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Abstract 

R ecent adv ancements in shRNA and Cas protein technologies ha v e enabled functional screening methods targeting genes or non-coding regions 
using single or pooled shRNA and sgRNA. CRISPR-based sy stems ha v e also been de v eloped f or modulating DNA accessibility, resulting in 
CRISPR-mediated interference (CRISPRi) or activation (CRISPRa) of targeted genes or genomic DNA elements. Ho w e v er, there is still a lack of 
softw are tools f or integrating div erse arra y of functional genomics screening outputs that could offer a cohesiv e frame w ork f or comprehensiv e 
data integration. Here, we developed PitViper, a flexible and interactive open-source software designed to fill this gap, providing reliable results 
for the type of elements being screened. It is an end-to-end automated and reproducible bioinformatics pipeline integrating gold-standard 
methods for functional screening analysis. Our sensitivity analyses demonstrate that PitViper is a useful tool for identifying potential super- 
enhancer liabilities in a leukemia cell line through genome-wide CRISPRi-based screening. It offers a robust, flexible, and interactive solution for 
integrating data analysis and reanalysis from functional screening methods, making it a valuable resource for researchers in the field. 
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he discovery of genetic elements such as short hairpin
NA (shRNA) which can mediate selected RNA degrada-

ion, or the type II Cas protein which can precisely cleave
enomic regions under the guidance of a single-guide RNA
sgRNA) molecule ( 1 ), has in recent years fostered an un-
recedented profusion of functional screening methodologies.
hese screening approaches rely on the use of multiple sin-
le or pooled shRNA and sgRNA which offer cost-effective
ystems for simultaneously targeting genes or non-coding
enomic regions of interest ( 2 ,3 ). Such systems enable re-
earchers to query the role of thousands of genes in the main-
enance of a given cell phenotype. High-throughput screen-
ng approaches using pooled shRNA and sgRNA libraries
ave been deployed, for instance, to identify putative tumor-
romoting and -repressing genes that influence disease pro-
ression or to pinpoint drug sensitizer or resister genes whose
odulation affects specific drug resistance phenotypes. Other
RISPR-based systems involving a non-functional Cas9 nu-
lease, called CRISPR / dCas9, have more recently been gen-
rated to modulate the accessibility of DNA to the transcrip-
ional machinery at the transcription initiation site or recruit
ranscriptional activating or repressive effector domains, re-
ulting in CRISPR-mediated interference (CRISPRi) or activa-
ion (CRISPRa) of targeted genes or genomic DNA elements
 4 ,5 ). 
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The overall representation of every single sgRNA or shRNA
in a given library—which is introduced by lentiviral or retro-
viral infection of the bulk cell population—is generally eval-
uated by high-throughput sequencing of the PCR-amplified
DNA region encoding this given sgRNA or shRNA. An initial
sequencing (T 0 ) of the input library is performed to estimate
the abundance of each CRISPR guide or shRNA at the begin-
ning of the experiment. The growth advantage or disadvan-
tage which is imposed on cells by the targeting of specific can-
didate genes by selected sgRNAs or shRNAs may affect over
time their abundance within the bulk cell population. Further
downstream sequencing is then performed to obtain the final
representation (T f ) of these candidate hits. For instance, if a
CRISPR guide silences a cancer cell dependency, this guide will
decrease in relative abundance from the first to the second se-
quencing of the cell population. Conversely, if a CRISPR guide
targets a critical tumor-repressing gene, its abundance relative
to the other sgRNAs in the library will increase. 

The noticeable increase of many functional screening pro-
tocols was ultimately followed by the design of multiple com-
putational algorithms based on statistical models which were
inherent to the type of protocol being developed for the iden-
tification of essential elements ( 6–9 ). Despite the extraordi-
nary statistical potential of these functional screening analy-
sis methods to achieve robust identification of hit candidates,
there is still a lack of computational tools which can integrate
6, 2024. Accepted: May 10, 2024 
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multiple data analysis pipelines into one comprehensive and
straightforward resource interface which would exploit mul-
tiple capabilities: i) this resource needs to be accessible to all
research scientists with long-range expertise in computational
biology who should be able to easily adjust and customize
their threshold parameters, and tailor their analysis; ii) it needs
to be flexible to handle a variety of functional screening data
types (i.e. shRNA-, CRISPR / Cas9-based systems) and provide
the most significant and reliable output results according to
the type of elements being screened (i.e. coding or non-coding
genomic regions) in any particular experimental settings; iii)
output results need to be interactive to simultaneously pro-
vide, compare, and visualize results from multiple screening
analysis pipelines; and, iv) these results have to be easily ex-
ploited to query additional databases and provide a contextu-
alizing framework for follow-up validation studies. 

Here, we present PitViper, for P rocessing, I n T erpretation
and VI sualization of P oolE d screening R esults ( https://github.
com/ lobrylab/ PitViper ), a publicly available, robust, and com-
prehensive platform. PitViper was designed with the intent of
assisting computational biologists and researchers who may
not benefit from extensive computer expertise, in perform-
ing cutting-edge integrative screening data analysis. The ex-
tended capabilities of PitViper allow the user to carry out de
novo analysis and reanalysis of screening experiments whose
sequencing data are provided under the most common for-
mat types. PitViper performs read quantification, normaliza-
tion, and essentiality analysis using gold-standard as well as
additional customized and advanced methods which were spe-
cially designed for its deployment. Simultaneous integration
of all generated data can be comprehensively visualized as
heatmaps and network diagrams depicting depletion or en-
richment of CRISPR guides and shRNAs, or targeted coding
and non-coding genomic regions of interest. These visualiza-
tions are interactive, programmable, customizable, and inte-
grated into easily shareable reports which are amenable to
publication. Importantly, PitViper includes a module that en-
ables the interpretation and the contextualization of results
by querying external gene ontology, gene and protein expres-
sion, dependency, and pathway enrichment databases, thereby
facilitating the prioritization of candidate hits for follow-up
biological studies. 

