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ABSTRACT: Current machine learning (ML) models aimed at
learning force fields are plagued by their high computational cost at
every integration time step. We describe a number of practical and
computationally efficient strategies to parametrize traditional force
fields for molecular liquids from ML: the particle decomposition
ansatz to two- and three-body force fields, the use of kernel-based
ML models that incorporate physical symmetries, the incorpo-
ration of switching functions close to the cutoff, and the use of
covariant meshing to boost the training set size. Results are
presented for model molecular liquids: pairwise Lennard-Jones,
three-body Stillinger−Weber, and bottom-up coarse-graining of
water. Here, covariant meshing proves to be an efficient strategy to
learn canonically averaged instantaneous forces. We show that
molecular dynamics simulations with tabulated two- and three-body ML potentials are computationally efficient and recover two-
and three-body distribution functions. Many-body representations, decomposition, and kernel regression schemes are all
implemented in the open-source software package VOTCA.

1. INTRODUCTION
Machine learning (ML) techniques have a long history of
interpolating the high-dimensional potential energy surface
(PES) of molecular systems.1−4 Access to an accurate PES
enables the simulation of the system’s dynamics. In
comparison to standard molecular dynamics (MD),5 ML
does not explicitly rely on fixed force field functions. This has
recently resulted in impressive MD studies for various
materials and molecular systems.6−12

To get there, it does not quite suffice to gather reference
configurations and train a Gaussian process (GP) or neural
networkthe interpolation space is simply too large for all but
the simplest of systems. Instead, incorporating physical
symmetries in the ML model effectively reduces the
interpolation space, thereby helping convergence. An early
realization of this aspect was demonstrated by Behler and
Parrinello, who relied on symmetry functions to incorporate
translational and rotational invariance:13 If the physics of the
problem does not depend on arbitrary translations, encode
particle geometries by means of relative distances. A number of
molecular representations have since built on these ideas to
offer more efficient learning performance.11,14−16 Other
aspects that aim at incorporating physics include local
dynamical symmetries found in molecules17 and the learning
of tensorial properties.18−20

Incorporating symmetries does not have to be done at the
level of the representation: one can also build it in the ML
architecture. When building kernel-based ML models for force

fields, the GP aims at inferring a vector-valued function.21 The
underlying vector field ought to remain curl-freedirectly
related to energy conservation in simple Hamiltonianswhich
can be implemented by learning the Hessian of the kernel.22,23

Several variants of this strategy have by now been implemented
to learn energy-conserving force fields.6,10,24,25 In parallel, the
learning of forces has sparked interest in building so-called
covariant kernels, meaning that the prediction rotates with the
sample in three-dimensional space. Glielmo et al. have derived
an analytic expression for a covariant Gaussian kernel.26 It
effectively builds on the integration over all actions of the
rotation group by means of a Haar measure.27 Covariant ML
models have more recently been developed for neural
networks.28,29

In addition to symmetries, physical intuition and approaches
can be further implemented to help build better ML models.
Rather than learning the full PES at once, it can prove easier to
converge a series of ML models that follow a body
decomposition of the interactions, akin to a cluster expansion
or virial equation for a real gas.6,11,30−32 Parametrizing ML
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models for each body term is not necessarily straightforward,
because reference calculations typically contain all contribu-
tions at once. The contribution of each body is instead often
inferred by means of a decomposition ansatz, which assumes
the target property to be decomposable in terms of a linear
combination of function values.24,33

Once trained, an ML model is ready to be used as a force
predictor coupled to an MD integrator. In the context of ab
initio MD simulations based on quantum-mechanical calcu-
lations, an ML model leads to significant performance
improvements: While the former scales with the number of
electrons raised to some power (≥3), the ML model will
typically scale almost linearly with the number of nuclei, albeit
with a large prefactor. John and Csańyi30 pointed out that the
situation is very different when running coarse-grained (CG)
simulations34,35lumping together atoms into superparticles
or beads. Since they are typically parametrized from classical
atomistic simulations, the scaling will be similar, apart from a
small reduction due to the reduced number of particles.30 To
remedy this situation and recover some computational
efficiency, one can resolve to project the ML model onto
standard tabulated potentials, as suggested by Glielmo et al.31

This is the objective of the present study.
The scope of this paper is to summarize key aspects of

applying GP regression to parametrize force fields of molecular
liquids in a computationally efficient setting. A decomposition
of the PES to two- and three-body interactions is presented,
ultimately projected onto tabulated potentials to avoid making
ML predictions at each integration time step. We compare
several kernels that encode various levels of physics. Further
technical refinements are incorporated, such as a smooth decay
close to the interaction cutoff.6 We also discuss performance
during learning and structural accuracy in the condensed phase
of a liquid. Results are presented for two example liquids: a
two-body Lennard-Jones system and a three-body Stillinger−
Weber system.
Finally, we extend our implementation to the coarse-graining

