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Abstract: The classical Hantzsch reaction is one of the simplest and most economical 

methods for the synthesis of biologically important and pharmacologically useful  

1,4-dihydropyridine derivatives. Bismuth nitrate pentahydrate under microwave irradiation 

is proven to act as a very efficient catalyst for a one-pot, three-component synthesis of  

1,4-dihydropyridines in excellent yields from diverse amines/ammonium acetate, 

aldehydes and 1,3-dicarbonyl compounds within 1–3 min under solvent-free conditions. 

The present environmentally benign procedure for the synthesis of 1,4-dihydropyridines is 

suitable for library synthesis and it will find application in the synthesis of potent 

biologically active molecules. The excellent yield and extreme rapidity of the method is 

due to a concurrent effect of the catalyst and microwave irradiation. 
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1. Introduction 

In multicomponent reactions (MCRs), more than two reactants combine in a sequential manner to 

produce in a highly selective fashion a product that retains the majority of the atoms of the starting 

materials. In a MCR, a product is assembled according to a cascade of elementary chemical reactions. 

Thus, there is a network of reaction equilibria, which all finally flow into an irreversible step yielding 
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the final product. Such processes are of great interest in diversity-oriented synthesis, especially to 

generate compounds libraries for screening purposes [1–6]. The Hantzsch reaction [7], the oldest 

known synthesis of 1,4-dihydropyridines (1,4-DHPs) and their derivatives, is one of the most general 

methods (changed) useful for the synthesis of a number of medicinally and pharmacologically 

molecules which includes commercial drugs such as nifedipine [8], felodipine [9], nicardipine [10] and 

amlodipine [11] which are used in treatment of angina and hypertension. It has been reported [12–14] 

that the pharmaceutical action of these drugs is related to binding to voltage dependent L-type of calcium 

channel and thus decreasing the passage of Ca2+ ions to the cell. The result is relaxation of smooth muscle 

cells and lowering of the blood pressure. An alternate mechanism on a molecular level has been found and 

is based on increased NO release from the intact endothelium [15]. In addition, 1,4-dihydropydines have 

been reported as anticancer [16], neurotropic [17], glycoprotein inhibitors [18], bronchodilating [19], 

and antidiabetic [20] agents. 

Recently a number of publications have appeared on the synthesis of 1,4-dihydropyridines [21–27]. 

Nonetheless, this reaction is still under active investigation because of the importance of the 

dihydropyridine products. A number of new catalysts, solid supports and solvents have been used for 

this reaction. Some recent examples include molecular iodine [28], ruthenium trichloride [29], lithium 

bromide [30], Zn[(L)proline]2 [31], nano aluminium nitride [32], bakers’ yeast [33], Wells-Dawson 

heteropolyacid (H6P2W18O62·24H2O) [34], silica gel supported sodium bisulfate [35], solvents like 

trifluoroethanol [36], and ionic liquid [37]. Many of these reported methods involve the use of 

expensive reagents, hazardous solvents, long reaction times and tedious workup procedures.  

Therefore, it is desirable to develop a rapid, efficient and practical method for the synthesis of  

1,4-dihydropyridines under eco-friendly conditions. 

We report herein an easy and extremely rapid method for the preparation 1,4-dihydropyridines 

under solvent-free conditions in the presence of catalytic amounts of bismuth nitrate under microwave 

irradiation. In contrast to the existing methods, our method is extremely rapid, simple and high 

yielding (Scheme 1). 

Scheme 1. Microwave-assisted one-pot, three component synthesis of 1,4-dihydropyridines 

using bismuth nitrate as catalyst (5 mol%) under solventless condition. 

 

2. Results and Discussion 

2.1. Results 

We have been engaged in the study of microwave-induced reactions for many years. Using 

microwave irradiation technique we have successfully developed several new methodologies which 
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include stereoselective synthesis of β-lactams [38–40], synthesis of pyrroles [41–44], aza-Michael 

addition [45], synthesis of quinoxalines [46], etc. On the other hand, organo-bismuth chemistry [47–50] 

is considered an emerging field of research in synthetic organic chemistry. We have demonstrated the 

catalytic activity of trivalent bismuth nitrate pentahydrate in a number of examples. These experiments 

resulted in various methods that include nitration of aromatic systems [51–53], Michael reactions [54], 

protection of carbonyl compounds [55], deprotection of oximes and hydrazones [56], Paal-Knorr 

synthesis of pyrroles [57], hydrolysis of amides [58], electrophilic substitution of indoles [59,60], 

synthesis of α-aminophosphonates [61], and Biginelli condensation [62]. During the course of present 

study, it has been conceived that 1,4-dihydropyridine derivatives can be easily prepared using bismuth 

nitrate as the catalyst. Our success in the bismuth nitrate-induced reaction has revealed that this reagent 

acts as a Lewis acid. Moreover, it has been discovered that this reagent is compatible with the presence 

of sensitive functional groups. This idea has been extended in this paper to the reaction on carbonyl 

compounds (both aldehydes and 1,3-dicarbomyl compounds) with a suitable ammonia source in the 

presence of catalytic amounts of bismuth nitrate under solvent-free conditions.  

