
with interleukine-6 (94). This effect is reported to attribute to
the dephosphorylation and deacetylation of STAT3 (94).
Overexpression of SphK2 in the liver reinforces mitochondrial
fatty acid b-oxidation and effectively ameliorates hepatic
steatosis, glucose intolerance and insulin resistance in C57BL/6
mice on an HFD (95). We have recently generated liver-specific
Sphk2-/- (SphK2-LKO) mice by crossbreeding floxed Sphk2
mice with Alb-Cre strain, providing a reliable model to further
characterize the role of SphK2 in the liver (7). SphK2-LKO mice
exhibit impaired glucose homeostasis and insulin responsiveness
on both normal diet and HFD conditions. SphK2-LKO
upregulates gluconeogenic genes and downregulates glucose
disposal genes, leading to an increase in hepatic glucose
production. Inhibition of SphK2 by the selective inhibitors or
shRNA-mediated SphK2 knockdown in hepatocytes significantly
suppresses insulin-induced activation of the phosphoinositide 3-
kinase (PI3K)/Akt signaling pathway (7). Interestingly,
treatment of SphK2-deficient hepatocytes with S1P fails to
revert insulin signaling. By contrast, myriocin, an inhibitor that
blocks the biosynthesis of all sphingolipids, including S1P, can
restore insulin-induced Akt phosphorylation, indicating that S1P
is unrelated to SphK2-mediated regulation of hepatic insulin
February 2021 | Volume 11 | Article 627076
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signaling (7). Furthermore, inhibition of ceramide synthesis by
fumonisin b1 has no impact on hepatic insulin sensitivity,
whereas blocking ceramide degradation via pharmacological
inhibition or knockdown of acid ceramidase restores insulin
sensitivity in SphK2-deficient hepatocytes (7). This finding
supports the notion that hepatic ceramide levels are often
unrelated to hepatic insulin sensitivity in humans and rodents
[as reviewed in (75)]. Notably, we found that hepatic levels of
sphingosine are critically associated with insulin sensitivity both
in vitro and in vivo (7). Moreover, treatment of hepatocytes with
sphingosine significantly inhibits the insulin-induced PI3K
activity and Akt phosphorylation (7). However, how
sphingosine inhibits PI3K remains unknown. It has been
demonstrated that sphingosine can both physically and
functionally interact with the protein 14-3-3z (96), which, in
turn, promotes plasma membrane recruitment and activation
of PI3K (97, 98) To what extent this pathway contributes
to the regulation of hepatic insulin signaling warrants
further investigations.
SPHINGOSINE KINASE AND INSULIN
RESISTANCE IN SKELETAL MUSCLE

The major contributions of skeletal muscle in maintaining
euglycemia are glucose uptake and disposal (99). In both
postprandial state and the hyperinsulinemic-euglycemic clamp
experiments, skeletal muscle uptakes approximately 80% of
blood glucose (100, 101). The insulin signaling pathway in
skeletal muscle is also centered with PI3K/Akt, specifically
promoting Akt-driven glucose uptake, utilization and storage
via the regulation of glucose transporter type 4 (GLUT4) (102).
Lipid overload is also a chief cause of insulin resistance in
myocytes. HFD feeding or lipid infusion causes diacylglycerol
accumulation, which activates protein kinase C q, negatively
regulating insulin signaling in skeletal muscle (103–105).

HFD feeding of mice or treatment of C2C12 myoblasts with
palmitate results in a dramatic increase in myocyte SphK1 mRNA
expression (106). Notably, in these lipid-induced insulin-resistant
myocytes or muscle tissues, levels of sphingolipids, including S1P,
are all increased (106). Levels of ceramide, sphingosine and S1P are
also profoundly increased in palmitate-treated L6myotubes (72). By
far, the majority of studies support a metabolically protective role of
SphK1 in muscle insulin resistance. For instance, adenoviral
overexpression of SphK1 enhances, whereas siRNA-mediated
knockdown of SphK1 suppresses insulin-mediated glucose uptake
in murine C2C12 myoblasts (87). In line with this, transgenic
overexpression of SphK1 that promotes intramuscular ceramide
conversion into S1P significantly improves muscle and whole-body
insulin resistance in mice on an HFD for 6 weeks (70). In addition,
S1P can trans-activate myocyte insulin signaling in the absence of
insulin stimulation and thus enhance glucose uptake (107).
Inhibition of sphingolipid synthesis by myriocin restores, whereas
inhibition of SphKs by non-selective inhibitor SKI-II further
suppresses, the impaired insulin-mediated glucose uptake in L6
myotubes exposed to palmitate (72). Interestingly, the level of
Frontiers in Endocrinology | www.frontiersin.org 5
sphingosine, but not ceramide or S1P, is always correlated to
insulin’s actions in these experimental settings, suggesting an
important role for sphingosine (72). However, Ross et al. reported
that SphK1/S1P promotes muscle insulin resistance in HFD-fed
C57BL/6 mice through S1P3 receptor-dependent elevation of
interleukin-6 production by skeletal muscle (108). Thus, the role
of SphK1/S1P in muscle insulin resistance appears contradictory in
the literature, which needs further clarification, especially by using
myocyte-specific Sphk1-/- mice.