of molecular liquids. CG is an appealing resolution in soft
matter due to its ability to reach longer length and time
scales.35,36 We specifically focus on bottom-up strategies that
systematically derive a CG model from higher-level micro-
scopic information.37 Consistency between the equilibrium
probability densities of the two models leads to the many-body
potential of mean force (MB-PMF), which effectively replaces
the coveted PES.38 One practical approach to building a CG
model is force matching (FM) or multiscale coarse-graining
(MS-CG),38−40 which projects the MB-PMF into the space of
force fields defined by the CG basis set. Both kernel-based and
neural-network approaches have recently been applied to
solving the MS-CG problem.30,41,42 Akin to the study of John
and Csańyi,30 we solve the MS-CG problem using kernels on
both two- and three-body interactions, but we project the
resulting decompositions onto computationally efficient
tabulated potentials. We discuss both parametrization strat-
egies and structural accuracy of the resulting condensed phase
of liquid water.

2. KERNEL-BASED REGRESSION FOR FORCE FIELDS
We first recapitulate the terminology of a Gaussian process,
keeping in mind physical quantities relevant to liquids. A
sample i in our data set will represent particle i and its
environment, which we will specify later. A particle can be an
atom or a molecule.

We propose to learn a mapping Q → O between the
representation of sample i, Qi, and an observable, Oi = O(Qi).
The observable may correspond to the sample’s energy or
force, for instance. Training a kernel model is then equivalent
to solving the set of linear equations O = K̂α, where the kernel
function K̂ij = K(Qi, Qj) = Cov(Oi, Oj) measures the similarity
between samples Qi and Qj, and α is the vector of weight
coefficients. The latter is optimized by inverting the regularized
problem

α λ= ̂ + − OK( ) 1 (1)

where λ implements Tikhonov regularization. Prediction of the
observable for a configuration Q* is then given by an
expansion of the kernel evaluations on the training set

∑ α* = *
=

Q Q QO K( ) ( , )
i

N

i i
1 (2)

summing over the N training points.
2.1. Particle-Decomposition Ansatz. The above-men-

tioned formulation can, in principle, be applied to learn local
properties of a liquid, such as forces, F. Reference high-level
simulations provide the force of a particle embedded in its
environment, represented by Q. A kernel machine can then be
set out to learn the mapping Q → F. Learning this mapping
directly is in general challenging, due to the interpolation size
of Q. Instead, we aim at breaking down the problem to ease
convergence of the kernel and avoid extrapolation.
We first limit the size of our particle environments or

configurations, Q, by setting a cutoff, rcut. In other words, for a
sample i only the neighbors j with rij ≤ rcut are added to the
environment Qi. Note that this decomposition assumes that rcut
is large enough to account for the physical interaction range,
which is not always possible, e.g., for unscreened long-range
Coulomb interactions.
Q are further decomposed in body terms, q, which consist of

interparticle interactions: from pairwise, to triplets, all the way
to fully many-body. In the following we limit our approach to
the first two terms, though the method generalizes in a
straightforward manner.
The potential benefit of the body expansion is its reasonable

convergence, which helps to reduce the size of Q. We denote
the body decomposition using a superscript: q(2) and q(3) for
vertices of pair and triplet interactions. These interparticle
interactions can be associated with a set of local forces, f(2) and
f(3), which are a priori unknown. The present framework thus
motivates several mappings

→ ⎯→⎯
̂ ̂

Q F q fand
K b k b( ) ( )

b( )

(3)

where K̂ and k̂(b) denote the global and local kernels and b runs
over pairwise and triplet models.
While learning a local model is a more attractive option, we

do not have direct access to the local forces f(2) and f(3). The
particle-decomposition ansatz assumes that the force acting on
a particle due to its environment can be approximated by a set
of constitutive interparticle interactions

∑ ∑= +
= =

F Q f q f q( ) ( ) ( )i
p

P

o i
t

T

o i
1

(2) (2)

1

(3) (3)
i

p

i

t
(4)

where p and t run over Pi pair and Ti triplet interactions. Each
pair interaction is between a pair of particles, p = (ab), and
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each triplet is between three particles, t = (abc), where a, b, and
c are the indices of particles in a pair or triplet; o is the index of
the central particle of configuration i, in a pair p or triplet t.
The body expansion and the indexing are illustrated in Figure
1. The total number of interparticle interactions for sample Qi
is thus Mi = Pi + Ti.

Equation 4 formally links the kernels K̂, k̂(2), and k̂(3). We
will use the target properties available for the global kernel, K̂,
in order to infer an ML model for the local interactions. To
this end, we concatenate a set of N particle environments
together with the corresponding set of M local interactions

= ̂F fL (5)

where we introduce the mapping matrix ̂ = ̂L ( )im
. Its

component, ̂
im
, is a 3 × 3 identity matrix,  ×3 3, if particle

environment i contains the pair or triplet interaction m, and a 3
× 3 zero matrix,  ×3 3, otherwise. L̂ is the bookkeeping matrix
that connects the local interactions with the right particle
environments. It has dimension 3N × 3M due to the three
spatial dimensions.
We can now relate the particle-environment kernel K̂ to its

local counterpart, k̂, by

∑ ∑̂ = ̂ ̂ = ̂ ̂ ̂
= =

i

k

jjjjjj
y

{

zzzzzzF F f fK LkL( , ) Cov , ( )i j
m

M

i m
l

M

j l ij
1 1

Ti

m

j

l
(6)

leading to the relationship ̂ = ̂ ̂ ̂K LkLT
. Similar to L̂, both K̂ and

k̂ have a block matrix structure, ̂ = ̂K ( )ij and κ̂ = ̂k ( )ml ,

where elements ̂
ij and κm̂l are 3 × 3 matrices.