Our initial work started with screening of catalyst loading and solvent so as to identify optimal 

reaction conditions for the synthesis of 1,4-dihydropyridines. First of all, a number of bismuth salts, 

e.g., bismuth chloride, bismuth triflate, bismuth subnitrate, bismuth bromide, bismuth iodide and 

bismuth nitrate pentahydrate have been screened using benzaldehyde, ethyl acetoacetate and ammonium 

acetate as a model reaction under automated CEM microwave irradiation conditions (300 Watts, 50 °C, 

1 min). The results are shown in Table 1. 

Table 1. Microwave-assisted one-pot, three component synthesis of 1,4-dihydropyridines 

from benzaldehyde (1 mmol), ethyl acetoacetate (2 mmol) and ammonium acetate  

(1 mmol) using bismuth-salts as catalyst (10 mol%) under solventless condition (1 min): 

catalyst optimization. 

Entry Bi-salt (10 mol%) Yield (%) a

1 BiCl3 81 
2 Bi(OTf)3 79 
3 BiI3 72 
4 Bi5O(OH)9(NO3)3 67 
5 BiBr3 73 
6 Bi(NO3)3.5H2O 96 
7 No catalyst 52 

a isolated yield. 

Bismuth nitrate pentahydrate was found to be the best catalyst under these conditions (Entry 6, Table 1). 

The reaction proceded in the absence of any catalyst (only microwave irradiation) in 52% yield within 

a minute (Entry 7, Table 1). When continued for 10 minutes the yield of the desired product could be 

increased to 64%. The same reaction was used to optimize the amount of the catalyst (Table 2). The 

results show that 5 mol% bismuth nitrate pentahydrate is required to complete the reaction within one 

minute (Entry 6, Table 2). The reaction was then performed in various solvents as well as under neat 

conditions under identical microwave power using bismuth nitrate pentahydrate (5 mol%) as the 

catalyst to identify the best conditions (Table 3). The results suggest that bismuth nitrate pentahydrate 
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is the best catalyst under neat conditions for the reaction (Entry 8, Table 3). Considering the above 

observations we next carried out a series of reactions using various aldehydes, carbonyl compounds and 

aromatic amines/ammonium acetate in presence of bismuth nitrate pentahydrate (5 mol%) under 

microwave irradiation. 

Table 2. Microwave-assisted one-pot, three component synthesis of 1,4-dihydropyridines 

from benzaldehyde (1 mmol), ethyl acetoacetate (2 mmol) and ammonium acetate  

(1 mmol) using bismuth nitrate pentahydrate as catalyst under solventless condition  

(1 minute): optimization of the amount of the catalyst. 

Entry Bi (NO3)3.5H2O (mol%) Yield (%) a

1 30 88 
2 25 87 
3 20 93 
4 15 91 
5 10 96 
6 5 99 
7 2 86 
8 1 73 

a isolated yield. 

Table 3. Microwave-assisted one-pot, three component synthesis of 1,4-dihydropyridines 

from benzaldehyde (1 mmol), ethyl acetoacetate (2 mmol) and ammonium acetate (1 mmol) 

using bismuth nitrate pentahydrate as catalyst (5 mol%) for 1 minute: Solvent optimization. 

Entry Solvent (1 mL) Yield (%) a

1 Water 91 
2 THF 77 
3 Ethanol 79 
4 Toluene 62 
5 Methanol 76 
6 Dichloromethane 71 
7 DMSO 76 
8 Neat 99 

a isolated yield. 

Bismuth nitrate pentahydrate, a commercially available solid salt, is very economical and much less 

toxic than other Lewis acids. It is very convenient to conduct reactions with bismuth nitrate because of 

its stability in the presence of moisture and oxygen. In all the cases, the reactions were completed 

within 1–3 min and the products were obtained in excellent yield (Table 4). 

2.2. Discussion 

A series of 1,4-dihydropyridines were synthesized by using diverse aldehydes, 1,3-diketo 

compounds and ammonium acetate/amines in the presence of bismuth nitrate pentahydrate (5 mol%) 

as catalyst under microwave irradiation. As shown in Table 4, the reaction proceeded equally well 
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irrespective of the nature of the carbonyl compounds (aliphatic, aromatic, heteroaromatic) or amines 

(aromatic, heteroaromatic) to afford the corresponding products in excellent yield (87%–99%). The 

catalytic system worked well with acid-sensitive heteroaromatic aldehyde (Entries 17–22, Table 4), α, 

β-unsaturated aldehyde (Entry 23, Table 4) and aliphatic aldehydes (Entries 24–25, Table 4). Aromatic 

primary amines (Entries 4, 6, 8, 9, 14, 20 and 22, Table 4) and heterocyclic amines (Entries 5 and 21, 

Table 4) upon reaction with aldehydes and 1,3-diketo compounds produced the corresponding products 

in excellent yields. When ammonium acetate was used as ammonia source (Entries 1–3, 7, 10–13, 15–19, 

23–25, Table 4) equally excellent yields of the corresponding products were isolated. Importantly, all 

reactions were completed within 1–3 min (Table 4). Tajbakhsh et al. reported [63] a bismuth nitrate-

induced oxidation of Hantzsch 1,4-dihydropyridines in presence of solid support (silica gel) under 

microwave (kitchen) irradiation. However, such oxidation was completely avoided using controlled 

microwave irradiation (300 Watts, 50 °C, 24–45 psi) under neat conditions (no solid support or solvent). 

Table 4. Microwave-assisted one-pot, three component synthesis of 1,4-dihydropyridines 

using bismuth nitrate as catalyst (5 mol%) under solventless condition following Scheme 1. 

