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ABSTRACT: Protein−protein interactions (PPIs) play a central
role in nearly all cellular processes. The strength of the binding in a
PPI is characterized by the binding affinity (BA) and is a key factor
in controlling protein−protein complex formation and defining the
structure−function relationship. Despite advancements in under-
standing protein−protein binding, much remains unknown about
the interfacial region and its association with BA. New models are
needed to predict BA with improved accuracy for therapeutic
design. Here, we use machine learning approaches to examine how
well different types of interfacial contacts can be used to predict
experimentally determined BA and to reveal the impact of the
specific amino acids at the binding interface on BA. We create a
series of multivariate linear regression models incorporating different contact features at both residue and atomic levels and examine
how different methods of identifying and characterizing these properties impact the performance of these models. Particularly, we
introduce a new and simple approach to predict BA based on the quantities of specific amino acids at the protein−protein interface.
We found that the numbers of specific amino acids at the protein−protein interface were correlated with BA. We show that the
interfacial numbers of amino acids can be used to produce models with consistently good performance across different data sets,
indicating the importance of the identities of interfacial amino acids in underlying BA. When trained on a diverse set of complexes
from two benchmark data sets, the best performing BA model was generated with an explicit linear equation involving six amino
acids. Tyrosine, in particular, was identified as the key amino acid in controlling BA, as it had the strongest correlation with BA and
was consistently identified as the most important amino acid in feature importance studies. Glycine and serine were identified as the
next two most important amino acids in predicting BA. The results from this study further our understanding of PPIs and can be
used to make improved predictions of BA, giving them implications for drug design and screening in the pharmaceutical industry.

1. INTRODUCTION
Protein−protein interactions (PPIs) play a central role in
nearly all cellular processes, from DNA replication to
biomolecule transport and body immune response.1−4

Abnormal protein−protein interactions are associated with
many diseases such as cancer, neurodegenerative diseases, and
infectious diseases.5−7 Characterizing PPIs is therefore crucial
for understanding biological processes and designing ther-
apeutic drugs. PPIs are complicated processes, and it is the
binding affinity (BA) of the interactions that determines
whether proteins form stable or transient complexes and
perform functions.8 Although crystallography techniques are
able to provide structural understanding of PPIs at the atomic
level, these techniques do not directly measure BA.
BA is measured as the change in free energy (ΔG) during

formation of a complex, where a negative value of a large
magnitude indicates a strong interaction. ΔG is related to the
dissociation constant (Kd) by the formula ΔG = RT ln(Kd)
where R is the ideal gas constant, T is the temperature, and ΔG
is the BA. BA can be measured in terms of dissociation
constant (Kd) using experimental approaches such as surface

plasmon resonance (SPR) and isothermal titration calorimetry
(ITC).9 In drug discovery, therapeutic design, and the
development of inhibitors, predictions of the BA of proposed
interactions are crucial for the identification of leading
candidates.10−12 For example, computational approaches,
such as molecular docking, can reveal numerous theoretically
possible protein−protein complexes within cells, and BA
prediction is needed to evaluate which of these proposed
structures are likely to be stable. However, the complexity of
PPIs and the large diversity of protein structures and functions
makes it difficult to predict BA and understand the features of
the complex that impact BA.
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During the past two decades, three general classes of
computational approaches have been used to predict BA:13,14

(1) physics-based ab initio methods such as free energy
perturbation and thermodynamics integration;15,16 (2) knowl-
edge-based statistical potentials such as DFIRE17,18 or other
empirical scoring functions such as Kdeep;19 and (3) machine
learning (ML)-based approaches based on structural and
chemical properties of the protein−protein complexes20−29 or
their amino acid sequences.30−34 Particularly, ML has become
a sought-after approach for developing predictive models due
to its high power of uncovering insights in large volumes of
data.35 The most common features in predictive ML models
with three-dimensional (3D) structures are the contacts at the
complex interface, a method exemplified by Vangone and
Bonvin with the development of the PRODIGY model and
Web server in mid 2010s.21−23 Compared to other ML models,
PRODIGY is simple and interpretable as it employs a linear
regression (LR) algorithm, using the number of interfacial
contacts (ICs) of polarity-classified residues and noninteract-
ing surface (NIS) residue properties as the major features. The
PRODIGY model outperformed many preceding models with
a Pearson’s correlation coefficient (R) of 0.73 when trained on
a data set of 81 complexes. But, a recent study showed that
PRODIGY’s performance on a different BA database was much
lower (R = 0.31),27 suggesting the need for further
investigation of contact-based features and predictive models.
In this work, we compare a series of LR models involving

residue/atomic contacts and find that several different
approaches to defining interfacial contacts have roughly similar
performance when predicting experimental binding affinity.
The highest performing of these models is based on a novel set
of features with the quantitative information on the identities
of the amino acids at the binding interface. As of today, there
have been no studies that use the identities of specific amino
acids to build models for BA prediction. Substantial studies
have helped us to have a good understanding of the
composition and role of specific amino acids at the complex
interface for protein−protein binding.36−43 However, trans-
lation of the information on the specific amino acids at a
binding interface into a BA prediction model has not been
achieved. Here, we report a quantitative association of the
interfacial number (INs) of amino acids (AA) with BA and use
this knowledge to develop an ML-based model for BA
prediction. We found a group of high-impact amino acids,
led by tyrosine, that had an association with BA comparable to
the most impactful residue or atomic contact features. We also
show that this AA-INs model, which uses only six amino acids,
outperforms other classes of contact-based LR models on
benchmark data sets, indicating the importance of the
identities of amino acids at protein interfaces in underlying
the strength of protein−protein BA.