Training a model then corresponds to solving the equation F
= K̂α and taking advantage of the relationship between global
and local kernels

 α λ λ= ̂ + = ̂ ̂ ̂ +− −F FK LkL( ) ( )1 T 1 (7)

with a regularization term λ and a 3N-dimensional vector of
weight coefficients α.
Once trained, the ML model can be used for predictions of

the local interactions, f*. An analogous link between the
covariance matrices of the global and local kernels for
prediction only yields

α* = ̂ *̂f Lk( )T
(8)

where k̂* denotes the local kernel between training and test
data.
Note that the prediction for entire particle environments

yields a new mapping matrix L̂* for the test data,

α* = ̂* ̂ *̂F L Lk( )T (9)

2.2. Representations. It is useful to describe local
interactions in terms of internal coordinates as they are
invariant with respect to translations. For pairwise interactions
we therefore use the interparticle vector of a pair m, rmab

= rmb
−

rma
to represent a pair of particles a and b. For triplet

interactions we use the three interparticle vectors, rmab
, rmac

, and

rmbc
.
When predicting a rotationally invariant property, such as

energy, or when building a covariant kernel from a rotationally
invariant one, it is sufficient to use a rotationally invariant
representation. For a pair m with particles (a, b) we use the
interparticle distance

=q rm m
(2)

ab (10)

while for a triplet m with particles (a, b, c) we use a vector of
three interparticle distances

=q r r r( , , )m m m m
(3) T

ab ac bc (11)

3. COVARIANT, CONSERVATIVE FIELDS
If the target property is a vector, such as a force, we expect the
kernel to behave like a second rank tensor upon rotations of
coordinates. Formally, this can be expressed as26

κ κ̂ ̂ ′̂ = ̂ ̂ ̂ ′q q q q( ( ), ( )) ( , )m l m lc c
T

(12)

Figure 1. (left) Illustration of the body expansion of a configuration i
on pairs and triplets, where the reference force F(Qi) acts on the
central particle. The two-body terms are shown by interparticle
vectors (green lines) and result in total pairwise force ∑p f

(2)(qip
(2)). A

similar decomposition for triplets is used to fit the residual, i.e., total
minus two-body, force. (right) Representations used for pairs and
triplets. a, b, and c are the particles of the pair or triplet, and o is the
central particle of the sample, which can be either a, b, or c. For
triplets, two situations are possible: For obtuse triplets, with one edge
larger than cutoff, the force on the central particle o = b is due to the
reaction force on particle a. For acute triplets with all edges below the
cutoff, the force on the central particle o = a, fo, is a sum of two forces,
fac and fab, which depend on all three angles, θa, θb, and θc. For vector
differences, we use the standard convention, rmab

= rmb
− rma

.
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for any two rotation matrices ̂ and ′̂. This condition
imposes restrictions on the form of the kernel κĉ, forcing it to
become covariant.
Apart from covariance, we are interested in conservative force

fields, for which the total energy of a particle is conserved.
Mathematically, the force field has to be curl-free or be a
gradient of a scalar function (energy).
We now discuss three different approaches to construct a

matrix-valued kernel, for which the target property rotates with
the sample and is curl-free.
3.1. Explicit Rotations. We first propose to encode

covariance in explicit rotations of individual local representa-
tions. To do this, we use the covariance of local kernels

κ κ̂ ̂ ̂ = ̂ ̂ ̂q q q q( ( ), ( )) ( , )m m l l m m l l
T

(13)

where for every local interaction m we introduced a rotation
matrix ̂

m.
To relate all M pairs or triplets with their local counterparts,

we introduce a block-diagonal matrix of rotation matrices

̂ = ̂ ̂ ̂R blkdiag( , , ..., )M1 2 (14)

We can then link the 3N × 3N dimensional global kernel, K̂,
with the 3M × 3M dimensional local kernels, k̂(2) and k̂(3)

̂ = ̂ ̂ ̂ ̂ ̂ ̂ ̂q qK LRk R R R L( ( ), ( )) T T
(15)

which is a variation of eq 6 that includes rotations of individual
local interactions.
As such, training a kernel model amounts to a modification

of eq 7

α λ= ̂ ̂ ̂ ̂ ̂ + − FLRkR L( )T T 1 (16)

and prediction becomes

α* = ̂* ̂* ̂ ̂ *̂F L R LRk( )T (17)