Entry Aldehyde 
1,3-

Dicarbonyl 
compounds 

Ammonia 
source 

Product 
Time 
(min) 

Yield 
(%) a 

1 
   

 

1 99 

2 
   

 

2.5 91 

3 
   

 

2 93 

4 
   

 

1.5 94 
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Table 4. Cont. 

Entry Aldehyde 
1,3-

Dicarbonyl 
compounds 

Ammonia 
source 

Product 
Time 
(min) 

Yield 
(%) a 

5 
   

 

2.5 90 

6 
  

 

 

3 91 

7 

 
  

 

1.5 99 

8 

 
 

 

N CH3H3C

COOEtOOC

CH3

Cl

 

2 89 

9 

 
  

N CH3H3C

COOEtOOC

OCH3

Cl

 

2.5 94 
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Table 4. Cont. 

Entry Aldehyde 
1,3-

Dicarbonyl 
compounds 

Ammonia 
source 

Product 
Time 
(min) 

Yield 
(%) a 

10 

 
  

 

2 97 

11 

 
  

 

3 84 

12 

 
  

 

3 91 

13 

 
  

 

3 93 

14 

 

 
 

N CH3H3C

COOEtOOC

OH

OCH3

 

3 89 

15 

 
  

 

2.5 98 
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Table 4. Cont. 

Entry Aldehyde 
1,3-

Dicarbonyl 
compounds 

Ammonia 
source 

Product 
Time 
(min) 

Yield 
(%) a 

16 

 
  

 

3 95 

17 
   

 

2 95 

18 
   

 

2 93 

19 
   

N
H

CH3H3C

COOEtOOC

O

 

2 98 

20 
   

 

2.5 97 

21 
   

 

3 90 
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Table 4. Cont. 

Entry Aldehyde 
1,3-

Dicarbonyl 
compounds 

Ammonia 
source 

Product 
Time 
(min) 

Yield 
(%) a 

22 
  

 

 

2.5 92 

23 

 
  

 

3 91 

24 
   

 

3 86 

25    N
H

CH3H3C

COOMeOOC

 

3 87 

a isolated yield. 

The selectivity observed in our current method for the preparation of 1,4-dihydropyridines is 

interesting because further oxidation to pyridine derivatives could be prevented under control of the 

exposure to microwave irradiation and judicial choice of the catalyst. Although we have had success in 

the preparation of 1,4-dihydropyridines following the above method, however, the mechanism has yet 

to be established. We have been working on the synthesis and biological evaluation of various  

β-lactams as novel anticancer agents [64–70] over the past several years. The synthesis of β-lactams 

through imines requires a carbonyl compound and an amine. Our study in this field, suggests that 

carbonyl compounds, amines/ammonium acetate and 1,3-dicarbonyl compounds in the presence of 

Lewis acid will produce 1,4-dihydropyridines in excellent yield. This hypothesis has been tested by 

reacting several carbonyl compounds and 1,3-dicarbonyl compounds using aromatic amine/ammonium 

acetate as ammonia source in the presence of catalytic amount of bismuth nitrate pentahydrate (Table 4) 

following Scheme 1. Although the mechanism of the reaction has not been studied in detail, based on 

the structure of the starting materials and products, a plausible mechanistic pathway may be suggested 

as follows. 



Molecules 2012, 17 2652 

 

 

In the initial step, bismuth nitrate acts as Lewis acid to facilitate the formation of the corresponding 

imine through a condensation of the amine/ammonium acetate and aldehyde. The 1,3-diketo 

compound is also activated due to the presence of bismuth nitrate and the equilibrium is shifted toward 

the enol form. As a result, a nucleophilic attack to imine carbon can take place. A second nucleophilic 

attack by another enol tautomer to the same carbon, subsequent ring-closure and dehydration yield the 

product (Scheme 2). Microwaves, as a part of electromagnetic spectrum, are composed of two field 

components: electric and the magnetic. For the purpose of heating, the electric component is important 

as it results in a force being applied to all the polar or charged species. Such species, in response to the 

electric field, start to move or rotate and this causes additional polarization of the polar species in the 

vicinity. When dipolar species are subjected to the electric component of microwave fields they start to 

oscillate, following the oscillation of the electric field. During such oscillation, the polar or charged 

species collide with neighboring particles (charged or neutral). This rapid motion and resulting 

intermolecular friction cause an intense internal heat that can increase the rate of reaction [71]. It is 

obvious that the dielectric properties of the material under consideration are of paramount importance. 

In presence of microwaves, bismuth nitrate increases the “anionic activation” [72]. On this basis, the 

relative permittivity (ability of a molecule to be polarized by the application of an electric field) of the 

carbonyl groups (aldehyde as well as the diketo compound) (Scheme 2) increases, which facilitates 

microwave heating extensively. The larger the relative permittivity of a substance, the greater will be 

the coupling with microwaves [73]. When the reagents (amine, aldehyde and 1,3-diketo compound) 

and the catalyst (bismuth nitrate pentahydrate) are subjected to microwave irradiation, microwaves 

passes through the (glass) walls of the reaction vessel and heat only the reactants avoiding local 

overheating at the reaction walls. This can eliminate reaction side products and helps to explain the 

higher yields and purities. The extreme rapidity with excellent yield of the reaction can be rationalized 

as a synergistic effect of the Lewis acid catalyst (bismuth nitrate) and microwave irradiation. 