Materials and methods 

Biological resources 

Two published CRISPR / Cas9-based screening studies were
used as training datasets for the design and deployment of
PitViper: (i) a first study, which used a sgRNA library targeting
metabolism-related genes to identify metabolic vulnerabilities
in acute myeloid leukemia (AML) cells treated with the BCL-2
inhibitor venetoclax ( 10 ); and, (ii) a second study which used a
custom-made sgRNA library to map super-enhancer (SE) ge-
nomic regions critical for the proliferation of ETO2-GLIS2 

+

acute megakaryoblastic leukemia (AMKL) cells ( 11 ). 

Cell culture 

The human M-07e cell line was derived from a 6-
month-old patient with acute megakaryoblastic leukemia
(AMKL) ( 12 ). M-07e cells were cultured in MEM- α
(Sigma-Aldrich, M6199) supplemented with 20% FBS, Peni-
cillin (100U / ml)-Streptomycin (100 μg / mL) (Sigma-Aldrich,
P4333) and 5 ng / ml of human GM-CSF (PeproTech, 300-03).
HEK293T cells were cultured with DMEM (Sigma-Aldrich,
D6429) 10% FBS (Sigma-Aldrich) and 100 U / mL penicillin–
streptomycin. 

CRISPR / Cas9-mediated silencing of 
super-enhancer regions 

M-07e cells expressing sgRNA and dCas9-KRAB targeting 
the SE region 66 were produced using the following oligonu- 
cleotide sequences: SE_66_peak1_7FOR 5 

′ CACCGCTCTC- 
GA GTGA GAA GTTGC 3 

′ SE_66_peak1_7REV 5 

′ AAACG- 
C AACTTCTC ACTCGAGAGC 3 

′ . SgRNAs targeting Renilla 
(not present in the human genome) were used as a con- 
trol. These oligonucleotides were synthesized (Sigma Aldrich),
annealed, phosphorylated, and ligated into the linearized 

lentiviral vector pLV-hU6-sgRNA hUbC-dCas9-KRAB-T2a- 
GFP (Addgene #71237) upon BsmBI digestion. 

RNA extraction, quantitative real-time PCR 

(qRT-PCR) 

RNA was extracted using the RNeasy RNA Micro Kit 
(Qiagen) per the manufacturer’s instructions and quan- 
tified using Qubit (ThermoFisher Scientific). One micro- 
gram of RNA was then reverse transcribed using Super- 
Script™ IV Reverse Transcriptase (ThermoFisher, 18090200),
dNTP (ThermoFisher, 18427013), RNaseOUT™ Recom- 
binant Ribonuclease Inhibitor (ThermoFisher, 10777019),
Oligo(dT)20 Primer (ThermoFisher, 18418020). Quantita- 
tive PCR was performed using Kapa SYBR Fast Mas- 
ter mix (Sigma-Aldrich, KK4622) and the primers used 

were hCSF2RB fwd: 5 

′ AA CGGGATCTGGA GCGA GTG 

3 

′ , hCSF2RB rev: 5 

′ A GATCA CGATGA GGGCCA GC 3 

′ ,
hGAPDH fwd: CTTTTGCGTCGCCA GCCGA G, hGAPDH 

rev: CC AGGCGCCC AA T ACGACCA. Each mRNA level was 
measured as a fluorescent signal normalized based on the sig- 
nal for β-actin. Relative quantification was determined by the 
��Ct method and normalized according to β-actin. 

Lentivirus production 

HEK293T cells were grown to 70–80% confluence in a 15-cm 

plate. Twenty four hours after seeding, cells were transfected 

using 4 μg VSVG, 8 μg PAX2, 10 μg plasmid of interest and 

PEI (1 μg / μl). The medium was changed after 6 h of incuba- 
tion at 37 

◦C and 5% CO 2 . Viral supernatant was collected 

48 h after transfection and filtered through a 0.45 μm filter 
(Millipore, SLHP033RB). The resulting virus was then ultra- 
centrifuged with M-07e cells at 2300 rpm for 90 min with 

polybrene at 1 μg / ml (Sigma-Aldrich, TR-1003-G). 

FACs analysis 

Cells were analyzed on FACS CantoII using FACS Diva soft- 
ware (BD Biosciences) every 2 days for 24 days after infection 

of M-07e cells with CRISPR-Cas9 constructs. 

Directional scoring method 

To complement already published methods for essentiality 
analysis, we implemented an additional solution that we 
named as Directional Scoring Method based on sg / shRNA 

filtering. DESeq2 ( 13 ) was used on a count matrix generated 

by MAGeCK ‘counts’ to identify sg / shRNA with significant 
differential abundances between conditions. Replicate condi- 

https://github.com/lobrylab/PitViper
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ions are used by DESeq2 for the calculation of the log 2 fold
hange and the adjusted P -value (FDR). An efficiency score
as then computed for each sg / shRNA based on the follow-

ng formula: 

E f f iciency = 

⎧ ⎨ 

⎩ 

−l og 10 ( F DR ) × l og 2 
(

fol d change 
)
, 

i fabs 
(
lo g 2 

(
fo ld change 

)) ≥ 2 and F DR ≤ 0 . 25 
0 otherwise 

Fold Change threshold and FDR threshold being customiz-
ble in the software graphical user interface, and displayed
alues are giving as a default example. 

Scores were summarized at the gene level by counting both
he number of strictly positive ( n p ) and strictly negative ( n n )
cores for each gene. Then, each gene was categorized as posi-
ive essential, negative essential, ambiguous, or unchanged ac-
ording to the following criteria: 

Catego ry = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

Po sitive essential i f n p ≥ t and n n 

lt; t 
Negative essential i f n n ≥ t and n p 

lt; t 
Ambiguo us i f n n ≥ t and n p ≥ t 

Unchanged o therwise 

here t is a threshold defined by the user and set at 2 by de-
ault. Gene-level scores were defined as the mean score of pos-
tive guides for positive essential elements or the mean score
f negative guides for negative essential elements. Otherwise,
ene-level scores were set to zero. 

 ingle-guide or S h R NA enrichment analysis 

SSREA) 

 second method was developed in PitViper based on the
lobal ranking of guides using either the signal-to-noise met-
ics, as previously described ( 14 ). This is calculated using the
ifference of means of replicates values scaled by the stan-
ard deviation between normalized read counts of replicates
referred as ‘signal to noise ratio’, SNR = 