We now chose rotation matrices such that ̂ q( )m m becomes
invariant with respect to sample rotations, by rotating the
individual pairs or triplets into a f ixed axis system. In practice,
we align pairs along the z-axis, and triplets are aligned in the zy
plane, as explained in the Supporting Information.
In the fixed frame interaction representations become

rotationally invariant and we can use representations given
by eqs 10 and 11 and a standard Gaussian kernel to compare
them:

∑
σ

= −
−

α α

α α
i

k

jjjjjjj
y

{

zzzzzzzq qk
q q

( , ) exp
( )

2ml m l
m l

2

2
(18)

The covariance in this scheme is encoded into the explicit
rotation matrix R̂. In practice, R̂ and L̂ can be combined by
replacing unit 3 × 3 matrices in L̂ by corresponding rotation
matrices.
Note that each local kernel element κm̂l is matrix-valued. We

can assume that all three components are independent.
However, since such kernel does not yield a conservative
force, the ML model will have to learn it empirically. In the
Supporting Information we derive an explicit expression for κm̂l
that results in a conservative three-body kernel.
3.2. Integration over SO(3). A covariant matrix-valued

kernel can also be constructed by integrating a scalar kernel

over all rotation matrices, effectively summing over all actions
of the rotation group:26,31

∫κ ̂ = ̂ ̂ ̂q q q qk( , ) d ( , )m l m lc b (19)

where κĉ is the covariant 3 × 3 matrix-valued kernel, while kb
represents a base scalar-valued kernel. Glielmo et al. derived an
analytical solution for pairs, starting from a Gaussian kernel,
kb
(2)(qm, ql) = exp(−(rmab

− rlab)
2/2σ2), yielding26

κ
γ

γ
γ

γ
̂ = − ̂ ̂α−

i

k
jjjjjj

y

{
zzzzzzq q r r( , ) e

cosh sinh
m l

ml

ml

ml

ml
m lc

(2)
2

Tml
ab ab

(20)

where αml = rmab

2 + rlab
2/4σ2, γml = rmab

rlab/2σ
2, and rm̂ab

= rmab
/rmab

.

Note that covariance of κ ̂ q q( , )m lc
(2) is encoded in the tensor

product between the two interparticle vectors, ̂ ̂r rm l
T

ab ab
.

3.3. Hessian of the Scalar Kernel. An alternative
statement consists in recognizing that the local forces are
spatial derivatives of the potential energy of a respective pair or
triplet, f = −∇Em. As such, a kernel between two forces can be
expressed through the energies involved, and that the spatial
derivatives can be taken out of the scalar kernel function

∑

κ ̂ =
∂

∂
∂

∂

=
∂
∂ ∂

∂

∂

∂

∂α β α β

α β

i

k
jjjjjj

y

{
zzzzzz

i

k
jjjjjj

y

{
zzzzzz
i

k
jjjjjj

y

{
zzzzzz

q q
q

r

q

r

q q

r r

E E

k

q q

q q

( , ) Cov
( )

,
( )

( , )

h m l
m

m

l

l

m l

m l

m

m

l

l,

2

, ,

, ,
T

o o

o o (21)

where we neglected the second term that contains a first-order
partial derivative of the kernel function, because they will be
zero around training points. Here, α and β run over the
different components of the representation vector; o is the
central particle of the samples, as illustrated in Figure 1.
The Hessian-based kernel is proportional to the tensor

product

∂

∂

∂

∂
α βi

k
jjjjjj

y

{
zzzzzz
i

k
jjjjjj

y

{
zzzzzzr r

q qm

m

l

l

, ,
T

o o

and is therefore covariant, similar to the covariant kernel of
section 3.2. In addition, it is energy conserving, since it ensures
a curl-free force field.
We now choose a Gaussian kernel, eq 18, as scalar-valued

kernel. For pairwise interactions, the representation (10)
results in an energy-conserving force kernel:

κ ̂ = − ̂ ̂q q r rk r r( , ) ( )h m l m l m l
(2) (2) T

ab ab ab ab (22)

where

σ σ σ
= − −

Ä

Ç

ÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑ
i
k
jjjj

y
{
zzzzk r

r r
( )

1
exp

2
(2)

2

2

4

2

2

rm̂ab
= (δmo,mb

− δmo,ma
)rmab

/rmab
; the expression for rl̂ab can be

obtained by exchanging m with l in rm̂ab
. Note that the

Kronecker deltas only change the sign of the kernel element,
depending on whether the central particle of the sample, o,
coincides with particle a or b. The tensor product, ̂ ̂r rm l

T
ab ab

, is
responsible for the covariance of the kernel, similar to the
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kernel obtained by integrating over SO(3). The scalar
prefactor is, however, different.
For a three-body kernel, the representation (11) has three

components, and the Hessian-based kernel becomes a sum
over the three pair distances in a triplet:

∑̂ = − ̂ ̂
∈

q q r rk k r r( , ) ( )h m l
p ab ac bc

ml m l m l
(3)

, ,

(3) T
p p p p

(23)

with

∑
σ σ σ

= − −
−

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

i

k

jjjjjjj
y

{

zzzzzzzk r
r r r

( )
1

exp
( )

2ml
p p p

m l

p

(3)
2

2

4

2

2
p p

Its covariance and conservativeness are now explicit: it is a sum
of three tensor products and three radial fields. Generalization
to any descriptor and scalar kernel is given in the Supporting
Information.
We now compare the performance of three ML models for

Lennard-Jones (two-body) and Stillinger−Weber (three-body)
fluids.