Scheme 2. Plausible mechanistic pathway for the synthesis of 1,4-dihydropyridines. 
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3. Experimental  

3.1. General 

Melting points were determined in a Fisher Scientific electrochemical Mel-Temp* manual melting 

point apparatus (Model 1001) equipped with a 300 °C thermometer. FT-IR spectra were registered on 

a Bruker IFS 55 Equinox FTIR spectrophotometer as KBr discs. 1H-NMR (600 MHz) and 13C-NMR 

(150 MHz) spectra were obtained at room temperature with Bruker superconducting UltrashieldTM 

Plus 600 MHz NMR spectrometer with central field 14.09 Tesla, coil inductance 89.1 Henry and 

magnetic energy 1127.2 kJ using CDCl3 as solvent. Elemental analyses (C, H, N) were conducted 

using the Perkin-Elmer 2400 series II elemental analyzer, their results were found to be in good 

agreement (±0.2%) with the calculated values for C, H, N. Bismuth nitrate pentahydrate (reagent 

grade) 98% (Cat # 248592-500G, Batch # MKBC6772) purchased from Sigma-Aldrich Corporation 

was used. All other chemicals were purchased from Sigma-Aldrich Corporation (analytical grade). 

Throughout the project solvents were purchased from Fisher-Scientific. Deionized water was used for 

the preparation of all aqueous solutions.  

3.2. General Procedure for the One-Pot, Three-Component Synthesis of 1,4-Dihydropyridines 

A representative experimental procedure (Entry 1, Table 4) is as follows: bismuth nitrate 

pentahydrate (5 mol%, 24 mg) was added to a mixture of ammonium acetate (1 mmol, 77 mg), 

benzaldehyde (1 mmol, 0.1 mL) and ethyl acetoacetate (2 mmol, 0.25 mL) in a microwave vial 

equipped with a small magnetic stir bar. The resulting mixture was stirred under automated CEM 

microwave irradiation at 50 °C (300 Watts, 20–45 psi) and the progress of the reaction was monitored 

by TLC every 30 seconds. After completion of the reaction (Table 4) ethyl acetate (5 mL) was added 

and the solution was filtered and washed successively with brine (3 mL) and water (3 mL). It was dried 

over anhydrous sodium sulphate and filtered. A short column of silica gel was used to isolate the 

product 2,6-dimethyl-4-phenyl-1,4-dihydropyridine-3,5-diethylcarboxylate in 99% overall yield. 

2,6-Dimethyl-4-phenyl-1,4-dihydropyridine-3,5-diethylcarboxylate (Entry 1, Table 4). White solid; mp 

158–159 °C; IR (KBr) 3320, 1698, 1653, 1480, 1215, 790 cm−1; 1H-NMR (CDCl3) δ 1.23 (t, J = 7.0, 

6H), 2.34 (s, 3H), 2.33 (s, 3H), 4.09 (q, J = 7.2 Hz, 4H), 4.99 (s, 1H), 5.96 (br s, 1H, NH), 7.09–7.34 

(m, 5H); 13C-NMR (CDCl3) δ 14.08, 19.43, 39.46, 59.41, 102.89, 127.34, 129.76, 136.32, 145.66, 

147.10, 165.09. Anal. Calcd for C19H23NO4: C, 69.28; H, 7.04, N, 4.25. Found: C, 69.05; H, 6.98; N, 4.29. 

2,6-Dimethyl-4-phenyl-1,4-dihydropyridine-3,5-diethanone (Entry 2, Table 4). Yellowish white solid; 

mp 134–137 °C; IR (KBr) 3362, 3078, 1721, 612 cm−1; 1H-NMR (CDCl3) δ 2.21 (s, 6H), 2.24 (s, 6H), 

4.90 (s, 1H), 6.02 (br s, 1H, NH), 7.22–7.36 (m, 5H); 13C-NMR (CDCl3) δ 22.06, 29.61, 36.87, 115.67, 

123.89, 126.32, 129.55, 142.56, 147.11, 197.01. Anal. Calcd for C17H19NO2: C, 75.81; H, 7.11, N, 

5.20. Found: C, 75.71; H, 7.14; N, 5.11.  

2,6-Dimethyl-4-phenyl-1,4-dihydropyridine-3,5-dimethylcarboxylate (Entry 3, Table 4). White solid; 

mp 116–118 °C; IR (KBr) cm−1; 3362, 3065, 2983, 1705, 1112; 1H-NMR (CDCl3) δ 2.27 (s, 6H), 3.74 

(s, 6H), 4.84 (s, 1H), 7.23–7.34 (m, 5H); 13C-NMR (CDCl3) δ 20.09, 41.09, 55.77, 105.84, 128.51, 
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129.08, 131.92, 143.58, 149.43, 166.59. Anal. Calcd for C17H19NO4: C, 67.76; H, 6.36, N, 4.65. 

Found: C, 67.65; H, 6.29; N, 4.62. 

2,6-Dimethyl-1,4-diphenyl-1,4-dihydropyridine-3,5-diethylcarboxylate (Entry 4, Table 4). Brownish 

white solid; mp 161–162 °C; IR (KBr) 3325, 2987, 1722, 1624, 1092 cm−1; 1H-NMR (CDCl3) δ 1.19 

(t, J = 7.02, 6H), 2.29 (s, 6H), 4.18 (q, J = 6.3 Hz, 4H), 4.99 (s, 1H), 7.30–7.56 (m, 10H); 13C-NMR 

(CDCl3) δ 16.02, 19.76, 44.34, 62.87, 105.39, 122.32, 123.45, 126.77, 127.47, 128.43, 130.58, 141.55, 

144.39, 153.84, 167.09. Anal. Calcd for C15H27NO4: C, 74.05; H, 6.67, N, 3.45. Found: C, 74.11; H, 

6.72; N, 3.41. 