There is no direct experimental evidence depicting the role of
SphK2 in muscle insulin resistance. Transiently overexpression
of SphK2 in skeletal muscle using in vivo electroporation has no
impact on sphingomyelin and ceramide levels (70). However, the
study did not determine the levels of sphingosine and S1P or
insulin sensitivity (70). The same research group has later found
that oral administration of FTY720 for 6 weeks abrogates lipid
accumulation and improves glucose uptake in the skeletal muscle
of C57BL/6 mice on an HFD (109). FTY720 elicits two possible
working mechanisms: a) It can be phosphorylated into FTY-720-
P, primarily by SphK2, and act on S1P receptors as an S1P
mimetic (110); b) It functions as an inhibitor of SphK (both
SphK1 and SphK2) and ceramide synthases (111–113).
Nevertheless, how FTY720 improves muscle insulin resistance
and whether SphK2 is involved in this regulation remain elusive.
SPHINGOSINE KINASE AND INSULIN
RESISTANCE IN WHITE ADIPOSE TISSUE

White adipose tissue is the main reservoir of fat storage in our body.
In each adipocyte, fat is usually stored in the form of triglyceride in a
unilocular lipid droplet (6). When needed, white adipose tissue
expands its fat storage capacity by increasing either the number
(hyperplasia) or size (hypertrophy) of adipocytes, leading to obesity
(6). These two types of adipose tissue expansion result in distinct
metabolic outcomes. Insulin resistance is often associated with
hypertrophic obesity but not adipocyte hyperplasia (114, 115). In
recent years, the expandability of white adipose tissue is emerging as
a widely accepted concept to explain to non-obese/insulin-resistant
and obese/insulin-sensitive populations (6). When excess fat
overwhelms the storage capacity of white adipose tissue, ectopic
lipid accumulation will occur in the liver, skeletal muscle and heart,
resulting in metabolic disorders (6). For example, severe insulin
resistance is seen in patients with congenital generalized
lipodystrophy, a condition in which white adipose tissue is near
completely lost (116). White adipose tissue also functions as an
endocrine organ regulating glucose homeostasis via secretion of
adipokines, e.g., adiponectin, resistin and leptin that improve
metabolic profile (117, 118), or the cytokines that impair adipose
tissue and whole-body insulin responsiveness, linking obesity to
T2D (119).

Recently, two important studies on the role of SphK1 in
adipose insulin resistance have been reported by Cowart
laboratory (89, 120). They found that SphK1 expression
is upregulated in both palmitate-treated white adipocytes
in vitro and white adipose tissue in mice on an HFD
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in vivo (89). After 16 weeks of HFD feeding, Sphk1-/- mice
develop a comparable body weight as wild-type counterparts,
but they exhibit prominent adipocyte hyperplasia and
upregulation of adipogenic transcription factors (89). As a
result, Sphk1-/- significantly improves whole-body metabolic
abnormalities and, particularly, rescues Akt signaling in white
adipose tissue of HFD-fed mice (89). This is attributed to the
alleviation of a proinflammatory phenotype in white adipose
tissue (89). In support of this, SphK1 is found to promote adipose
tissue macrophage survival and interleukin-6 production (121,
122). To further elucidate the adipose tissue-specific role of
SphK1, Cowart laboratory has generated SphK1fatKO mice on a
C57BL/6 background by crossbreeding floxed SphK1 mice with
Adipoq-Cre strain (120). In marked contrast to the anti-diabetic
effects of global depletion of Sphk1, SphK1fatKO unexpectedly
causes severely impaired glucose tolerance and significantly
elevated fasting glucose in diet-induced obese mice (120).
Mechanistically, SphK1fatKO suppresses adipocyte lipolysis,
leading to hypertrophic obesity (120). This work clearly
indicates that SphK1 is essential in adipose tissue to prevent
metabolic abnormalities. It also suggests that the anti-diabetic
benefits seen in global Sphk1-/- mice might derive be related to
the proinflammatory effects of SphK1in other cell types (89,
120). By comparing these two studies, we are more aware of the
necessity of using tissue-specific genetically modified mice in
SphK studies.