4. TWO-BODY LENNARD-JONES FLUID
Simulation details of the Lennard-Jones (LJ) fluid are given in
the Supporting Information. In Figure 2 we compare the

learning curves of the integration, Hessian, and rotation
kernels. The LJ force field is learned accurately and efficiently
irrespectively of the kernel. The ML model saturates at around
100 particle environments or configurations in the training set,
corresponding to roughly 2900 reference pairwise interactions,
with an error of ΔF ≈ 4 × 10−4 kcal/mol/Å per configuration.
For rcut = 6.0 Å the average number of pairs per particle
environment is 29, implying a mean error per pair of

Δ = Δf F/ 29(2) ≈ 8 × 10−5 kcal/mol/Å. Here we assume
that the Mi individual pair forces of each configuration i are
independent and their errors have the same magnitude. A per-
pair error is close to the output precision of the reference
forces in the simulation trajectory, 10−5 kcal/mol/Å. There is

virtually no difference between the performances of the three
different kernels, suggesting that they all encode the same
amount of physics relevant to this systemthey are covariant
and curl-freewhich is evident for radial fields.
The prediction of the force field projected on the pairwise

distance r leads to a quantitative recovery of the reference
potential, as shown in the inset of Figure 2 for N = 400
configurations.

5. THREE-BODY STILLINGER−WEBER FLUID
Next, we compare the learning of the three-body forces of the
Stillinger−Weber (SW) fluid. Simulation details of the SW
fluid are given in the Supporting Information. Note that we
only compare the Hessian and the rotation kernels, since an
analytic expression for the integration kernel exists only for the
scalar case.31 In Figure 3 we compare the learning curves for

the Hessian (green), rotation (blue), and conservative rotation
(black) kernels. One can clearly see that the nonconservative
kernel performs significantly worse than the Hessian kernel,
but once we make it conservative, its performance becomes
comparable to that of the Hessian kernel.
In spite of the fact that the conservative rotation and

Hessian kernels encode all physical symmetries of the force
field, one can, however, further improve the ML model. To do
this, we recall that the efficiency of the body decomposition
relies, in part, on the interaction cutoffs: only those triangles
which have two edges smaller than the cutoff contribute to the
body expansion. If the central vertex of the triangle, o, is linked
to an edge longer that the cutoff (e.g., bc in the obtuse triplet
shown in Figure 1), the force on this particle is only due to the
shorter edge. In other words, a representation that emphasizes
the shorter edge would lead to a faster learning. One can
enforce this asymmetry by sorting the triplet representation
vector, eq 11, with respect to the edge lengths. Indeed, the
corresponding learning curve, Figure 3, orange, learns faster
than the model with a simple descriptor.

Figure 2. Learning curves of the pair-force kernels applied to the LJ
fluid. ΔF is the force error per configuration; N is the number of
training configurations. The average number of pairs per configuration
is 29. (inset) Predicted force fields, f(2)(r), are virtually identical to the
original LJ reference. Each ML prediction is based on 400 training
configurations.

Figure 3. Learning curves of the three-body force kernels applied to
the SW fluid. ΔF is the force error per configuration; N is the number
of training configurations. The average number of triplets per
configuration is 43 in all cases except the last curve. The Hessian
kernel with ordered representation and all permutations has on
average 52 triplets per particle, due to a different decomposition of the
configuration into three-body interactions.
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Similarly, for triangles with all three edges below the cutoff,
the force on every vertex is a sum of two forces originating
from the neighboring edges, as depicted for an acute triplet in
Figure 1. Each force depends on the three angles of the
triangle, and their “individual” representations differ only by
permutations of elements of the representation vector, eq 11.
Hence, the optimal representation for the total force on a
particle should include three permutations of this representa-
tion. In fact, adding these permutations, in addition to ordering
the descriptor, leads to an even better ML model, with the best
learning curve shown in Figure 3, red symbols. In other words,
this representation captures well the internal decomposition of
the three-body force on three vertices of the triangle. This is
the model we will be using in the remainder of this work,
referring to it as a Hessian kernel model. For this model, 600
training configurations result in the average error of 0.04 kcal/
mol/Å per configuration or of 0.006 kcal/mol/Å per triplet,
given an average of 52 triplets per configuration.