μB −μA 
σA + σB 

), or the log 2
old-change ( log 2 F C = 

μB 
μA 

) (where μ is the mean of values
n a condition and σ is the standard deviation of the condi-
ion), of each guide between two distinct conditions. Com-
uted metrics for each guide and their rank were used to per-
orm a single-guide or shRNA enrichment analysis (SSREA)
sing the fGSEA R’s package ( 15 ). The different shRNA or
gRNA targeting the same gene or genomic element are con-
idered as a set, in which enrichment in one condition versus
he other is computed using the GSEA algorithm on the global
re-ranked list of sh / sgRNAs. Eventually, targeted elements
re ranked by their computed Normalized Enrichment Score
nd defined as significant for a threshold False Discovery Rate
nferior or equal to 0.25 by default. 

omputational resources and software 

he analyses were performed on a desktop computer with
Gb of RAM in < 15 min for four conditions with three
eplicates and a total of 7395 guides targeting 452 elements.
itViper was successfully used on several operating systems
sing Conda and Docker: Ubuntu 18.04.6 and up, Windows
0 (with Windows Subsystem for Linux and Conda), and ma-
OS. The list of software used for the design of PitViper is
hown in Supplementary Table S1 . 

Various functions were developed to generate publication-
eady figures in high-quality vectorial format (SVG) using
python3 package Altair ( 16 ) or Plotly (PNG). In addition to
interactive figures, function parametrization was facilitated by
using the ipywidgets python3 package to generate graphical
forms inside Jupyter Notebooks ( 17 ). 

MAGeCK MLE results were ranked by beta scores, which
represent a metric similar to the log fold-change transforma-
tion. MAGeCK RRA scoring hits were ranked by log 2 fold-
changes. CRISPhieRmix ( 9 ) results were ranked according to
the mean of the top 3 guides targeting each gene. The mean
log 2 fold change value for the three guides targeting each gene,
based on the absolute log 2 fold change, was calculated us-
ing the DESeq2 package in R. Normalized Enrichment Scores
from the fGSEA package were used for ranking (defined by
the package’s authors as the ‘enrichment score normalized
to mean enrichment of random samples of the same size’).
BAGEL2 results are ranked by the computed Bayesian Fac-
tor, where positive values indicate a log 2 fold-change distribu-
tion likelihood greater under the essentiality hypothesis than
non-essentiality . Finally , results from our directional scoring
method are ranked by the average of products of log 2 fold-
change of guides by their −log 10 adjusted P -value, as de-
scribed above. 

Reanalysis of shRNA screen data 

The shRNA screen data from Lin et al. was analyzed through
PitViper starting from a raw count matrix. The first step in-
volved normalizing the count matrix with MAGeCK count
command using the ‘total’ normalization method. DESeq2
was used to compute log 2 (Fold Change) and adjusted P -
values of guides between conditions. Then, all six meth-
ods implemented in PitViper were applied on the data.
MAGeCK MLE was used with the following parameters: ‘–
adjust-method fdr –genes-varmodeling 0 –norm-method to-
tal –permutation-round 2’. MAGeCK RRA was used with
the following parameters: ‘–gene-lfc-method median –adjust-
method fdr –remove-zero-threshold 0 –sort-criteria neg –
gene-test-fdr-threshold 0.25 –norm-method total –remove-
zero both’. CRISPhieRmix was used with the following pa-
rameters: ‘BIMODAL = TRUE, mu = -4, screenType = ‘LOF’.
Furthermore, for each gene, the average log 2 (Fold Change)
value was computed using the top 3 of shRNAs ranked by
log 2 (Fold Change) computed by DESeq2. The 50 control
guides designed in the experiment were used as negative con-
trol guides for CRISPhieRmix. BAGEL2 was used with essen-
tial and non-essential genes list from the original publication
of BAGEL. SSREA was used with the ‘signal-to-noise’ ranking
method. The Directional Scoring Method was used with the
following parameters: shRNAs FDR threshold = 0.25, mini-
mal number of shRNAs threshold = 2 and shRNA log 2 (Fold
Change) threshold = 1. 

Results of essentiality estimation from each method were
filtered at gene-level by applying the following thresholds.
MAGeCK MLE: FDR < 0.05 and beta < 0, MAGeCK RRA:
FDR < 0.05 and LFC < 0, CRISPhieRmix: local FDR < 0.05
and top-3 shRNAs log 2 (Fold Change) average < 0, BAGEL2:
Bayesian factor > 0, Directional Scoring Method: score < 0,
SSREA: FDR < 0.25 and NES < 0. Genes at the intersection
of all methods were used for DepMap (CRISPR dependency,
protein expression and deleterious mutations heatmaps) and
GeneMania network visualizations. Genes at the union of all
methods were used for RRA ranking aggregation and EnrichR
analysis. 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae059#supplementary-data
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Reanalysis of CRISPRi screen data 

The CRISPRi screen data from Benbarche et al. was analyzed
through PitViper starting from raw FASTQ files. The first step
involved the quantification of each sgRNA in each condition
and replicate with MAGeCK count algorithm with default pa-
rameters. MA GeCK MLE, MA GeCK RRA, CRISPhieRmix,
SSREA, and the Directional Scoring Method, were executed
with the same default parameters than the shRNA data. To
create a set of negative control sgRNAs, we randomly sam-
pled 300 sgRNAs from non-significant guides between day 0
and day 21 in DESeq2 analysis. We used this set of negative
control guides with CRISPhieRmix. 

Results of essentiality estimation from each method were
filtered at super -enhancer -level by applying the following
thresholds. MAGeCK MLE: FDR < 0.25 and beta < 0,
MAGeCK RRA: FDR < 0.25 and LFC < 0, CRISPhieRmix:
local FDR < 0.25 and top-3 shRNAs log2(Fold Change) av-
erage < 0, Directional Scoring Method: score < 0, SSREA:
FDR < 0.25 and NES < 0. Genes at the union of all methods
were used for RRA ranking aggregation. 