Opposing to Sphk1-/- that increases adiposity, the global
ablation of Sphk2 progressively decreases fat mass in standard
chow diet-fed mice along with aging (123). In aged mice at 50–52
weeks old, depletion of Sphk2 profoundly elevates glucose
tolerance in both male and female mice (123). In males but
not female mice, Sphk2-/- improves insulin sensitivity to a much
lesser extent (123). Dramatically reduced white adipose tissue
mass can be partially attributable to the increased adipocyte
lipolysis and energy expenditure (123). Taking the lesson from
Sphk1-/- models as mentioned above, the adipose-specific actions
of SphK2 warrant further investigations using adipose-specific
knockout mice.
SPHINGOSINE KINASES AND
PANCREATIC b-CELL FAILURE

Pancreatic b-cells are the only source of insulin production.
Insulin secretion is primarily stimulated by glucose, which, in
turn, lowers the glucose level in the circulation (124). Pancreatic
b-cell failure, including both dysfunction and cell death, is the
fundamental cause of hyperglycemia in diabetes. In prediabetic
states, although insulin resistance exists, the blood glucose level is
just subtly increased, which is attributed to a compensated
hypersecretion of insulin by b-cells (125, 126). When b-cell
compensation fails due to either dysfunction or cell death,
hyperglycemia takes place as a key feature of the onset of
diabetes (125, 126). Aberrant lipid accumulation is a chief
factor of inducing b-cell dysfunction and death, designated as
Frontiers in Endocrinology | www.frontiersin.org 6
b-cell lipotoxicity, which is often seen in obese and prediabetic
subjects (125, 126).

SphK1 and SphK2 are both suggested to be implicated in the
regulation of b-cell’s insulin secretory function. In rat INS-1b-
cell line and primary islets, SphK2 is the predominant isoform of
SphK, whereas SphK1 is hardly detected (34). In contrast, SphK1
level is induced by cytokine challenge, whereas SphK2 expression
is unchanged (34). Inhibition of SphK1 and SphK2 by the
inhibitor SKI impairs glucose-stimulated insulin secretion
(GSIS) in both MIN6 b-cell line and C57BL/6 mice (127). In
line with this, blocking S1P dephosphorylation into sphingosine
by knockdown of S1P phosphatase-1 enhances insulin
production in MIN6 cells (127). These data indicate that the
sphingolipid rheostat is a determinant of GSIS in b-cells.
However, it is controversial in terms of which isoform of SphK
is primarily responsible for this regulation. Hasan et al. reported
that SphK1 knockdown suppresses GSIS in INS-1 cells (128).
On the contrary, Cantrell et al. found that knockdown of SphK2,
but not SphK1, abolishes GSIS in MIN6 cells (127). This
discrepancy is yet to be resolved.

As it has been documented in many other types of cells,
SphK1 and SphK2 are both implicated in the regulation of b-cell
viability. Overexpression of SphK1 inhibits palmitate-induced
lipotoxicity in INS-1 cells exposed to high glucose (30 mM)
(129). This effect is independent of S1P receptors, as the
inhibitors or antagonists of these receptors cannot compromise
SphK1-mediated protection (129). According to the lipidomic
analyses, overexpression of SphK1 mainly reduces the level of
C16 ceramide in palmitate-treated INS-1 cells under low glucose
(5 mM) condition, but C18, C24 and C26 ceramides in high
glucose condition (129). It has been shown that ER-to-Golgi
trafficking is essential for ceramide-induced lipotoxicity in
b-cells (130). Interestingly, overexpression of SphK1 prevents
palmitate-mediated impairment of ER-to-Golgi protein
transport (129). Our laboratory has recently demonstrated a
protective role of SphK1 in b-cell lipotoxicity in vivo (131). We
found that ablation of Sphk1 promotes the development of
impaired fasting glucose and impaired glucose tolerance in
C57BL/6 mice on an HFD for 24 weeks. In marked contrast to
hyperinsulinemia found in wild-type littermates, Sphk1-/- mice
exhibit significantly reduced levels of plasma insulin. Under a
similar degree of whole-body insulin resistance, Sphk1-/-