2,6-Dimethyl-4-phenyl-1,4-dihydropyridine-1-(2′-pyridyl)-3,5-diethylcarboxylate (Entry 5, Table 4). 

White solid; mp 144–146 °C; IR (KBr) 3110, 2961, 1692, 1633, 1041 cm−1; 1H-NMR (d6-DMSO) δ 

1.21 (t, J = 7.1 Hz, 6H), 2.24 (s, 6H), 4.21 (q, J = 7.2 Hz, 4H), 4.82 (s, 1H), 6.89–8.11 (m, 9H);  
13C-NMR (d6-DMSO) δ 15.01, 19.46, 45.71, 63.82, 104.62, 115.48, 124.42, 124.61, 127.91, 129.59, 

139.62, 145.85, 148.29, 150.73, 167.57. Anal. Calcd for C24H26N2O4: C, 70.93; H, 6.40, N, 6.89. 

Found: C, 70.87; H, 6.41; N, 6.90. 

2,6-Dimethyl-1-(4-hydroxyphenyl)-4-phenyl-1,4-dihydropyridine-3,5-diethylcarboxylate (Entry 6, 

Table 4). Yellow solid; mp 90–91 °C; IR (KBr) 3433, 3055, 2910, 1712, 1698, 1482, 790 cm−1;  

1H-NMR (CDCl3) δ 1.22 (t, J = 7.2, 6H), 2.29 (s, 6H), 4.14 (q, 4H), 5.11 (s, 1H), 6.92–7.41 (m, 9H); 
13C-NMR (CDCl3) δ 14.91, 20.54, 42.52, 62.41, 104.11, 117.34, 122.64, 125.29, 127.47, 128.76, 

134.32, 145.16, 148.51, 153.12, 167.03. Anal. Calcd for C25H27NO5: C, 71.24; H, 6.46, N, 3.32. 

Found: C, 70.98; H, 6.37; N, 3.38.  

2,6-Dimethyl-4-(4-chlorophenyl)-1,4-dihydropyridine-3,5-dimethylcarboxylate (Entry 7, Table 4). 

Yellow solid; mp 194–195 °C; IR (KBr) 3325, 1701, 1653, 1371, 1210 cm−1; 1H-NMR (CDCl3) δ 2.32  

(s, 6H), 3.69 (s, 6H), 4.93 (s, 1H), 5.69 (br. s, 1H), 7.20–7.27 (m, 4H); 13C-NMR (CDCl3) δ 19.46, 

40.01, 52.00, 103.73, 128.14,129.32, 131.56, 144.65, 146.04, 167.89. Anal. Calcd for C17H18ClNO4: C, 

60.81; H, 5.40, N, 4.17. Found: C, 60.65; H, 5.43; N, 4.27.  

2,6-Dimethyl-1-(4-methylphenyl)-4(4-chlorophenyl)-1,4-dihydropyridine-3,5-diethylcarboxylate (Entry 8, 

Table 4). Brown solid; mp 102–104 °C; IR (KBr) 3312, 1705, 1681, 1290, 1140 cm−1; 1H-NMR 

(CDCl3) δ; 1.22–1.26 (m, 6H), 2.05 (s, 6H), 2.41 (s, 3H), 4.11 (m, 4H), 5.01 (s, 1H), 6.98–7.35 (m, 8H); 
13C-NMR (CDCl3) δ 15.63, 20.92, 22.30, 45.76, 61.51, 105.73, 124.72, 128.64, 128.99, 130.02, 

131.84, 131.98, 139.41, 143.39, 155.91, 167.09. Anal. Calcd for C26H28ClNO4: C, 68.79; H, 6.22, N, 

3.09. Found: C, 68.71; H, 6.27; N, 3.02. 

2,6-Dimethyl-1-(4-methoxyphenyl)-4-(4-chlorophenyl)-1,4-dihydropyridine-3,5-diethcarboxylate (Entry 9, 

Table 4). Brown solid; mp 134–136 °C; IR (KBr) 3310, 1702, 1674, 1543, 1201, 972 cm−1; 1H NMR 

(CDCl3) δ; 1.23–1.25 (m, 6H), 2.06 (s, 6H), 3.85 (s, 3H), 4.11–4.15 (m, 4H), 5.09 (s, 1H), 6.92–7.31 

(m, 8H); 13C-NMR (CDCl3) δ 15.87, 21.49, 45.75, 55.75, 61.54, 104.48, 118.58, 122.74, 127.99, 

130.07, 132.38, 134.29, 143.59, 154.20, 155.25, 167.21. Anal. Calcd for C26H28ClNO5: C, 66.45; H, 

6.01, N, 2.98. Found: C, 66.37; H, 5.91; N, 2.93. 
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2,6-Dimethyl-4-(4-chlorophenyl)-1,4-dihydropyridine-3,5-diethylcarboxylate (Entry 10, Table 4). 