6. CUTOFFS AND SWITCHING FUNCTIONS

To avoid numerical instabilities and ensure energy con-
servation in an MD simulation, the short-range forces ought to
smoothly decay to zero at the cutoff distance, rcut. This is
indeed the case for the LJ force field learned above; see the
inset of Figure 2. If we, however, use the ML model for the SW
fluid and predict forces for a triangle with fixed angles, the
force shows some fluctuations at rcut, as shown Figure 4a. This
is due to the limited training set size.
One way to correct for these artifacts is to enforce

smoothness via a switching function6

π=

≤ −

− +
+ − < <

≥

l

m

oooooooo

n

oooooooo

f r

r r d

r r d
d

r d r r

r r

( )

1,

1
2

cos
( ) 1

2
,

0,

cut

cut

cut
cut cut

cut

(24)

which goes smoothly to zero in the transition region of rcut − d
< r < rcut.
In case of a standard force field one would multiply the

interparticle force with the cutoff function fcut(r) with an
appropriate transition region d. Applying fcut(r) to the ML
model means that each entry of the mapping matrix ̂

im
is

multiplied by fcut(rmab
) for pairs and fcut(rmab

) fcut(rmac
) for

triplets. The same distance-dependent weight has to be applied
to the mapping matrix of the training, L̂, and prediction, L̂*. As
such, pairs and triplets that are close to the cutoff distance
contribute less to the GP regression, guaranteeing a smooth
decay of the prediction to zero at rcut.
In Figure 4a we show force cross sections of triplets trained

on N = 600 configurations of the three-body SW fluid using
the Hessian kernel for different smoothing functions. One can
see that incorporating fcut suppresses fluctuations around the
cutoff. This is also reflected in the learning curves, shown in
Figure 4b. The lowest test error per particle environment is
about ΔF = 0.03 kcal/mol/Å for M = 600 configurations,
obtained with d = 0.4 Å, corresponding to a mean test error per

triplet of about Δ = Δf F / 52(3)
conf ≈ 0.004 kcal/mol/Å.

Though the accuracy is not significantly improved for the SW
liquid, using the switching function is essential for coarse-
grained force fields, discussed in section 9, to ensure that the
mean force decays to zero at the cutoff.

7. COVARIANT MESHING
The error of the three-body force kernel predictions could be
further decreased by increasing the training set size. This,
however, is not possible due to the size of the kernel matrix,
which reaches the computer memory limits: While the
maximum number of configurations N is relatively small
(hundreds), they involve tens of thousands of triplet
interactions M. To bound the size of the kernel, we propose
to mesh the representation. To make meshing efficient, we
make use of the kernel covariance: All samples that are only
rotated with respect to each other are assigned to the same bin.
In other words, we mesh the rotationally invariant
representation and supplement it with the rotation matrices.
Apart from reducing the size of the kernel, meshing averages
over forces, which as we will see in section 9 results in
smoother coarse-grained force fields.
In practice, we precompute the pair or triplet kernel k̂bins on

a fixed grid, limiting the number of kernel elements to Mbins ×
Mbins for training. Due to the covariance of the force kernels,
one can choose an arbitrary reference orientation of the binned
pair and triplet representations. For the two-body kernel, we
use a linear binning with Mbins between rmin and rmax and an
orientation of the pair vector along the z-axis. For the three-
body kernel, we choose a uniform binning on a three-
dimensional grid, as described in the Supporting Information.
The binned pairs and triplets are rotated to the pairs and

triplets of each sample with the help of the mapping matrix

Figure 4. Comparison of the three-body Hessian kernel applied to the
SW fluid, without and with switching function for d = 0.1 and d = 0.4
Å. In each case the ML models were based on 600 configurations. (a)
Force scan of particle a along rmab

(3). (b) Learning curves for the
different ML models.
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where il denotes pairs or triplets of configuration i; ̂
i ml is the

rotation matrix that rotates pair or triplet il to the fixed
orientation of the binned representation m.
We apply a Gaussian smearing, wilm, so that a pair or triplet il

is related to several binned representations. For pairs
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where ril,ab and rmab

bins are pair distances of the actual and binned
pairs. For triplets the weights are a product of three Gaussians:

θ=w w r w r w( ) ( ) ( )i m i m ab i m ac i ml l l l (27)

The learning and predicting can be readily derived from eqs
7−9 and are given in the Supporting Information.
In Figure 5 we compare the meshed MLs for the LJ (two-

body) and SW (three-body) liquids. As expected, reducing the
number of bins systematically saturates the error to higher
values, since it lowers the resolution of the predicted force
field. Covariant meshing does allow us to include another 2
orders of magnitude in training data, but the high-resolution

1000-bin (LJ) or 9900-bin kernels (SW) do not result in
smaller errors than the original kernel. We also do not observe
a faster rate of learning. We therefore conclude that the
covariant meshing is not needed to reduce the error for ML
models of simple systems. However, as stated above, machine
learning of coarse-grained force fields requires much larger
training set sizes. We will therefore see that meshing is
unavoidable and is, in fact, the key for building an accurate
coarse-graining model.