2. METHODS
2.1. Features and Their Calculation. The contact

features that we investigated included residue-based interfacial
contacts (residue ICs) where a contact was defined between
two residues if any of their heavy atoms were within a defined
cutoff, atom-based interfacial contacts (atomic ICs) where any
atoms that were within the cutoff were counted (not limited to
one contact per residue), and hydrogen bonds (HB) where we
used a cutoff of 3.5 Å between any N and O atoms. The
residue ICs were further divided into different types based on
charge and polarity of the amino acids. We used the following

classifications: charged (Arg, Asp, Glu, His, Lys), polar (Asn,
Gln, Ser, Thr), and apolar (Ala, Cys, Gly, Ile, Leu, Met, Phe,
Pro, Trp, Tyr, Val). Atomic ICs were divided into three types
based on the polarity of atoms, where C is considered as
nonpolar and N, O, S as polar. We also considered the
noninteracting surface (NIS) of the complex as it has been
shown to contribute to BA.44 NIS features were calculated as
the percentage of surface area contributed by the polar, apolar,
and charged residues over the total NIS area.21

Additionally, we considered the hydrophobicity of the
contacting residues by defining a hydrophobicity score (HS)
for each complex. HS was defined according to

HS 1
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(1)

where the KD values for the two contacting residues, ith and
jth, are the hydropathy indexes from the Kyte-Doolittle scale45

and the score is summed over all pairs of contacting residues in
the complex. The division by 4.5 and subtraction from 1
ensures that the score for each residue pair ranges between −1
and 1. With this definition, contacts between residues with
similar hydrophobicity will contribute positive values near +1
to HS, while contacts between unlike residues have negative
contributions to HS.
Thus, a total of 14 residue and atomic features were

investigated and were indexed sequentially as (0) residue
ICs_charged-charged, (1) residue ICs_charged-polar, (2)
residue ICs_charged-apolar, (3) residue ICs_polar-polar, (4)
residue ICs_polar-apolar, (5) residue ICs_apolar-apolar, (6)
HB, (7) atomic ICs_polar-polar, (8) atomic ICs_polar-apolar,
(9) atomic ICs_apolar-apolar, (10) %NIS_polar, (11) %
NIS_apolar, (12) %NIS_charged, and (13) HS. Residues ICs,
atomic ICs, HB, and HS were calculated with Python, utilizing
the Bio.PDB package within the Biopython library to extract
the features from PDB files.46 %NIS was calculated using
NACESS with the same configurations used in the PRODIGY
model by Vangone and Bonvin.21,47

Additionally, the interfacial number (IN) of each amino acid
(AA), AA-IN, for each complex was counted using the distance
cutoff optimized by residue contacts. The AA-INs of the 20
standard amino acids were then used as features to develop LR
models and investigate the impact of specific amino acids on
BA.
The scripts for calculating these features and using the final

AA-INs model based on six amino acids for predicting BA of
any protein complex with 3D structures are available at
https://github.com/kagrat17/AAIN_Predictor. The code to
calculate % NIS for the contact-based models was taken from
the PRODIGY model by Vangone and Bonvin.22 The distance
cutoff for the residue and atomic contacts was optimized by
investigating the Pearson’s correlation between the predicted
ΔG and experimental ΔG at different distances.

2.2. Data Sets. To build structure-based models for
predicting protein−protein BA, a diverse and reliable data set
of solved protein−protein structures with reliable affinity data
is required. Vangone and Bonvin built a data set by “cleaning”
the structure-based protein−protein BA benchmark48 and used
it to develop the PRODIGY model and Web server.21,22 This
data set, referred to as the PRODIGY data set, contains 81
complexes with diverse functions and a wide range of
experimental BA (ΔG from −18.6 to −4.3 kcal/mol).
However, a later study by Romero-Molina et al.27 showed
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that PRODIGY did poorly on a different data set that
contained 90 complexes gathered from the PDBbind database
(v.2020).49 PRODIGY gave a Pearsons’ correlation R of 0.31
on this PDBbind data set in contrast to R of 0.73 on the
PRODIGY data set. In this work, we use both data sets as the
resource of protein−protein complexes to develop improved
models for BA prediction.
It has been shown by Vangone and Bonvin that the

reliability of a data set depends on the experimental methods
used to determine Kd of the complexes.21 The SPR, ITC,
stopped-flow fluorimetry, and spectroscopic methods were
shown to be reliable as the experimental ΔG measured by
these methods gave reasonable correlations with residue ICs.
Other methods, including inhibition assays and fluorescence
spectrophotometry, gave BA with low correlations with residue
ICs, possibly because they were indirect methods that were less
reliable.50−52 Complexes with Kd measured with these methods
were thus removed by Vangone and Bonvin from the initial
benchmark data set. We conducted the same assessment for
the PDBbind data set, and the results showed that the
experimental ΔG from these other methods indeed gave low
correlations with the number of residue ICs and atomic ICs
(Table S1). Thus, we excluded these complexes from the data
set. We also excluded two other complexes from the PDBbind
data set, 2FTL and 2JGZ. The experimental Kd for the complex
2FTL was measured at 100 K rather than room temperature.
The complex 2JGZ only had a lower bound Kd (Kd > 1 mM).
After removing these complexes, we had two final data sets of
size 81 and 60, whose compositions are shown in Table S2. We
further examined whether there were significant differences

between the two data sets. Specifically, we examined whether
the BA distributions of their complexes were significantly
different. The two-sample Kolmogorov−Smirnov test (testing
whether two samples came from the same distribution) gave a
p-value of 0.022, indicating that the distribution of BA differs
between the two sets. This can also be seen by the BA
histograms shown in Figure S1A. Thus, we decided to combine
the two data sets (total of 141 complexes) to make a large,
diverse, and reliable data set that can better represent protein−
protein complexes. This combined data set has a wide range of
BA, with experimental ΔG from −3.3 to −18.6 kcal/mol
(Figure S1B).