White solid; mp 145–146 °C; IR (KBr) 3357, 1697, 1654, 1490, 1210, 1122, 790, 672 cm−1; 1H-NMR 

(CDCl3) δ 1.24 (t, J = 7.2 Hz, 6H), 2.34 (s, 6H), 4.10 (q, J = 7.2 Hz, 4H), 4.96 (s, 1H), 5.89 (br s, 1H),  

7.20–7.24 (m, 4H); 13C-NMR (CDCl3) δ 14.39, 19.61, 39.22, 59.90, 103.79, 127.90, 129.41, 131.73, 

144.12, 146.32, 167.53. Anal. Calcd for C19H22ClNO4: C, 62.72; H, 6.09, N, 3.85. Found: C, 62.66; H, 

6.00; N, 3.81. 

2,6-Dimethyl-4-(4-nitrophenyl)-1,4-dihydropyridine-3,5-diethanone (Entry 11, Table 4). Yellow solid; 

mp 130–32 °C; IR (KBr) 3372, 3066, 2980, 1720, 1492, 790, 712 cm−1; 1H-NMR (CDCl3) δ 2.27 (s, 

6H), 2.32 (s, 6H), 4.72 (s, 1H), 5.94 (br s, 1H), 7.53 (d, J = 8.6 Hz, 2H), 8.13 (d, J = 8.6 Hz, 2H);  
13C-NMR (CDCl3) δ 20.76, 27.18, 34.14, 111.08, 124.53, 127.51, 143.83, 147.27, 151.20, 195.26. 

Anal. Calcd for C17H18N2O4: C, 64.96; H, 5.77, N, 8.91. Found: C, 64.90; H, 5.71; N, 9.01. 

2,6-Dimethyl-4-(4-nitrophenyl)-1,4-dihydropyridine-3,5-dimethylcarboxylate (Entry 12, Table 4). 

Yellow solid; mp 152–154 °C; IR (KBr) 3364, 3092, 2981, 1698, 1495, 792 cm−1; 1H-NMR (CDCl3) δ 

2.31 (s, 6H), 3.75 (s, 6H), 4.89 (s, 1H), 5.91 (br s, 1H), 7.52 (d, J = 8.6 Hz, 2H), 8.11 (d, J = 8.6 Hz, 

2H); 13C-NMR (CDCl3) δ 21.28, 45.01, 55.37, 105.41, 124.94, 127.40, 142.48, 148.03, 149.73, 167.09. 

Anal. Calcd for C17H18N2O6: C, 58.96; H, 5.24, N, 8.09. Found: C, 58.87; H, 5.16; N, 8.00.  

2,6-Dimethyl-4-(4-nitrophenyl)-1,4-dihydropyridine-3,5-diethylcarboxylate (Entry 13, Table 4). 

Yellowish brown solid; mp 132–134 °C; IR (KBr) 3316, 1705, 1649, 1521, 1215, 1120, 692 cm−1;  
1H-NMR (CDCl3) δ 1.22 (t, J = 7.2 Hz, 6H), 2.34 (s, 6H), 4.11 (q, J = 7.1 Hz, 4H), 5.10 (s, 1H), 6.15 

(br s, 1H), 7.51 (d, J = 8.6 Hz, 2H), 8.14 (d, J = 8.6 Hz, 2H); 13C-NMR (CDCl3) δ 14.19, 19.53, 40.11, 

60.34, 103.04, 123.63, 128.89, 145.04, 146.23, 155.21, 167.18. Anal. Calcd for C19H22N2O6: C, 60.95; 

H, 5.92, N, 7.48. Found: C, 60.87; H, 5.90; N, 7.41. 

2,6-Dimethyl-1-(4-hydroxyphenyl)-4-(4-methoxyphenyl)-1,4-dihydropyridine-3,5-diethylcarboxylate 

(Entry 14, Table 4). Brown solid; mp 89–92 °C; IR (KBr) 3435, 3046, 2927, 1718, 1639, 790 cm−1;  

1H-NMR (CDCl3) δ 1.25 (t, J = 7.2 Hz, 6H), 2.21 (s, 6H), 3.81 (s, 3H), 4.03 (q, J = 7.0 Hz, 4H), 5.22 

(s, 1H), 6.87-7.43 (m, 8H), 9.43 (s, 1H); 13C-NMR (CDCl3) δ 15.25, 19.64, 42.69, 55.73, 62.49, 

103.63, 115.84, 117.66, 123.08, 130.41, 134.53, 137.30, 147.59, 156.74, 167.12. Anal. Calcd for 

C26H29NO6: C, 69.16; H, 6.47, N, 3.10. Found: C, 69.01; H, 6.37; N, 3.00. 

2,6-Dimethyl-4-(4-methylphenyl)-1,4-dihydropyridine-3,5-diethylcarboxylate (Entry 15, Table 4). 

Yellow solid; mp 136–137 °C; IR (KBr) 3342, 1693, 1648, 1492, 1210, 770, 612 cm−1; 1H-NMR  

(CDCl3) δ 1.27 (t, J = 7.1 Hz, 6H), 2.29 (s, 3H), 2.32 (s, 6H), 4.13 (q, J = 7.1 Hz, 4H), 4.97 (s, 1H), 

6.10 (br s, 1H), 7.03 (d, J = 7.8 Hz, 2H), 7.23 (d, J = 7.8 Hz, 2H); 13C-NMR (CDCl3) δ 14.29, 19.42, 

21.19, 39.14, 59.77, 103.99, 127.59, 128.63, 135.97, 144.33, 145.49, 167.87. Anal. Calcd for 

C20H25NO4: C, 69.95; H, 7.34, N, 4.08. Found: C, 69.83; H, 7.23; N, 3.98. 