8. TABULATED FORCE FIELDS
We now use the ML force field to run MD simulations. To
balance the flexibility of ML with the necessity for quick force
evaluations,31 we project the ML model on tabulated two- and
three-body potentials, as described in the Supporting
Information.
Figure 6 compares the distribution functions of the original

SW model with the tabulated kernel predictions of the three-

body forces. All curves are virtually identical, confirming that
the kernel predictions projected on a tabulated potential lead
to the correct sampling of the canonical ensemble. Note that
the computational cost of these simulations is comparable to
the original three-body SW potential, but there is no restriction
on the functional form of the three-body potential, which in
this case exactly matches the SW potential. The performance
on a 20 core node with MPI paralellization is about 130 ns/day
for the SW potential, about 140 ns/day for the tabulated kernel
prediction with binning, and about 144 ns/day for the
tabulated kernel prediction without binning. Evaluating the
kernel prediction at each simulation time step would be more
computationally expensive by orders of magnitude.43 While a

Figure 5. (a) Learning curves of pair force kernels for the LJ fluid.
Comparison of test errors for Hessian kernel with σ = 0.5 Å without
and with binning with different number of bins from 200 to 1000. (b)
Learning curves of three-body force kernels for the SW fluid.
Comparison of test errors for Hessian kernel with switching function
(eq 24) with d = 0.4 Å without and with binning with different
number of bins from 3600 to 9900. The optimized hyperparameters
are σ1 = 0.7 Å, σ2 = 0.7 Å, and σ3 = 1.4 Å.

Figure 6. Comparison of MD simulation of tabulated three-body
kernel predictions with the reference SW simulation. g(r) is the pair;
p(θ) is the angular distribution functions. p(θ) is calculated using a
cutoff of 3.7 Å. We use a Hessian kernel with a switching function and
d = 0.4 Å, 600 configurations without binning, and 10 000
configurations with 9900 bins.
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kernel prediction at each MD time step of an all-atom
simulation is competitive with quantum-mechanical calcula-
tions, the benefit of a coarse-grained simulation with respect to
its atomistic counterpart is not necessarily straightforward.

9. COARSE-GRAINING
We move on to the challenging task of learning a coarse-
grained (CG) force field for molecular liquids. The idea of
coarse-graining is to reduce the number of degrees of freedom
by combining several atoms into one CG particle. We assume
that the position of the CG particle i, Ri, is its center of mass:

∑=
∑ ∈ ∈

R r
m

m
1

i
j i j j i

j j
(28)

We focus on a one-bead CG model of liquid SPC/E water.44

Water is a particularly interesting liquid, as it has a strong local
orientational order and therefore has attracted significant
attention also regarding CG modeling. It is well-known that
especially for CG water models pair potentials alone fail to
fully capture the structural correlations of the atomistic system.
To do so, at least three-body interaction terms are
required.45−48

Mapping the atomistic degrees of freedom to a CG
representation leads to a degeneracy: many fine-grained
configurations map to a single point in the conformational
space of the CG model.35 We will refer to the reference coarse-
grained atomistic forces as instantaneous collective forces
(ICFs):

∑=
∈

F r f r( ) ( )i
j i

j
(29)

where f j are the atomistic forces of each atom j assigned to
bead i.
We now introduce the 3N-dimensional block vector of the N

instantaneous collective forces of the N CG particles,
=F r F F F( ) ( , , ..., )N1 2

T. Noid and co-workers showed that
the mean force, ⟨F⟩R, gives the required canonical distribution
of coarse-grained variables.38 The subscript R denotes the
canonical average over all fine-grained configurations r that
map to a specific CG configuration =R R R R( , , ..., )N1 2

T.
Hence, one wants to learn the mapping between R and the
mean force (MF), not the ICF. In force matching, the
ensemble averaging is performed implicitly when solving the
linear regression problem.39,49,50 Alternatively, the mean force
can be obtained explicitly by performing additional atomistic
simulations with constrained CG coordinates.30

Here, we pursue a different approach, and average ICFs
using covariant meshing, introduced in section 7. In fact, a
representation which depends exclusively on the coarse-
grained variables will automatically average the ICF into the
MF. In practice, for the two-body kernel, we bin the center-of-
mass distances. The resulting ML model should be identical to
the two-body force matching (FM) results.48,50

Figure 7 illustrates the CG two-body force kernel predictions
for 104 configurations with 1000 bins and a switching function,
eq 24, with d = 0.4 Å. The use of switching is essential here:
the MD simulations of ML models with and without switching
are compared in the Supporting Information. We also show an
average over 10 independent training sets, as it is often done in
minibatch training in deep learning.51 In all cases the binned
kernel predictions are close to the FM results. Averaging over

the resulting output tables helps to reduce the error by
smoothing the force curves, but is not critical for MD
simulations, where stochastic integrators of thermostats
compensate for small force fluctuations.
We now apply this averaging scheme to the three-body

forces and train ML on the residual force between target and
pairwise model:48

Δ = − ‐F F Fi i i
2 body

(30)

where Fi is the ICF on CG particle i as given by eq 29 and
Fi
2‑body is the CG pairwise force.48,50 We should make clear that