2.3. Machine Learning Methods. The statsmodels and
sklearn python libraries were used to build and investigate BA
models. We used different combinations of features to
construct multivariate linear regressions and evaluated them
using the coefficient of determination R2, Pearson’s product-
moment correlation coefficient R (which is the square root of
R2 for linear regressions), and the Akaike Information
Criterion (AIC). In addition, root-mean-square error
(RMSE) was calculated to evaluate the average difference
between the predicted and experimental ΔG. We also built
random forest (RF) models to rank the features of the models
by their impurity-based feature importance. Cross-validation
was also performed to evaluate our models by partitioning the
data set into four subsets, training on 75% of the data (training
set) and validating on the other 25% of the data (validation
set) and repeating until each of the 4 subsamples was used as
the validation set. Such 4-fold cross-validation was repeated 10
times, which gave mean test R with standard deviation.

Figure 1. Dependence of the number of ICs and predictive performance of LR models on the distance cutoff and polarity-classified IC
subtypes. (A) The total number of residue ICs at different distance cutoffs. (B) Comparison of the correlation between predicted and experimental
DG at different distance cutoffs for the LR models generated with the features of total number of residue ICs (black curve) and the six residue IC
subtypes (red curve). (C) Proportion of residue ICs subtypes in the total number of residue ICs at 4.75 Å distance cutoff. (D) The total number of
atomic ICs at different distance cutoffs. (E) Comparison of the correlation between predicted and experimental DG at different distance cutoffs for
the LR models generated with the features of total number of atomic ICs (black curve) and the three atomic IC subtypes (red curve). (F)
Proportion of atomic ICs subtypes in the total number of atomic ICs at 4.75 Å distance cutoff.
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Additionally, we also trained Support Vector Machine
(SVM) and AdaBoost models on the combined data set to
compare the AA-INs model’s performance with more advanced
ML techniques. For the SVM model, the Support Vector
Classifier from scikit learn was used along with the Radial Basis
Function (RBF) kernel, which was the only standard kernel
found to produce similar results as the Random Forest and
AdaBoost models. For the AdaBoost model, we used the
AdaBoostRegressor from scikit-learn with 20 estimators and a
learning rate of 0.1.

3. RESULTS
3.1. Sensitivity of Contact-Based Prediction of BA on

the Distance Cutoff Used to Define Contacts. The
simplest method of using protein−protein contacts to predict
binding affinity is by creating a linear model using only the
total number of interfacial contacts (ICs) of the residues from
the two protein components. The total number of ICs
increased rapidly with the distance cutoff used to define the
contact (Figure 1A). To examine whether the model
performance was sensitive to the cutoff used to calculate the
number of ICs, we built LR models with the total number of
ICs calculated at different cutoffs and examined the Pearson’s
correlation R between predicted and experimental ΔG of these
models. The value of R and, thus, the predictive ability of the
number of ICs, increased as the cutoff distance increased above
3 Å, reaching a relative plateau from ∼4 to 6 Å and then
gradually decreasing as the cutoff continued to increase (Figure
1B, black curve). The maximum value of R occurred at a cutoff
of 4.75 Å (R = 0.45), but the correlation was not particularly
sensitive to the distance cutoff as distances of between ∼4 and
6 Å provided similar performance. Thus, a cutoff of 4.75 Å was
used to calculate residue ICs for further studies.
Based on the polarity of residues, Vangone and Bonvin

classified the residue ICs into six subtypes, ICs_charged-
charged, ICs_charged-polar, ICs_charged-apolar, ICs_polar-
polar, ICs_polar-apolar, and ICs_apolar-apolar, and showed
that an LR model including subtype ICs performed better than
the model using total ICs.21 To examine whether this applies
to a larger and more diverse data set, we examined the
relationship between the distance cutoff used to define a
contact and the correlation between experimental ΔG and ΔG
predicted by an LR model with these six features using the
combined PRODIGY and PDBbind data set. The general
behavior of this relationship was similar to that found using
only the total number of ICs, as R plateaued for cutoff
distances between ∼4 to 6 Å and reached a maximum R of 0.54
at the same cutoff distance 4.75 Å (Figure 1B, red curve).
However, in agreement with Vangone and Bonvin’s results, we
found that the model performance improved when splitting the
total contact number into the numbers of IC subtypes, with R
values increasing by about 25%. Among the six ICs subtypes,
the percentage of residue ICs_apolar-apolar was highest,
accounting for nearly 30% (Figure 1C). The percentage of
ICs_polar-polar was lowest, only about 5%.
While the previous discussion has focused on contacts

between the residues in protein−protein complexes, these
residues actually interact with each other through atoms. Thus,
we also investigated the correlation between the number of
atom−atom contacts and binding affinity to compare residue-
based and atomic-based approaches for defining protein−
protein contacts. Defining contacts on an atomic basis greatly
increased the number of contacts that were identified in the

complexes, as there was over an order of magnitude increase in
atomic contacts in the complexes compared with residue
contacts (Figure 1D). The relationship between the cutoff
distance used to define a contact and the correlation between
the number of atomic contacts and the experimental ΔG
(Figure 1E, black curve) was similar to that found for residue
ICs, showing a plateau around 5 Å. The peak R for atomic ICs
occurs at the same cutoff (4.75 Å) as that found for residue
ICs, and the R value at the peak was similar for the two
approaches (R = 0.44 for atomic ICs and R = 0.45 for residue
ICs). Similar to how residue contacts can be classified based on
the classes of the interacting residue, the atomic ICs can be
grouped into three types (polar-polar, polar-apolar, and apolar-
apolar) based on the polarity of atoms, where C is considered
as nonpolar and N, O, S as polar. Different from the residue
contacts, we found that the correlation of the LR models based
on the three atomic subtypes was only slightly improved at
each distance cutoff compared to those using the total atomic
ICs (Figure 1E, red curve), with R only reaching 0.45 at the
optimal distance cutoff, a value only slightly above that of the
LR model with the total atomic ICs. Among the three atomic
ICs subtypes, the highest contribution to the total atomic ICs
was from atomic ICs_polar-apolar, with an average of 45.5%
(Figure 1F). This was followed by atomic ICs_apolar-apolar
(40%). The atomic ICs_polar-polar had the lowest contribu-
tion, accounting for only 14.5% of total atomic ICs.