Simulation of CRISPR screening counts data 

CRISPR screening counts data were simulated to benchmark
tools implemented in the PitViper pipeline. Raw counts data
were simulated using the simulation framework developed in
Bodapati et al. ( 18 ). Three parameters were investigated: the
number of guides per gene n , the guide targeting efficiency b
(probability that a given guide will efficiently target a given ge-
nomic or RNA region), and the multiplicity of efficient guides
e (the number of guides which efficiently target a gene of
interest). Parameter n ∈ { 5 , 10 , 25 , 50 , 75 100 } , parameter
b ∈ { 0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 } , and parameter e ∈ { 0 . 2 , 0 . 8 } . For

each combination of n, e and b , three simulations were
performed with different random seeds to produce simula-
tion replicates. Default parameters for all simulations include
10 000 nonessential genes and 150 negative essential genes
and a depth factor of 1000. 

Benchmarking of essentiality detection methods 

The PitViper pipeline was automatically run over each simu-
lated dataset with default parameters. BAGEL2 was not in-
cluded in the benchmark analysis because it requires prior
knowledge of essential and nonessential genes, which are
not available in the simulated dataset. For MAGeCK MLE,
MAGeCK RRA, CRISPhieRmix and SSREA, all genes with
a computed FDR value < 0.25 were considered negative es-
sential predictions. CRISPhieRmix was run with 300 negative
control guides simulated with parameters: b = 0.8 and e = 0.8.
The same set of 300 log 2 (fold-change) values was used as neg-
ative control guides for all simulation combinations. 

For each tool and for each simulation, numbers of true pos-
itive (TP), false positive (FP), true negative (TN), and false
negative (FN) predictions were computed by comparing them
to the list of known true essential genes simulated previously.
Then, precision and recall were computed as follows: 

precision = 

T P 
T P + F P 

recall = 

T P 
T P + F N 
Finally, the F 1 score was computed using the precision and 

recall by considering the harmonic mean of the two values to 

get one single metric to compare all methods: 

F 1 = 

2 × precision × recall 
precision + recall 

Data and code availability 

M07e H3K27Ac and H3K4me3 ChIP-seq are available at Ar- 
rayExpress database (E-MTAB-4367). M07e ATAC-seq data 
is available in the Gene Expression Omnibus database under 
accession code GSE131462 . 

Pitviper code is available at https:// github.com/ lobrylab/ 
PitViper . 

Results 

PitViper is a comprehensive computational tool for 
functional screen integration and visualization 

PitViper was organized as follows: first, a pipeline was pro- 
duced using Snakemake ( 19 ), a workflow management system 

for creating reproducible and scalable data analyses. Then, a 
command-line interface (CLI) was developed to facilitate the 
use of PitViper in an automated and reproducible manner.
This CLI allows easy reanalysis of previously generated re- 
sults. Finally, a graphical user interface (GUI) running locally 
on a server based on the Flask python package allows users to 

set up and run PitViper. 
All dependencies can be installed with the Conda pack- 

age manager using a YAML file containing the specification 

of all dependencies or using a Dockerfile. Actionable Jupyter 
Notebook reports can be automatically generated for dynamic 
viewing, and results can be exported as HTML reports. In- 
teractivity and module parameterization were achieved us- 
ing Altair ( 16 ), a declarative statistical visualization library 
for Python, and the python library Ipywidgets, respectively.
Reports are customizable and contain quality control, single 
tool results, or multiple method integration and data annota- 
tion with external tools, such as EnrichR ( 20–22 ), GeneMA- 
NIA ( 23 ), or The Cancer Dependency Map Project (DepMap) 
( 24 ,25 ) (Figure 1 A and B). 

PitViper was designed to integrate most common file for- 
mats, including unaligned raw sequences in FASTQ format,
aligned sequences in BAM format, or count matrices pro- 
vided as text files from pooled shRNA-, CRISPR / Cas9- and 

CRISPR / dCas9-based screens. In the first case, the prelimi- 
nary alignment of sequencing results can be performed with 

Bowtie2 ( 26 ), allowing the user to define parameters adapted 

to various experimental designs. MAGeCK count is available 
as an alternative method for alignment and is subsequently 
used to generate read count tables and normalize reads from 

raw FASTQ files or already aligned BAM files (Figure 1 A). Al- 
ternatively, an existing count matrix can be used to start the 
analysis after this step. Therefore, PitViper accepts as input all 
state-of-the-art file types usually generated for pooled screen- 
ing such as FASTQ, BAM and count matrix. 

Once a normalized read count table is generated, subse- 
quent analyses (all of which are incorporated into PitViper) 
are performed using a selection of well-reported algorithms re- 
lying on distinct, yet complementary, statistical assumptions: 
(i) MAGeCK RRA ( 6 ) and MAGeCK MLE ( 7 ), which were 
published and developed by the same group for the analysis 
of CRISPR / Cas9 knockout screens; (ii) BAGEL2 ( 8 ), which 

https://github.com/lobrylab/PitViper
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A

B

Figure 1. PitViper, Snak emak e Workflo w f or Functional Screening Data Analy sis. ( A ). PitViper Snak emak e w orkflo w, describing the main modules 
in v olv ed in screening data analysis. ( B ). PitViper module organization showing how users can upload their data either through Graphical User Interface 
(GUI) or Command Line Interface (CLI). 
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was designed as a supervised learning method to identify es-
sential genes in CRISPR / Cas9 knockout screens using refer-
ence sets of essential and non-essential genes; and, (iii) CRIS-
PhieRmix ( 9 ), which was developed to consider the variabil-
ity of guide efficiency to inhibit or activate genes. Moreover,
we have also included two additional analysis modules that
we have designed with the ultimate goal of increasing the
power of detection of essential hits. The first module which
is referred to as SSREA ( S ingle-guide or S hR NA E nrichment
A nalysis ), consists of the re-purposing of the GSEA algorithm
( 14 ). Following the observation that a substantial proportion
of CRISPRi / a guides are inefficient to affect the expression
of their cognate target genes robustly and reliably, we sought
to develop a method that would score the enrichment of fea-
tures with low or barely significant representation changes.
As sgRNA or shRNA overall representation follows a normal
distribution, we decided to apply the GSEA scoring method.
We used the features (sgRNA or shRNA) targeting a partic-
ular gene or genomic region as a set that should be scored
among overall ranked features. A second module, referred to
as the Directional Scoring Method , was designed based on the
DESeq2 algorithm to filter out ineffective features and to rank
candidate hits according to their aggregated signal across all
effective features. After completion of all selected methods,
an interactive Jupyter Notebook report is generated and can
be exported into an interactive and shareable HTML report
(Figure 1 A). 