Fi
2‑body is the pairwise force from force matching as we want to

compare learning the same residual forces with that in our
previous FM parametrization. To learn these residual forces,
we use the binned three-body Hessian kernel including all
permutations and a switching function, eq 24, with d = 0.4 Å.
We use 9900 bins and hyperparameters of σ1 = 0.7 Å, σ2 = 0.7
Å, and σ3 = 1.4 Å. We then project the ML models onto
tabulated force fields as described in section 8 with a total Nout
= 27 900 table entries. Finally, we average over the 10
independent table predictions.
In Figure 8, we show the liquid water distribution functions

for three different simulations: the original atomistic
simulations, the force matching, and the Hessian kernel
model. All schemes use a cutoff for the three-body forces of rcut
= 3.7 Å and employ the same FM two-body forces with a cutoff
of rcut = 12 Å.
The ML model is very close to the atomistic curve and

reproduces the second peak of the RDF better than the FM
parametrization of the SW potential. The angular distribution
is also more accurate than the FM result. This stems from the
additional flexibility of the fitting procedure: the FM fit
imposes a fixed functional form on the radial dependence of
the three-body force, while the ML model is fully flexible. The
average pressure at the CG level is slightly too high at the
atomistic density for both the ML and FM models, 4 and 3
kbar, respectively. We showed that one can correct for this by
adding a small linear perturbation to the pair force without
altering the structural properties.48

Figure 7. CG SPC/E water. Two-body force matching is compared to
a kernel prediction based on 104 configurations with 1000 bins and an
average over 10 independent kernel predictions. Optimized hyper-
parameter σ = 0.5 Å; output on a grid up to rcut = 6 Å.
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10. SOFTWARE
All simulations are performed with the LAMMPS package.52 A
custom implementation of the features presented here can be
found online.53 It includes the pair styles sw/table and 3b/
table as user packages. The coarse-graining procedure relies on
the open-source software package VOTCA,50 also available
online.54

11. CONCLUSIONS
We have described several practical ingredients of the kernel-
based regression for classical simulations of liquids. Our
approach is to first train a machine learning model by using
body decomposition and then project this model onto
tabulated potentials.
First, we explain in detail the general idea of the

decomposition ansatz and use it to link the accessible
particle-environment kernel with the local interaction kernels.
We then concentrate on covariant and conservative kernels for
pair and triplet interactions and compare three approaches: an
analytic integration over the rotation group, the Hessian of a
scalar kernel, and a kernel that makes predictions in a fixed axis
system. The three kernels perform equally well on a two-body
Lennard-Jones fluid, quickly converging to the precision of the
reference data. Their limitations become evident when learning
the three-body Stillinger−Weber (SW) fluid, where the lack of
energy conservation is detrimental to the learning perform-
ance. Overall, we find that the best performing Hessian kernel
is also the easiest to adapt and implement.
Several technical points help us to further improve the

learning performance. The use of a switching function close to
the interaction cutoff reduces noisy features and is a useful
addition for coarse-grained interactions. A postaveraging

procedure over multiple ML models smoothens the resulting
force fields. Covariant meshing of training configurations helps
to increase the training set size. We present and implement
these linear models in the general framework provided by the
decomposition ansatz, which also offers the potential to build
hybrid models that would learn only parts of the local
interaction.
Last, the extension to coarse-grained liquids has shown to be

the most challenging. By switching from the potential energy
surface to the many-body potential of mean force, coarse-
graining introduces degeneracy in the reference configurations
that map to a single point at the coarse-grained level. This
introduces noise in the learning procedure. Rather than relying
on extra simulations with constrained coarse-grained degrees
of freedom, we propose to use covariant meshing to average
the instantaneous force into a mean force. Using this approach
we recover accurate two- and three-body structural distribution
functions of the atomistic liquid water. The covariant meshing
in combination with tabulation is a promising technique to
construct computationally cheap and flexible two- and three-
body models for a range of CG applications.
All machine learning models and coarse-graining procedures

are integrated in the VOTCA54 and LAMMPS53 packages
which are publicly available.
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(25) Christensen, A. S.; Faber, F. A.; von Lilienfeld, O. A. Operators
in quantum machine learning: Response properties in chemical space.
J. Chem. Phys. 2019, 150, 064105.
(26) Glielmo, A.; Sollich, P.; De Vita, A. Accurate interatomic force
fields via machine learning with covariant kernels. Phys. Rev. B:
Condens. Matter Mater. Phys. 2017, 95, 214302.
(27) Mehta, M. L. Random Matrices; Elsevier: 2004; Vol. 142.
(28) Kondor, R. N-body networks: a covariant hierarchical neural
network architecture for learning atomic potentials. arXiv, 2018,
1803.01588. https://arxiv.org/abs/1803.01588.
(29) Thomas, N.; Smidt, T.; Kearnes, S.; Yang, L.; Li, L.; Kohlhoff,
K.; Riley, P. Tensor field networks: Rotation-and translation-
equivariant neural networks for 3D point clouds. arXiv, 2018,
1802.08219. https://arxiv.org/abs/1802.08219.
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