3.2. Correlation between Residue/Atomic Features
and Experimental BA. To further investigate and compare
the relationship between residue/atomic ICs and BA, we
calculated the Pearson’s correlation R between individual
features and the experimental ΔG (Table 1). The majority of

these features had a negative correlation with ΔG and thus will
lead to stronger BA. Several individual features were able to
produce correlations with experimental ΔG comparable to
total residue or total atomic ICs. Specifically, atomic
ICs_polar-apolar, atomic ICs_polar-polar, residue ICs_polar-
apolar, and HS all had R values of −0.4 or less, near the R ∼
−0.45 achieved by the total residue or atomic ICs. The strong

Table 1. Pearson’s Correlation R between the Experimental
ΔG and Residue ICs, Atomic ICs, HB, HS, and %NIS
Features

Residue-ICs R p-value

Residue ICs_charged−charged −0.12 0.078
Residue ICs_charged-polar −0.21 0.006
Residue ICs_charged-apolar −0.39 <0.0001
Residue ICs_polar−polar −0.15 0.038
Residue ICs_polar−apolar −0.44 <0.0001
Residue ICs_apolar−apolar −0.19 0.012
Total residue ICs −0.45 <0.0001
HS −0.41 <0.0001

Atomic ICs
Atomic ICs_polar−polar −0.44 <0.0001
Atomic ICs_polar−apolar −0.45 <0.0001
Atomic ICs_apolar−apolar −0.37 <0.0001
Total atomic ICs −0.45 <0.0001
HB −0.33 <0.0001

%NIS
%NIS_polar −0.35 <0.0001
%NIS_apolar 0.09 0.144
%NIS_charged 0.30 0.0002
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correlation between experimental ΔG and residue ICs polar-
apolar was previously reported by Vangone and Bonvin with
the PRODIGY data set.19 Other features with relatively strong
correlations with experimental ΔG included residue ICs

charged-apolar, atomic ICs apolar-apolar, %NIS_polar, and
HB. %NIS_charged had a relatively strong positive correlation
with ΔG (R = 0.30), indicating that increasing the percentage
of NIS from charged residues would lead to weaker BA.

Figure 2. Comparison of the performance of different groups of contact-based LR models. (A−C) Residue ICs/NIS models. (D−F) Atomic
ICs/NIS models. (G−I) Residue/atomic ICs/NIS models. (J−L) Residue/atomic ICs/HS/NIS models. (A, D, G, J) Pearson’s correlation R as a
function of the number of features used to generate the models. (B, E, H, K) AIC as a function of the number of features used to generate the
models. (C, F, I, L) Scatter plots between the predicted and experimental ΔG for the minimum AIC models. The straight lines are the function y =
x.
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One somewhat surprising result from this analysis is that
contacts between “like” residues or “like” atoms (e.g., polar−
polar residue contacts or apolar−apolar atomic contacts) had
weaker correlations with BA than “unlike” contacts. For
example, polar−apolar residue and atomic contacts had the
strongest correlation with experimental ΔG in their respective
categories, indicating that these “unlike” interactions were the
best at predicting BA. To further investigate “like” and “unlike”
contacts, we calculated the expected percentage (average from
141 complexes) of residue pairs in contacts based on the
percentages of each residue class in contacts and compared
these expected percentages with their actual values (Table S3).
All “like” residue pairs (charged-charged, polar-polar, and
apolar-apolar) had higher percentages than their expected
values by ∼10%. Thus, there does seem to be a preference for
the formation of “like” contact pairs at the protein interface,
but this preference does not translate to these contacts being
better predictors of binding affinity.

3.3. Comparison of Residue, Atomic, and Combined
Feature Sets in Creating LR Models of BA. To more fully
explore the contact-based features and predictive models, we
built and evaluated a series of LR models with different feature
combinations. First, we used the set of features used in the
development of the PRODIGY model to build residue ICs/
NIS models to examine how these models performed on the
expanded data set used in this work that contained the 81
complexes from the PRODIGY data set and additional 60
complexes from PDBbind. Specifically, the features used here
included six types of residue ICs (Feature Index 0,1,2,3,4,5)
and three %NIS (Feature Index 10,11,12). We trained a total
of 511 LR models using all possible combinations of these nine
features on our data set. The performance of these models was
evaluated by both Pearson’s correlation R (Figure 2A) and
AIC (Figure 2B). The AIC criteria was used to correct for
overfitting and gave more weight to simpler models. The
results showed that increasing the number of the features from
1 to 3 led to a rapid increase of the model performance. The
maximal R (Rmax) increased by 0.15 and the minimal AIC
(AICmin) decreased by 26.1 from single-feature models to
three-feature models. However, as the number of features
included in the model increased above 5, the Rmax had
negligible changes (remaining near 0.61), while the AICmin
increased as AIC penalized the increasing complexity of these
models. This residue ICs/NIS model with the lowest AIC
(AIC = 622.0) gave R of 0.61 (p < 0.0001) and RMSE of 2.10
kcal/mol (Figure 2C). It included the following 5 features:
residue ICs_charged-charged, residue ICs_charged-apolar,
residue ICs_polar-polar, residue ICs_polar-apolar, and %
NIS_polar. While this model had the lowest AIC, many
models performed relatively well, with 153 of the 511 models
giving R > 0.55.
Next, we built a set of LR models based on atomic contacts

to compare with residue-based models. These atomic contact-
based models included all possible combinations of 7 features,
HB, atomic ICs_polar-polar, atomic ICs_polar-apolar, atomic
ICs_apolar-apolar features, and the three %NIS features
(Feature Index 6,7,8,9,10,11, 12), resulting in a total of 127
LR models. The changes of R and AIC as a function of feature
number for these atomic IC/NIS models had similar trends as
residue ICs/NIS models, as Rmax and AIC values soon reached
a plateau as more than two features were added to models
(Figure 2D,E). The Rmax increased from 0.45 for single-feature
model to 0.55 for two-feature model, and only increased to