The PitViper graphical user interface consists of: (i) a gen-
eral settings panel; (ii) an input file upload panel; and, (iii) tool
selection and parametrization panels. First, users are asked
to enter a short and informative text string used by PitViper
to create a directory to store all results ( Supplementary 
Figure S1 A). In the ‘screen type’ tab, users can choose be-
tween two options depending on the type of screening re-
sults that they intend to analyze. They can either select the
‘gene’ option if screening results are linked to known gene
symbols, or ‘not genes’ if the screen targets are, for instance,
enhancer regions, promoters, or other elements of the genome
( Supplementary Figure S1 B). For this latter case, a BED file
containing targeted region localization can be uploaded to
eventually allow annotation with proximal genes. In the last
section, users are finally asked to select the file format se-
lected for the analysis, which will be achieved in subsequent
sections ( Supplementary Figure S1 C). Lastly, the number of
jobs to run in parallel as well as the consideration of applying
a filter to sg / shRNAs with raw counts values below a speci-
fied threshold before starting the analysis are to be addressed.
( Supplementary Figure S1 D, E). 

In the input file upload panel, a sample sheet describing the
relationship between conditions, replicates, and raw sequenc-
ing files is required. In addition, users can upload optional files
including (i) a library file for read alignment if raw data were
provided in the aforementioned section; (ii) a list of negative
control features targeting known neutral genes; or, (iii) a count
matrix file, if already available ( Supplementary Figure S1 F).
Count matrices can also be used as input data to facilitate
the reanalysis of previously generated or reported data. Sev-
eral algorithms optionally use negative controls for essen-
tiality identification (MA GeCK MLE, MA GeCK RRA, and
CRISPhieRmix). 

In the parameter panel, the PitViper GUI integrates options
and parameters with expendable help from the tools’ doc-
umentation. Specific parameters are already pre-selected by
default; however, the user has the option of modifying any 
pre-applied settings to customize the analysis ( Supplementary 
Figures S1 G–J). Once all inputs and parameters are defined,
the analysis is initiated, and a configuration file is automati- 
cally generated in YAML format in a configuration sub-folder.
All chosen settings are summarized in this file to allow the 
PitViper Snakemake pipeline to run. This configuration file 
can be used as input for the PitViper CLI to reproduce an 

analysis with the same parameters, or to restart an interrupted 

analysis. Coupled with the Conda environment or the Docker- 
file, this procedure facilitates results reproducibility. Alterna- 
tively, an empty configuration file can be edited and used with 

the CLI directly. YAML format is convenient for both users 
and automated modifications. 

The sample sheet contains information on the relationship 

between conditions and replicates. For analysis starting from 

FASTQ / BAM files, paths to files are needed in an additional 
column. Raw data are not uploaded through the GUI, but 
rather defined in the sample sheet to limit unnecessary data 
transfer. All files uploaded by users are ultimately stored in 

the PitViper resources folder specific to the ongoing analysis. 
PitViper outputs vary depending on starting data format 

and selected methods. Results include raw and normalized 

read count tables generated by the MAGeCK count soft- 
ware, gene-level results and a Jupyter Notebook report. This 
notebook document is ultimately generated to allow users to 

browse figures and results in an interactive and customizable 
environment. These notebooks can then be exported into a 
shareable file format, such as HTML. Raw and preprocessed 

data are directly embedded within the report and download- 
able. Information from all steps of the PitViper Snakemake 
pipeline is stored in a log directory to archive the analysis 
process. 

PitViper allows functional screen quality control 
assessment and identification, visualization of 
scoring candidate hits 

To depict the analytic features and main functions of PitViper,
we selected a CRISPR / Cas9 screening dataset in which a 
library of sgRNAs targeting metabolism-related genes was 
queried in an AML cell line, THP1. THP1 cells were treated 

for 11 and 21 days with either vehicle or a BCL2 inhibitor,
venetoclax, at two drug concentrations (100 and 500 nM).
Two replicates per condition were used, except for the input 
condition, in which only one replicate was sufficient to ensure 
the overall sgRNA library representation. 

Several layers of quality control were performed through- 
out the pipeline. Normalized read count distribution was 
shown after log 2 transformation of all replicates (Figure 2 A).
Principal Component Analysis (PCA) was then performed us- 
ing the ‘sklearn’ python3 package 20 to control for consistency 
of read counts across replicates (Figure 2 B). Taking the ex- 
ample of a top-scoring depleted gene in this screen, TPI1 , we 
could visualize normalized read counts corresponding to all 
five TPI1 -targeting sgRNAs as a z -score-transformed heatmap 

or a line chart across the various conditions (Figure 2 C 

and D). 
As exemplified by the automatic implementation of the 

MAGeCK MLE analysis pipeline, results from each functional 
screen analysis method could be visualized as a waterfall plot 
(Figure 3 A). This depicts all non-significant (FDR ≥ 0.05) and 

significant hits (FDR < 0.05) from the top-enriched to the 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae059#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae059#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae059#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae059#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae059#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae059#supplementary-data
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A

B C

D

Figure 2. Quality control assessment. ( A ) Density distribution of log 2 (read counts) across replicates. ( B ) Visualization of two first principal components 
of the normalized count matrix. Colored by condition. ( C ) Heatmap of z-score-transformed and normalized read counts of sgRNAs targeting a 
representative scoring gene hit, TPI1 . ( D ) Line chart of normalized read counts of sgRNAs targeting TPI1 gene. Lines represent the mean of the 
normalized read counts across replicates per condition, along the standard deviation. 
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A