2,6-Dimethyl-4-(hydroxyphenyl)-1,4-dihydropyridine-3,5-diethylcarboxylate (Entry 16, Table 4). 

White solid; mp 233–234 °C; IR (KBr) 3330, 1691, 1655, 1490, 1124, 790, 719 cm−1; 1H-NMR (CDCl3) δ 

1.24 (t, J = 7.2 Hz, 6H), 2.33 (s, 6H), 4.12 (q, J = 7.2 Hz, 4H), 5.30 (s, 1H), 5.80 (br s, 1H), 6.66 (d,  
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J = 8.9 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H); 13C-NMR (CDCl3) δ 14.20, 19.84, 39.88, 59.73, 103.81, 

127.83, 130.73, 130.38, 142.77, 148.52, 167.36. Anal. Calcd for C19H23NO5: C, 66.07; H, 6.71, N, 

4.06. Found: C, 65.93; H, 6.59; N, 3.97. 

2,6-Dimethyl-4-(2-furyl)-1,4-dihydropyridine-3,5-diethanone (Entry 3, Table 4). Yellowish white 

solid; mp 176–177 °C; IR (KBr) 3361, 3077, 2985, 1722, 1495, 710 cm−1; 1H-NMR (CDCl3) δ 2.30  

(s, 6H), 2.33 (s, 6H), 4.90 (s, 1H), 5.89 (br s, 1H), 6.13–6.21 (m, 2H), 7.50 (m, 1H); 13C-NMR (CDCl3) 

δ 19.57, 27.04, 30.27, 107.52, 111.70, 114.21, 143.85, 149.59, 153.50, 197.11. Anal. Calcd for 

C15H17NO3: C, 69.48; H, 6.61, N, 5.40. Found: C, 69.39; H, 6.52; N, 5.33. 

2,6-Dimethyl-4-(2-furyl)-1,4-dihydropyridine-3,5-dimethylcarboxylate (Entry 18, Table 4). Yellow 

solid; mp 149–151 °C; IR (KBr) 3352, 3080, 2992, 1795, 1743, 1460, 1110, 760 cm−1; 1H-NMR (CDCl3) δ 

2.28 (s, 6H), 3.76 (s, 6H), 4.98 (s, 1H), 5.90 (br s, 1H), 6.13–6.21 (m, 2H), 7.59 (m, 1H); 13C-NMR 

(CDCl3) δ 19.35, 32.56, 55.35, 103.49, 106.08, 110.63, 142.60, 150.99, 153.85, 167.77. Anal. Calcd 

for C15H17NO5: C, 61.85; H, 5.88, N, 4.81. Found: C, 61.79; H, 5.81; N, 4.77. 

2,6-Dimethyl-4-(2-furyl)-1,4-dihydropyridine-3,5-diethylcarboxylate (Entry 19, Table 4). Yellow 

solid; mp 161–162 °C; IR (KBr) 3340, 1695, 1646, 1482, 1365, 1210, 1120, 750, 712 cm−1; 1H-NMR 

(CDCl3) δ 1.26 (t, J = 7.1 Hz, 6H), 2.32 (s, 6H), 4.18 (q, J = 7.2 Hz, 4H), 5.21 (s, 1H), 5.92 (br s, 1H), 

6.11–6.21 (m, 2H), 7.22 (m, 1H); 13C-NMR (CDCl3) δ 14.29, 19.44, 33.32, 59.89, 101.38, 104.51, 

110.03, 140.78, 145.55, 158.63, 167.61. Anal. Calcd for C17H21NO5: C, 63.94; H, 6.63, N, 4.39. 

Found: C, 63.82; H, 6.51; N, 4.30. 

2,6-Dimethyl-1-(phenyl)-4-(2-furyl)-1,4-dihydropyridine-3,5-diethylcarboxylate (Entry 20, Table 4). 

Brown solid; mp 151–153 °C; IR (KBr) 2985, 1671, 1630, 1065, 872, 740 cm−1; 1H-NMR (CDCl3) δ 

1.23 (t, J = 7.2 Hz, 6H), 2.21 (s, 6H), 4.26 (q, J = 7.0 Hz, 4H), 5.41 (s, 1H), 6.11–6.20 (m, 2H), 7.31–7.69 

(m, 6H); 13C-NMR (CDCl3) δ 15.66, 18.87, 34.18, 62.33, 103.00, 105.42, 111.04, 122.04, 123.11, 

128.40, 140.07, 143.77, 151.34, 154.39, 167.62. Anal. Calcd for C23H25NO5: C, 69.87; H, 6.32, N, 

3.56. Found: C, 69.82; H, 6.28; N, 3.53. 

2,6-Dimethyl-1-(2′-pyridyl)-4-(2-furyl)-1,4-dihydropyridine-3,5-diethylcarboxylate (Entry 21, Table 4). 

White solid; mp 198–199 °C; IR (KBr) 2990, 1693, 1636, 1410, 1035, 970 cm−1; 1H-NMR (d6-DMSO) 

δ 1.24 (t, J = 7.2 Hz, 6H), 2.39 (s, 6H), 4.23 (q, J = 7.1 Hz, 4H), 5.37 (s, 1H), 6.14–6.21 (m, 2H), 7.53 

(m, 1H), 7.70–8.16 (m, 4H); 13C-NMR (d6-DMSO) δ 15.22, 19.01, 33.75, 61.87, 104.63, 107.34, 

111.02, 118.93, 123.40, 137.66, 143.40, 146.58, 147.52, 149.42, 153.55, 167.09. Anal. Calcd for 

C22H24N2O5: C, 66.65; H, 6.10, N, 7.07. Found: C, 66.59; H, 6.01; N, 7.03. 