0.57 for the all-feature model. The model with the minimum
AIC (AIC = 628.8) included two features, ICs_polar−apolar
and %NIS_polar and gave R = 0.55 (p < 0.0001) and RMSE =
2.20 kcal/mol (Figure 2F). Again, many atomic ICs/NIS
models (>20%) performed similarly to the minimum AIC
model.
Then, we examined whether combining residue-based and

atomic-based contact features of protein complexes would
improve predictions of their experimental ΔG. The combina-
tion of residue contacts, atomic contacts, and %NIS features
resulted in a total of 13 features and 8191 possible models.
Both R and AIC improved significantly as more features were
added until 7 features, with Rmax remaining at 0.64 for models
with 7 to 13 features (Figure 2G,H). The model with the
lowest AIC (AIC = 617.3) included a total of 7 features and
gave R = 0.64 (p < 0.0001) and RMSE = 2.04 kcal/mol (Figure
2I). The 7 features in this model included a mix of atomic ICs,
residue ICs, and %NIS, which were residue ICs_charged-polar,
residue ICs_charged-apolar, residue ICs_polar-polar, residue
ICs_polar-apolar, HB, atomic ICs_polar-polar, and %NIS_po-
lar. Similarly, many residue/atomic ICs/NIS performed
relatively well, with ∼20% of the models giving R > 0.60.
One additional way to characterize residue interactions is to

use hydropathy indices of residues. Hydropathy index is a
number representing the hydrophobic or hydrophilic proper-
ties of its side chain. The larger the number is, the more
hydrophobic the amino acid is. Several hydrophobicity scales
have been published. We used the commonly used Kyte-
Doolittle scale45 to calculate the hydrophobicity score, HS, for
each protein−protein complex. Adding HS to the residue ICs,
atomic ICs, and %NIS gives a total of 14 features, resulting in
16,383 possible feature combinations to create models. R
reached the maximum of 0.67 for models with 9 to 14 features,
and the AIC reached minimum of 611.7 at 9 features (Figure
2J,K). About 30% of the residue/atomic ICs/HS/NIS models
gave R > 0.60. The minimum AIC model used 9 features:
residue ICs_charged-polar, residue ICs_charged-apolar, resi-
due ICs_polar-polar, residue ICs_polar-apolar, residue ICs_a-
polar-apolar, HB, atomic ICs_polar-polar, % NIS_polar, and
HS, with R of 0.67 (p < 0.0001) and RMSE of 1.97 kcal/mol
(Figure 2L).
The minimum AIC models for the four different groups of

features were tested by 4-fold cross-validation and compared
with the all-feature model for each class (Table 2). In all cases,
the minimum AIC models performed slightly better than the
all-feature models during cross-validation. For example, the test
R of the minimum AIC residue/atomic ICs/HS/NIS model
was 0.61, whereas the test R of the all-feature model was 0.58.
The four different feature groups (i.e., residue ICs/NIS, atomic

Table 2. Test R for the Cross-Validation of Minimum AIC
and All-Feature Modelsa

Residue
ICs/NIS
features

Atomic ICs/
NIS features

Residue/
atomic ICs/
NIS features

Residue/
atomic ICs/
HS/NIS
features

Minimum
AIC
model

0.55 (0.01) 0.54 (0.02) 0.60 (0.02) 0.61 (0.02)

All-feature
model

0.54 (0.02) 0.51 (0.03) 0.53 (0.04) 0.58 (0.02)

aData are presented as the mean with standard deviation from 10×
trials.
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ICs/NIS, residue/atomic ICs/NIS, and residue/atomic ICs/
HS/NIS) provided roughly similar results, as the R values
ranged between 0.55 and 0.61. Thus, increasing from the two
features included in the atomic ICs/NIS model to the nine-
feature atomic/residue ICs/HS/NIS model only increased R
from 0.54 to 0.61. The coefficients for the linear equations of
the minimum AIC models and the all-feature models with their
p-values are shown in Table 3 and Table S4, respectively.
Generally, the minimum AIC model picked up features that
had p < 0.05 in the all-feature models.

3.4. Feature Importance Studies Revealed the Impact
of Different Residue/Atomic Properties on BA. To
decipher interfacial factors that impact BA, we conducted
feature importance studies with several approaches. First, we
examined the feature composition in the minimum AIC
models for different feature combinations (Figure S2). We
then calculated the frequency of feature occurrence in the top
models (Figure 3A−D). We chose a minimal number of the
top models such that each feature gave a different frequency of
occurrence in these models. This was top 105 for the residue
ICs/NIS models, top 50 for the atomic ICs/NIS models, top
100 for the residue/atomic ICs/NIS models, and top 200 for
the residue/atomic ICs/HS/NIS models. In addition, we
predicted the feature importance by RF using the all 14-feature
model (Figure 3E). For convenience, the feature index was
used in all the plots.
Due to the different features used and the different methods

used to identify important features, there were, not
surprisingly, large differences in the features that were
identified as most important for each feature set. Additionally,
there are high correlations between many of the contact
features (Table S5). For example, the atomic ICs_polar-polar
had high correlation with atomic ICs_polar-apolar (R = 0.93),
residue ICs_charged-polar (R = 0.74), and hydrogen bond (R
= 0.90). Therefore, the addition of these three features to a
model that contained atomic ICs polar-polar would involve
redundant information and would not be likely to significantly
improve the model. However, a couple of consistent results
were identified. First, HS was identified as the second most
important feature in both cases when it was included in the
model, indicating that including the hydropathy index of
contacting residues contained valuable information for

predicting experimental ΔG. On the other hand, HB was not
identified as one of the five most important features in any of
the models and was always ranked behind atomic polar-polar
contacts in importance. While HB was included in the
minimum AIC model for two feature sets (Table 3), it had a
lower p-value than atomic polar-polar contacts in both models.
Finally, in agreement with our previous discussion on the R
values for single-feature LR models, feature importance
between “like” pairs of residues and contacts did not seem to
consistently be more important features than “unlike” contacts.
For example, residue contacts between apolar and either
charged or polar residues (Feature Index 2 and 4) were usually
identified as being the most important class of residue contacts.