B

C D

E

Figure 3. Visualization of scoring hits through various functional screening analysis methods. ( A ) Waterfall plot from the top-enriched to the top-depleted 
candidate hit f ollo wing comparison of the THP1_D21_500 to the THP1_D21_Vehicle condition. Top-scoring gene, TPI1 , e x emplified in blue. Significant 
depleted or enriched hits (FDR < 0.05) based on the MAGeCK MLE method are shown in red. Y-axis representing the MAGeCK MLE-calculated beta 
score for each gene. Genes are ranked according to their beta scores. ( B ) Representative scoring candidate hit, TPI1 , across all available screening 
analysis tools. Significant depletion of TPI1 in each condition compared to vehicle is shown in red. Significance threshold established from each 
method’s algorithm. ( C ) Venn diagram of the o v erlap of genes which scored according to each indicated tool. ( D ) Upset plot of the o v erlap of genes 
which scored according to each indicated tool. ( E ) Top-10 robust rank aggregate of the union of scoring hits across all methods from (C). Each hit is 
ranked according to its RRA score. 
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op-depleted candidates such as TPI1 . Results for TPI1 were
llustrated across all conditions and tools (Figure 3 B). Addi-
ionally, the depiction of other genes of interest could be facil-
tated using a search tool, allowing users to query any genes
anked in the waterfall plot based on their respective scoring
riteria. Scoring hit candidates were finally compared and ex-
mplified in a Venn diagram, which could be automatically
esigned by selecting any or all of the six screening analy-
is tools available in PitViper (Figure 3 C). Default parame-
ers were preselected, but the user is free to modify the scor-
ng parameters of any tool to relax or restrict the number
f included hits. The ranking of hits at the convergence of
he selected methods was then used to define a hit prioritiza-
ion ranking score across all selected screening analysis tools
sing the Robust Rank Aggregate (RRA) R’s package ( 27 )
Figure 3 D). 

itViper allows multi-modal interrogation of 
coring candidate hits with external multi-omic 

atasets and pathway enrichment tools 

he DepMap R package ( 28 ) (v1.12.0.) automatically down-
oads the latest available version of DepMap datasets which
nclude (i) whole-exome sequencing data; (ii) transcriptomic
nd proteomic data; and, (iii) a whole-genome dependency
ap of a wide panel of cancer cell lines which are repre-

entative of numerous tissues. Using these various DepMap
atasets, we, for instance, queried cell lines from hematopoi-
tic tissue by the list of top-scoring RRA-ranked hits and per-
ormed hierarchical clustering on both proteins and CRISPR
epMap dependencies , and cell lines (Figure 4 A and B). In

ddition, if any mutation annotated as deleterious was iden-
ified in any of these scoring genes across any of the cell lines
eferenced in the DepMap dataset, we could visualize it in
n interactive heatmap (Figure 4 C). Hovering over each fig-
re provides additional information about the type of events
y measures such as protein expression changes or the type
f genetic alteration. If scoring hits are associated with gene
ymbols, it is possible to investigate and identify additional
coring hit-related genes with external annotation tools such
s GeneMANIA. Once a set of genes has been obtained, a
yperlink can be generated to open a GeneMANIA website
age with selected genes as a queried set (Figure 4 D). Gene-
ets over-representation analysis (ORA) in the essential genes
as carried out using a wrapper for EnrichR’s python API.
esults were represented for each selected gene set as dot or
ar plots (Figure 4 E). Users are allowed to select genesets li-
raries from the list available on the original EnrichR website
nd analyze them directly in the report. Lastly, when multi-
le conditions are compared to the same reference, such as
he library representation at day 0, it’s possible to visualize
nd compare gene-level scores between these conditions. This
elps in identifying genes with unique patterns. For instance,
e utilized this module to find genes that showed a more sig-
ificant negative essentiality score when the treated condition
t day 21 is compared to the condition at day 0, than day
1 treated with DMSO (Figure 4 F) and were able to repro-
uce enrichment of Heme Biosynthesis pathway as previously
ublished ( 10 ) using an associated Enrichr databases interro-
ation module (Figure 4 G). 

Comparative benchmarking analysis was employed to as-
ess the performance of the different solutions implemented
n PitViper, using simulated functional screening count data
(23) ( Supplementary Figure S2 ). We noticed significant per-
formance fluctuations across the range of simulation param-
eters employed, with F1 scores varying between 0 and 0.89
across all combinations. As the number of sgRNAs n and
their efficiency e increased, the performance improved for
all methods. However, it was observed that when a relatively
high number of sgRNAs were utilized per gene, with n > 10
and n > 75, for instance, the Differential Scoring Method
and MAGeCK MLE were, respectively, outperformed by the
other solutions. Importantly, each method was identified as
top performer based on the F1 score for a minimum of four
combinations ( Supplementary Figures S2 A and S2 B). In ad-
dition, the parameter space highlighting the optimal perfor-
mance of each method relative to the others exhibited sig-
nificant variability: CRISPhieRmix showed superior perfor-
mance with low targeting efficiency and a reduced multiplic-
ity of efficient guides. In contrast, MAGeCK MLE displayed
its peak performance under conditions of high sgRNA target-
ing efficiency and high multiplicity of efficient guides, with
the important caveat that the number of sgRNAs used does
not exceed 75; otherwise, its performance drastically declines,
irrespective of targeting efficiency or the multiplicity of ef-
ficient guides. Both MAGeCK RRA and SSREA displayed
a similar behavioral pattern, outperforming other methods
when employing a high number of sgRNAs per target gene.
Conversely, the Directional Scoring method showcased slight
advantages in scenarios where the number of sgRNAs de-
signed per gene and their efficiency were low ( Supplementary 
Figure S3 ). Collectively, these findings underscore the at-
tractive capability of PitViper in integrating these diverse
analysis tools, thereby constituting a qualitative resource
to comprehensively analyze a diversified array of screening
systems. 

Case study from a CRISPRi screening analysis of 
super -enhancer -regulated gene network 

essentialities 

PitViper was used to reanalyze a genome-wide CRISPRi-based
screen of super-enhancer (SE) genomic regions which was
developed to (i) identify potential super-enhancer liabilities
in an ETO2-GLIS2 -positive AMKL cell line, M-07e; and,
(ii) functionally map the rich clusters of genes whose ex-
pression is controlled by these critical SEs, and which might
thereby cooperate to promote the growth of AMKL cells 24 .
PitViper analysis started from raw FASTQ files. MAGeCK
MLE, MAGeCK RRA, CRISPhieRmix, SSREA and the direc-
tional scoring method, were executed with default parame-
ters. MAGeCK ‘counts’ module was used to directly quantify
the number of reads associated with each guide in each con-
dition. BAGEL2 was excluded from this analysis because this
method was not robust enough due to the lack of prior knowl-
edge on essential versus nonessential SEs. The intersection of
top-depleted hits from the five different analysis methods pin-
pointed previously identified hits (Figure 5 A). In addition, one
SE (SE_66) was pinpointed as essential by two methods, ex-
cluding MA GeCK MLE, MA GeCK RRA and CRISPhieRmix,
and was also not identified in the original screening report.
The lack of power of MAGeCK MLE and MAGeCK RRA
to detect this particular SE region as a scoring hit came from
the fact that out of the 29 different sgRNAs directed against
SE_66, only a subset of them exhibited significant depletion
between day 0 and day 21 (Figure 5 B). Accordingly, SE_66