potentiates lipid-induced apoptosis of pancreatic b-cells,
leading to the diabetic phenotype. The antiapoptotic effects of
SphK1 are reproducible in palmitate-treated isolated islets ex
vivo (130). In marked contrast to the protective role of SphK1, we
have recently identified SphK2 as an endogenous proapoptotic
factor in b-cells, profoundly promoting lipotoxicity (40).
Ablation of Sphk2 partially reserves b-cell mass and thus
improves diabetic phenotype in an animal model of T2D
(treated with a combination of HFD and streptozotocin) (40).
In addition, knockdown of SphK2 by siRNA or inhibition of
SphK2 by ABC294640 abrogates palmitate-induced apoptosis in
INS-1 cells (40). Mechanistically, palmitate stimulates nuclear
export of SphK2 to the cytoplasm, where SphK2 mediates
mitochondria-dependent apoptosis signaling via its BH3
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domain (40). Taken together, our findings that SphK1 protects
but SphK2 promotes b-cell lipotoxicity suggest a new strategy by
balancing between the signaling of SphK1 and SphK2 in b-cells
for the prevention and treatment of diabetes.
CONCLUSION

Over the last decade, there have been extensive efforts to explore
the potential roles of SphK1 and SphK2 in T2D (Figure 2). In
hepatic insulin resistance, SphK2 has been illustrated as a
metabolically protective factor, whereas the effects of SphK1 are
controversial. In muscle insulin resistance, the role of SphK1 is still
under debate, while little is known about SphK2. In white adipose
tissue, SphK1 prevents obesity-associated diabetes, whereas the
adipose-specific role of SphK2 remains elusive. Both SphK1 and
SphK2 have been found essential for GSIS in pancreatic b-cells;
however, which of the two isoforms takes in lead warrants further
clarification. Remarkably, SphK1 and SphK2 exert opposite effects
in protecting b-cells from lipotoxicity.

It should be taken into consideration in further studies that the
complicated roles for the two isoforms of SphK in T2D are related
to multiple layers of complexities as follows: i) SphK1 versus
SphK2. The two isoenzymes sometimes exhibit the same effects,
as they share common catalytic actions in the conversion of
ceramide/sphingosine into S1P, while they sometimes lead to
discrepant pathophysiological outcomes due to their distinct
tissue distribution, subcellular localization and molecular
partners. ii) Prosurvival versus proinflammatory role of
SphK1. SphK1 simultaneously possess both prosurvival and
proinflammatory properties. However, its prosurvival effects are
often associated with an anti-diabetic outcome, whereas
Frontiers in Endocrinology | www.frontiersin.org 7
proinflammatory signaling could promote the development of
diabetes. This controversy can be seen in research on hepatic and
muscle insulin resistance. In addition, the opposite metabolic
profiles from global and adipose-specific Sphk1-/- mice draw our
attention to that the proinflammatory actions of SphK1 might
derive from the immune cells in the insulin target tissue, but not
parenchymal cells. iii) S1P receptors. S1P receptor subtypes 1-5
have been implicated in a variety of cell signaling pathways, which
can lead to different and even opposite biological functions. For
any S1P-related regulation, SphK and S1P receptors should be co-
investigated, particularly in vivo. iv) Sphingolipid metabolites.
Increasing evidence has shown that not only ceramides and S1P,
but also many other sphingolipid metabolites, such as
sphingosine, sphingomyelin and ganglioside, function as critical
regulators of insulin actions in different experimental settings.
This notion has brought new possibilities for a better explanation
of the role of SphK and sphingolipids in the pathogenesis
of diabetes.

In conclusion, since identified in the late 1990s, SphK1 and
SphK2 have been extensively studied in a wide variety of
biomedical fields. Their potential roles in T2D have just been
explored recently and remain to be further characterized. Tissue-
specific knockout mice are powerful tools to dissect the cell-
autonomous effects of SphK. So far, only hepatocyte-specific
Sphk2-/- and adipocyte-specific Sphk1-/- have been applied in
diabetes research. In addition, with the development of
sphingolipidomic analyses, a more precise and comprehensive
measurement of sphingolipid composition in different
pathophysiological contexts should be performed. Furthermore,
the knowledge related to genetic and epigenetic regulation of
SphK1 and SphK2in T2D remains largely unknown. Nevertheless,
a comprehensive understanding of the role of SphK and the
FIGURE 2 | Roles of SphK1 and SphK2 in T2D. Most of the literature supports an anti-diabetic role (denoted by green arrows) of SphK1 in skeletal muscle, adipose
tissue and pancreas as well as SphK2 in the liver. In contrast, SphK2 is primarily a pro-diabetic factor (denoted by the red arrow) for its proapoptotic effects in
pancreatic b-cells. The roles of SphK1 in the liver and SphK2 in skeletal muscle and adipose tissue are controversial (denoted by grey lines). Created in
BioRender.com.
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associated sphingolipids in T2D will help to identify druggable
targets for prevention and treatment of the disease in the future.
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