3.5. Interfacial Numbers of Amino Acids, Enrichment,
and Depletion. Inspired by our analysis of the importance of
contact features (e.g., the high importance of polar−apolar
residue and atomic contacts) and recent results that have
shown the importance of specific residues such as tyrosine at
the binding interface in protein−protein complexes,36 we
further investigated the amino acids that were found at the
binding interface. Specifically, we determined the enrichment
or depletion of amino acids at the binding interface compared
to their presence in the entire complex (Figure 4 and Table
S6). First, we calculated the number and proportion of each
amino acid in the entire complex. Next, we calculated the
number of each amino acid at the binding interface, AA-IN,
and their proportions at the optimal cutoff of 4.75 Å. An
enrichment factor was then calculated using the ratio of these
two percentages (% at interface/% in entire complex), where
enrichment factors >1 indicate that an amino acid had an
abundance at the interface that was greater than expected by its
abundance in the entire complex.
The results showed that leucine was the most abundant

amino acid in protein−protein complexes, accounting for 8.9%
of all amino acids. The least abundant amino acid was
tryptophan, which only accounted for 1.6%. These results
agree with those by others using large data sets (Swissprot and
TrEMBL) that showed leucine was the most abundant amino
acid whereas tryptophan and cystine are the least abundant,41

indicating that the amino acid percentages in these protein−
protein complexes in our data set are similar to those found in
all proteins.

Table 3. Coefficients of Features in the Linear Equations Predicting ΔG for Minimum AIC Models

Residue ICs/NIS model Atomic ICs/NIS model
Residue/atomic ICs/NIS

model
Residue/atomic ICs/HS/

NIS model

Feature Coefficient p-value Coefficient p-value Coefficient p-value Coefficient p-value

Residue ICs_charged-charged −0.0735 p = 0.107
Residue ICs_charged-polar 0.1106 p = 0.092 0.1564 p = 0.019
Residue ICs_charged-apolar −0.1262 p = 0.002 −0.1024 p = 0.014 −0.1240 p = 0.004
Residue ICs_polar-polar 0.1456 p = 0.154 0.1811 p = 0.042 0.2689 p = 0.004
Residue ICs_polar-apolar −0.1528 p = 0.001 −0.0947 p = 0.032 −0.1171 p = 0.013
Residue ICs_apolar-apolar 0.0601 p = 0.071
HB 0.0893 p = 0.117 0.1232 p = 0.031
Atomic ICs_polar-polar −0.0680 p = 0.003 −0.0588 p = 0.010
Atomic ICs_polar-apolar −0.0181 p = 0.000
Atomic ICs_apolar-apolar
% NIS_polar −0.1329 p = 0.000 −0.1242 p = 0.000 −0.1241 p = 0.000 −0.1198 p = 0.000
% NIS_apolar
% NIS_charged
HS −0.1102 p = 0.004
Constant −1.796 p = 0.000 −2.393 p = 0.000 −1.925 p = 0.000 −2.131 p = 0.000
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Of these residues at the binding interface, leucine remained
the most abundant amino acid (8.0%), with Leu-IN reaching
as high as 51 for the 5YR0 complex. However, the enrichment
factor of leucine was <1, as it was more prevalent in the entire
complex than it was in the contacts. Tyrosine was the second
most abundant amino acid at the binding interface, accounting
for 7.5% of all amino acids at the interface. Compared to its
abundance in the entire complex (3.8%), the abundance of
tyrosine at the interface was doubled, making it the amino acid
with the highest enrichment factor. For an individual complex,
the highest percentage of tyrosine at the interface was 28.3%
(2AJF). Other remarkably enriched amino acids at the contact
interface were arginine and tryptophan, which had enrichment
factors near 1.65. Alanine had the lowest enrichment factor
among the 20 amino acids. It was the fifth most abundant
amino acid in the entire complex, but it became the 15th at
contact interface.

3.6. AA-INs Are Correlated with Experimental BA. To
examine the association of specific amino acids with BA, we

determined whether the numbers of individual amino acids at
the interface (AA-INs) in each complex were correlated with
the experimental ΔG of the complex (Table 4). The R values
of the correlations between ΔG and the INs of several amino
acids were comparable to the best performing residue and
atomic ICs features. Specifically, the INs of tyrosine had a
lower R value (R = −0.49, p < 0.0001) than any of the
previously discussed contact features, while glycine (R =
−0.45, p < 0.0001) and serine (R = −0.44, p < 0.0001) were
able to perform as well as any of the residue and atomic ICs
features when predicting experimental ΔG. Tyrosine has been
shown to play a dominant role for protein−protein binding
due to its unique physicochemical properties that make it
effective at mediating molecular recognition.38 Thus, simply
using the number of tyrosine residues involved in contacts at
the interface of a protein−protein complex is better able to
predict the BA of the complex than other features including the
total number of atomic or residue ICs or the number of any
one of the IC contact subclasses. We also investigated the

Figure 3. Feature importance of residue ICs, atomic ICs, HB, HS, and %NIS by frequency of occurrence in top models (A−D) and RF (E).
(A) Residue ICs/NIS models. (B) Atomic ICs/NIS models. (C) Residue/atomic ICs/NIS models. (D) Residue/atomic ICs/HS/NIS models. (E)
Feature importance predicted by RF using the all-feature model.
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correlation between ΔG and enrichment factor (Table S7).
However, these correlations were lower than those of AA-INs,
and thus we decided to focus our investigation on AA-INs.