2,6-Dimethyl-1-(4-hydroxyphenyl)-4-(2-furyl)-1,4-dihydropyridine-3,5-diethylcarboxy late (Entry 22, 

Table 4). Brown solid; mp 68–69 °C; IR (KBr) 3412, 3055, 2970, 1715, 1540, 1472, 1330, 1190, cm−1; 
1H-NMR (CDCl3) δ 1.21 (t, J = 7.1 Hz, 6H), 1.93 (s, 6H), 4.18 (q, J = 7.0 Hz, 4H), 5.26 (s, 1H), 6.11–6.20 

(m, 2H), 6.83 (d, J = 8.1 Hz, 2H), 6.88 (d, J = 8.0 Hz, 2H), 7.52 (m, 1H), 9.82 (s, 1H); 13C-NMR 

(CDCl3) δ 15.11, 19.52, 33.29, 61.77, 104.53, 107.22, 112.40, 118.41, 122.00, 132.86, 141.38, 147.26, 
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152.73, 154.25, 167.58. Anal. Calcd for C23H25NO6: C, 67.14; H, 6.12, N, 3.40. Found: C, 66.99; H, 

6.06; N, 3.37. 

2,6-Dimethyl-4-styryl-1,4-dihydropyridine-3,5-dimethylcarboxylate (Entry 23, Table 4). Yellow solid; 

mp 119–122 °C; IR (KBr) 3332, 2949, 1701, 1652, 1560, 1492, 1121, 743 cm−1; 1H-NMR (CDCl3) δ 

2.35 (s, 6H), 3.71 (s, 6H), 4.54 (d, J = 7.2 Hz, 1H), 5.61 (br s, 1H), 6.18 (m, 2H), 7.13–7.39 (m, 5H); 
13C-NMR (CDCl3) δ 14.90, 19.31, 36.17, 51.13, 102.18, 126.34, 126.98, 128.07, 128.28, 131.77, 

137.68, 145.43, 167.92. Anal. Calcd for C19H21NO4: C, 69.71; H, 6.47, N, 4.28. Found: C, 69.63; H, 

6.42; N, 4.23. 

2,6-Dimethyl-4-cyclohexyl-1,4-dihydropyridine-3,5-diethylcarboxylate (Entry 24, Table 4). White 

solid; mp 214 °C; IR (KBr) 2996, 1770, 1465, 1378, 1240 cm−1; 1H-NMR (CDCl3) δ 1.24 (t, J = 6.9 Hz, 

6H), 1.32–1.77 (m, 11H), 2.24 (s, 6H), 3.85 (d, J = 5.8 Hz, 1H), 4.21 (q, J = 8.1 Hz, 4H), 5.81 (br s, 

1H); 13C-NMR (CDCl3) δ 15.08, 19.23, 26.21, 26.64, 32.69, 38.36, 45.85, 50.97, 102.02, 144.78, 

168.74. Anal. Calcd for C19H29NO4: C, 68.03; H, 8.71, N, 4.18. Found: C, 68.05; H, 8.66; N, 4.12. 

2,6-Dimethyl-4-isopropyl-1,4-dihydropyridine-3,5-dimethylcarboxylate (Entry 25, Table 4). Yellow 

solid; mp 164–166 °C; IR (KBr) 3334, 1705, 1652, 1570, 1462, 1375, 1220, 910 cm−1; 1H-NMR  

(CDCl3) δ 0.75 (d, J = 6.9 Hz, 6H), 1.64 (sep, J = 6.8 Hz, 1H), 2.31 (s, 6H), 3.72 (s, 6H), 3.92 (d,  

J = 5.5 Hz, 1H), 5.65 (s, 1H); 13C-NMR (CDCl3) δ 19.31, 19.96, 35.86, 39.04, 51.09, 102.53, 145.22, 

169.10. Anal. Calcd for C14H17NO4: C, 62.90; H, 7.92, N, 5.24. Found: C, 62.78; H, 7.84; N, 5.17. 

4. Conclusions  

Application of microwave technology to rapid synthesis of biologically significant heterocyclic 

molecules under solvent-free conditions is very promising and challenging. The ultimate aim, of 

course, is to use no solvent at all and to conduct the reactions under solvent-free conditions [74]. 

Development of cleaner technologies is a major emphasis in green chemistry. The combination of 

solvent-free reaction conditions and microwave-irradiation is used as an eco-friendly approach for the 

synthesis of a variety of products and this generally leads to large reductions in reaction times, 

enhancements of conversions, and changes of selectivity.  

There is growing interest in the one-pot three component synthesis of 1,4-dihydropyridines because 

of the significant importance of this scaffold in preparing a wide variety of biologically and 

pharmacologically active molecules. On this basis we have developed an extremely rapid, convenient 

and environmentally benign route for the one-step synthesis of 1,4-dihydropyridines. The present 

methodology offers attractive features such as shorter reaction times, milder conditions, and simplicity 

of the reaction as well as excellent yield of the products. This reaction will be applicable to the 

synthesis of various organic compounds of medicinal interest.  
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