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae059#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae059#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae059#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae059#supplementary-data


10 NAR Genomics and Bioinformatics , 2024, Vol. 6, No. 2 

A B

C D

E

F

G

Figure 4. Interactive visualization of additional expression, mutation, interaction, dependency and pathway annotation tools. (A–C) Interactive heatmap 
of the protein le v els ( A ), CRISPR dependency scores ( B ) and deleterious mutations ( C ) of each scoring hit at the intersection of all analysis methods 
from Figure 3 C. Out of 16 hits, the 14, 15 and 8 for which expression (A), dependency (B) and mutation (C) information were available across all cell 
lines, respectively, are shown on the heatmap. Results were obtained from The Cancer Dependency Map Project (DepMap). Negative essential hits 
with FDR < 0.05 for all methods but SSREA (FDR < 0.25). ( D ) Network visualization generated with GeneMANIA website using the intersection of 
essential genes. ( E ) Overrepresentation analysis results obtained using EnrichR python’s API with ‘GeneOntology: Biological Processes’ on the union of 
all hits are represented as a dot plot. Negative essential hits with FDR < 0.05 for all methods but SSREA (FDR < 0.25). ( F ) Scatter plot depicting the 
MLE beta score of each gene between ‘Day 21 Vehicle against Day 0’ normalized counts and ‘Day 21 500 against Day 0’ normalized counts. Genes 
highlighted in red are at the intersection of genes with a beta score ≥ -1 in D21 Vehicle vs D0 and a beta score ≤−1 in D21 500 versus D0. Genes 
enriched in the Reactome ‘Heme Biosynthesis’ pathway are depicted in blue. ( G ) Bar plot depicting combined score of Enrichr analyses of intersection 
genes using Reactome database. Heme Biosynthesis pathway is highlighted in red. 
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Figure 5. Case study: super-enhancer 66 (SE_66) is identified by three independent functional analysis methods as critical for M-07e cell growth. ( A ) 
Venn diagram of the number of super enhancers (SEs) identified at the intersection of all methods (FDR < 0.25 and negative selection) as critical 
dependencies. SE_66 (shown in red) is scored by 2 out of the five implemented methods. ( B ) Upset plot of the number of super enhancers (SEs) 
identified at the intersection of all methods (FDR < 0.25 and negative selection) as critical dependencies. ( C ) Heatmap of z -score-transformed 
normaliz ed e xpression of sgRNAs t argeting SE_66 bet w een da y 0 and da y 21. sgRNA are sorted b y FDR as estimated b y MAGeCK RRA, from the less 
significant (left) to the more significant (right). sgRNA with FDR value < 0.25 are depicted in red. ( D ) Analysis of the essentially for SE_66 by MAGeCK 
MLE, MAGeCK RRA, CRISPhieRmix, SSREA and the directional scoring method. Gray and red dots indicate non-significant and significant depletion, 
respectively, according to the significance calculation of each method. ( E ) Gene track showing SE_66 localization in the human genome (hg19), 
annotation of the SE_66 proximal genes, NCF4 and CSF2RB , the position of the sgRNA and their log 2 fold-change of representation between day 0 and 
day 21 as well as normalized read density histograms for H3K27ac- and H3K4me3- ChIP-seq and chromatin accessibility assessed by A T AC-seq. 
( F ) qRT-PCR analysis of CSF2RB mRNA levels in M-07e cells transduced with a SE_66-targeting sgRNA (sg1.7) and a control Renilla-targeting sgRNA 

(sgRen). Error bars represent mean ± SD of three replicate per condition. ( G ) Proportion of GFP-positive M-07e cells following CRISPRi inhibition of 
SE_66 with a SE_66-targeting sgRNA (sg1.7) compared to a control non-targeting sgRNA (sgRen) and normalized to day 8 after infection. Error bars 
represent mean ± SD of three replicate per condition. ( H ) qRT-PCR analysis of CSF2RB mRNA levels in M-07e cells transduced with three different 
CSF2RB -targeting shRNA vs a control Renilla-targeting shRNA. Error bars represent mean ± SD of three technical replicates. ( I ) Proportion of 
GFP-positive M07e cells following CSF2RB silencing using three CSF2RB -directed shRNAs compared to a control Renilla-directed shRNA and 
normaliz ed to da y 4 after infection. Error bars represent mean ± SD of three technical replicates. (F–I) P -value calculated using Welch’s t -test. * P < 0.05. 
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was identified as significantly depleted over time only by the
SSREA, and Directional Scoring methods (Figure 5 C). 

SE_66 is located on chromosome 22 proximal to the
CSF2RB gene (Figure 5 D). The protein encoded by this gene
is a common beta chain subunit to type I cytokine recep-
tors which could be activated by various cytokines, includ-
ing interleukin-3 (IL-3) or granulocyte-macrophage colony-
stimulating factor (GM-CSF). These two cytokines are re-
quired for M-07e growth 

25 , suggesting that the inactivation
of SE_66 could lead to the repression of CSF2RB which, in
turn, could affect the IL-3- or GM-CSF-mediated M-07e cell
growth. To test this hypothesis, we performed a qRT-PCR
analysis of CSF2RB mRNA levels in M-07e cells infected with
either a Renilla non-targeting control or a SE_66-directed
sgRNA, sg1.7. We confirmed that the inactivation of SE_66
reduced the expression of CSF2RB (Figure 5 E). Decreased
CSF2RB expression was associated with a sustained impair-
ment of M-07e cell growth over time in comparison with
the control sgRenilla-transduced cells (Figure 5 F). To confirm
the effect of CSF2RB repression on M-07e cell growth, we
performed shRNA-mediated knockdown of this gene using
three independent shRNAs (Figure 5 G). Upon knockdown of
CSF2RB , we confirmed indeed that M-07e cell growth was
significantly impaired, thereby corroborating our previous re-
sults observed upon SE_66 inhibition (Figure 5 H). 