3.7. AA-INs-Based Models Predict BA with Accuracy
Comparable to Contact-Based Models. To investigate the
feasibility of specific amino acids for BA prediction, we used
the numbers of each amino acid at the binding interface, AA-

INs, of the 20 amino acids to build LR models predicting BA
and understand the relationship between specific amino acids
and BA. Using the AA-INs of the 20 amino acids, we built
1,048,575 LR models for all possible combinations of 20
features. Due to the huge number of models, we selected the
top 2000 models to examine the R and AIC as a function of
feature combination. These top 2000 models included models

Figure 4. Abundance of the amino acids in the entire protein−protein complex and at the binding interface. (A) Box plots of the number of
each amino acid in the entire protein−protein complex in the data set. (B) Box plots of the number of each amino acid involved at the binding
interface (AA-IN) of protein−protein complex in the data set. (C) Comparison of the proportion of amino acids at the interface and in the entire
complex.
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with the number of features between 4 and 13 (Figure 5A,B).
Similar to the results for the residue and atomic IC models
above, the Rmax increased as the number of features were
added, but AIC reached a minimum of 600.9 when six features
were used. This minimum AIC model used the following six
amino acids: tyrosine, glycine, serine, arginine, valine, and
isoleucine with a simple linear equation as follows.

G 0.1535Tyr IN 0.1288Gly IN 0.0840Ser

IN 0.0805Arg IN 0.0684Val IN

0.0731Ile IN 6.46

pred =

+ (2)

This model gave R = 0.68 (p < 0.0001) and RMSE = 1.94
kcal/mL, with test R = 0.63 in cross-validation (Figure 5C and
Table S8). This model outperformed all of the models above
that used a combination or a subset of residue ICs, atomic ICs,
HS, and NIS features, while using only six features, as
compared to the nine features used in the residue/atomic ICs/
HS/NIS model. To examine whether the model can be further
improved by adding residue and atomic ICs and the high-
impacting NIS and HS features, we made sets of models
combining AA-INs with these features. The best-performing
model gave an R of 0.71 and a test R of 0.67 after cross-
validation, indicating that combining AA-INs with these other
features does not greatly improve predictions.
The six amino acids included in the minimum AIC AA-INs

model included four apolar (tyrosine, glycine, valine,
isoleucine), one polar (serine), and one charged (arginine)
residue. Thus, differences in the relative importance of the

different amino acids may help explain the lack of agreement
between residue similarity and feature importance that we
observed when analyzing LR models based on residue ICs. For
example, a residue IC that contained an “unlike” combination
of residues such as tyrosine and threonine would be more
likely to have a strong impact on binding affinity than a “like”
combination of residues with INs that are not correlated with
BA. To support this conclusion, we investigated the number of
times that tyrosine was in contact with each of the other amino
acids and found that, of the 5 most common tyrosine contact
partners, 2 were polar (asparagine and threonine) and 2 were
charged (lysine and arginine). These “unlike” contacts that
included tyrosine would increase the relative importance of
polar-apolar and charged-apolar ICs, making these features
more important, in general, when analyzing the residue
contact-based LR models.

3.8. Feature Importance Studies Identified a Group
of Amino Acids with High Impact on BA. To investigate
the importance of the 20 amino acids in BA prediction, we
examined how the features were used to build the top 1000
models via the frequency of feature occurrence in these
models. The results showed that there were six amino acids
that were used with much higher frequency than others in the
top 1000 models, tyrosine, glycine, arginine, serine, isoleucine,
and valine (Figure 6A). These top six amino acids were the
same six amino acids that were used to generate the minimum
AIC model. Particularly, tyrosine, glycine, and arginine were
used in all the top 1000 models.
Additionally, feature importance was studied with one-

parameter LR modeling and RF. The one-parameter LR
ranked tyrosine as the leading amino acid (R = 0.49), followed
by glycine (R = 0.45) and serine (R = 0.44) (Figure 6B). These
three amino acids performed much better than the rest of the
amino acids (R < 0.3) in BA prediction. Arginine was ranked
the fourth important feature with R = 0.27. However, the other
two top amino acids given by their frequency of occurrence in
the top 1000 models, isoleucine and valine, only gave R of 0.11
and 0.15, respectively. The amino acid that gave lowest R was
methionine, with R of only 0.027. Methionine was also the
least frequently used amino acid in the top 1000 models. The
RF ranked the same top four amino acids in the same order as
LR (Figure 6C).
A further way to identify important features is to examine

the sign and amplitude of the coefficients of the features in the

Table 4. Pearson’s Correlation R between AA-INs and
Experimental ΔG

AA-INs R p-value AA-INs R p-value

Tyr-IN −0.49 <0.0001 Cys-IN −0.13 0.062
Gly-IN −0.45 <0.0001 Pro-IN −0.13 0.062
Ser-IN −0.44 <0.0001 His-IN −0.08 0.173
Arg-IN −0.27 0.0006 Leu-IN −0.05 0.278
Asn-IN −0.25 0.001 Lys-IN −0.04 0.319
Thr-IN −0.24 0.002 Met-IN 0.03 0.362
Asp-IN −0.21 0.006 Ala-IN 0.03 0.362
Trp-IN −0.21 0.006 Phe-IN 0.04 0.319
Glu-IN −0.16 0.029 Gln-IN 0.11 0.097
Val-IN −0.15 0.038 Ile-IN 0.11 0.097