Together, our results show that PitViper enables users to ex-
ploit simultaneously and at once multiple screening analysis
methods. These include two newly developed methods within
the frame of the PitViper pipeline, to nominate scoring hits
that could not be otherwise considered as noteworthy by spe-
cific and individual methods. We ultimately bench-proofed the
robustness of our PitViper analysis pipeline by showing the
relevance of one of these questionable hit candidates as a true
essentiality in our model system. 

Discussion 

High-throughput functional screens constitute a set of power-
ful techniques for the identification, at a global scale, of coding
and non-coding genomic elements which play a critical role in
maintaining a phenotype of interest. In this study, we devel-
oped PitViper, an automated pipeline for rapid, easily repro-
ducible analysis of newly generated data and the reanalysis of
existing functional screening data (shRNA, CRISPR-Cas9 and
CRISPR-dCas9) with multiple complementary methods for es-
sentiality analysis. This solution was built on a Snakemake
pipeline associated with an HTML-based graphical user in-
terface and Jupyter Notebook reports. 

One of the most important criteria to consider when us-
ing a screening analysis solution is the statistical accuracy of
the given tool to pinpoint all possible true-positive candidate
hits reliably and robustly, without retaining too many false
positives. This accuracy depends on a trade-off between the
sensitivity (likelihood of the identification of a positive hit,
conditioned on truly being positive) and the specificity (like-
lihood of the identification of a negative hit, conditioned on
truly being negative) of the prediction. The experimental de-
sign of the screen may affect the statistical potency of the plat-
form being queried. For instance, BAGEL2 represents an in-
valuable tool to identify hits in a system where a list of curated
and validated essential and non-essential elements is available.
MAGECK MLE is more comprehensive than BAGEL2 to pin-
point essential elements in all possible conditions, especially in
a context in which the efficiency of targeting guides is high. Its 
robustness tends to decrease, however, when guide efficiency 
is suboptimal ( 18 ). CRISPhieRmix was developed specifically 
for CRISPR / dCas9 screens and models the phenotypic effect 
of each gene. It is based on the mixture of a null distribution 

from sgRNAs targeting non-essential elements or ineffective 
sgRNAs targeting essential elements and an alternative distri- 
bution of effective sgRNAs targeting essential elements. We in- 
deed observed that CRISPhieRmix identified the highest num- 
ber of potential hits among all methods for a CRISPRi data 
but also tend to identify higher number of false positive in our 
benchmark. In addition, we have implemented in PitViper two 

additional methods: a repurposing of the GSEA algorithm and 

a method based on the directional filtering, scoring, and ag- 
gregation of sh / sgRNAs at the gene level. To validate these 
results, and to confirm that these two methods provide an 

accurate prediction of true-positive hit candidates, we con- 
ducted a case study in which we used PitViper to reanalyze 
a dataset of a genome-wide CRISPRi-based screen of super- 
enhancers in the M-07e cell line. In doing so, we were able 
to identify new SEs, which did not score as critical hits using 
standard one-tool analysis strategies. We validated the role of 
one of them, the SE_66, as a growth dependency in M0-7e 
cells via the modulation of CSF2RB expression. Simulations 
of functional screening data demonstrated that the outcomes 
of each method varied based on factors such as the count of 
sh / sgRNAs designed for each gene, their targeting efficiency,
and the multiplicity of efficiency of the targeting elements. Of 
note, the directional scoring method displays the overall worst 
performances as expected by its the rather heuristic nature and 

we recommend usage of the other analysis methods that are 
more statistically sound. By offering the possibility of combin- 
ing these multiple screening analysis tools into one platform,
PitViper represents a beneficial resource for minimizing the 
trade-off between sensitivity and specificity and maximizing 
the chances of identifying all possible truly positive screened 

hits. 
PitViper is easy to parametrize and run, supporting most 

common input formats (FASTQ files, BAM files, and counts 
matrix), making it well suited for analysis of de novo or 
already-published data. Too often, the re-analysis of bioinfor- 
matics results requires reconstruction and deduction on the 
part of those trying to reproduce the results. However, it be- 
comes fully reproducible when researchers generating the re- 
sults provide a complete and continuous framework of their 
analysis pipeline. To promote reproducibility, we have en- 
sured that these considerations are applied in PitViper with- 
out requiring additional work for data and screening anal- 
ysis pipeline sharing. Genomic and epigenomic data such as 
shRNA screens targeting genes or CRISPR screens targeting 
custom regions are supported. Actionable and shareable re- 
ports with interactive publication-ready visualizations made 
to improve results annotations are generated. Embedding of 
raw and normalized counts in the report facilitates further 
reproducibility, access to data and encourage transparency.
External programs such as EnrichR for pathway enrichment,
GeneMania for network reconstruction or DepMap for de- 
pendency identification are available in the report and allow 

quick access to relevant biological information in the data.
From a computational standpoint, the Jupyter Notebook re- 
port template allows developers to easily add new modules or 
modify reports to suit their specific needs. Installation of com- 
putational dependencies is possible through Conda or Docker 
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o facilitate reproducibility and is complementary to the abil-
ty to rerun a previous PitViper analysis with the same exact
arameters using a configuration file. We expect PitViper to
ffer a rapid, easy to use, scalable and reproducible solution
or screen essentiality analysis and to improve the detection
f essential elements by offering a broader range of computa-
ional methods adapted to multiple screening workflows. 

ata availability 

07e H3K27Ac and H3K4me3 ChIP-seq are available at Ar-
ayExpress database (E-MTAB-4367). M07e ATAC-seq data
s available in the Gene Expression Omnibus database under
ccession code GSE131462. 

Pitviper code is available at https:// github.com/ lobrylab/
itViper and https:// doi.org/ 10.5281/ zenodo.11128707 . 
All correspondence, material and code request

hould be addressed to either Dr Camille Lobry
camille.lobry@inserm.fr) or Paul-Arthur Meslin (paul-
rthur.meslin@inserm.fr). 

upplementary data 

upplementary Data are available at NARGAB Online. 
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