Figure 5. Performance of the AA-INs models for BA prediction. (A) Pearson’s correlation R and (B) AIC as a function of the number of features
used to generate the top 2000 models. (C) Scatter plot for the minimum AIC AA-INs model between predicted and experimental ΔG. The straight
line is the function y = x.
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linear equations of the LR models. The coefficients in the LR
models contain information on the importance of each feature
on BA; however, the values cannot be directly used to infer
their importance yet. To evaluate the feature importance based
on the coefficients in the LR model, we need to standardize
each feature by scaling each to have zero mean and standard
deviation of one. We also need to calculate the variance
inflation factor (VIF) for each feature in the models to examine
the multicollinearity among the features. The results showed
that the VIF values for the coefficients in the minimum AIC
model was very low for all the amino acids (<5.0), indicating
that the model did not suffer from multicollinearity and the
regression results were reliable (Table 5). In fact, the AA-INs
had low correlation between each other (Table S9). The result
showed that the coefficients of tyrosine, glycine, serine, and
arginine were negative with p < 0.05, suggesting that increasing
the INs of these amino acids leads to increased BA. The impact
to BA follows the order of tyrosine, glycine, and serine, which

Figure 6. Feature importance of AA-INs by different approaches. (A) Frequency of occurrence in the top 1000 AA-INs models. (B, C) Feature
importance of the 20 amino acids predicted by one-parameter LR (B) and RF (C).

Table 5. Coefficients in the Linear Equation Predicting ΔG
for the AA-INs Model with Minimum AIC before and after
Feature Standardization

AA-INs VIF
Coefficient before
standardization

Coefficient after
standardization p-value

Tyr-IN 1.21 −0.1535 −1.0180 p =
0.000

Gly-IN 1.27 −0.1288 −0.6530 p =
0.001

Ser-IN 1.36 −0.0840 −0.4636 p =
0.019

Arg-IN 1.07 −0.0805 −0.5147 p =
0.004

Val-IN 1.09 −0.0684 −1.0180 p =
0.082

Ile-IN 1.04 0.0731 0.3462 p =
0.045

Constant 1.00 −6.46 −9.5582 p =
0.000
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agrees with the results from the correlation between AA-INs
with experimental ΔG.
To further investigate the feature importance, we analyzed

the correlation between AA-INs and experimental BA for Set 1
and Set 2 separately. We found that the top 3 amino acids
observed from the above studies with Set 3 (the combined Set
1 and Set 2) were also the top 3 amino acids across both data
sets (Tables S12 and S13). However, arginine does not
correlate with both data sets with consistent accuracy. Thus,
tyrosine, glycine, and serine were identified as the top players
in controlling BA.

3.9. Comparative Studies Show That the AA-INs
Models Have More Consistent Performance Across
Data Sets than Other Contact Models. As we previously
mentioned, the performance of the PRODIGY LR model on
the PDBbind data set has been shown to be worse than its
performance on the original PRODIGY data. To examine if the
models generated in this work suffered from the same
limitation, we split the data used here into three sets: the
PRODIGY data set (Set 1), the PDBbind data set (Set 2), and
the combined data set (Set 3). We then examined the
performance of the minimum AIC models for each of the five
feature sets (residue ICs/NIS, atomic ICs/NIS, residue/atomic
ICs/NIS, residue/atomic ICs/HS/NIS, and AA-INs) on Set 1
and Set 2 when trained on the combined data set (Set 3).
Similar to previous results using the PRODIGY model,25 the R
of the correlation between predicted and experimental ΔG
decreased greatly on the PDBbind data set for the residue ICs/
NIS model (which is highly similar to the PRODIGY model)
and the atomic ICs/NIS (Table 6). The combined models,

residue/atomic ICs/NIS and residue/atomic ICs/HS/NIS
models, had a less extreme drop in performance, while the
AA-INs had the most similar R across Sets 1 and 2.
To supplement these results, we trained each of the 5 groups

of models on Set 1, Set 2, and Set 3 individually and calculated

correlations between experimental and predicted ΔG for the
original sets and after 4-fold cross-validation for the minimum
AIC models (Table 7). These results mirrored those discussed
for Table 6, with the AA-INs model having similar perform-
ance across the three data sets. Thus, the AA-INs-based LR
models were more robust to the training data set than the
other contact-based models. Unlike the residue contact models
that do not have the identities of the amino acid, the AA-INs
model directly includes the amino acids involved in contacts
when making predictions.
It is worth mentioning that our simple AA-INs model

outperforms many other models. In the previous work,
Vangone and Bonvin used 79 complexes from the PRODIGY
data set and compared the performance of the PRODIGY
model with 15 previously published models such as DFIRE,
CP_PIE, and FIREDOCK that were built with different
methods (e.g., global surface, buried surface area, composite
scoring function).21 They showed that the PRODIGY model
outperformed all these models, suggesting the same for our
AA-INs model as it has comparable performance as the
PRODIGY model on the PRODIGY data set. Our AA-INs
model also outperforms ISLAND and is comparable to PPI-
Affinity, two recently reported top models, in making
predictions of the PRODIGY data set, as the amino acid
sequence-based ISLAND had R = 0.38 and the contact
molecular descriptor-based PPI-Affinity had R = 0.62.27 To
evaluate whether the AA-INs model gives better performance
using more advanced ML techniques, we trained the combined
data set with SVM and AdaBoost models. However, neither of
these two more complex models outperformed our simpler
AA-INs model, with R2 = 0.326 for SVM and R2 = 0.305 for
AdaBoost.
Inspired by the good performance of the AA-INs model, we

further investigated whether intensive property based on AA-
INs could predict BA with similar accuracy to the extensive
AA-INs model. To do this, we divided the AA-INs for each
amino acid by the total number of AA-INs for each complex
and used them as features to train LR and RF models.
However, models based on these AA-INs percentages were
much worse than extensive AA-INs. For example, R = 0.24 was
obtained for predictions of experimental BA using the LR
model with all AA-INs percentages. However, the feature
importance studies still show that the top three amino acids are
tyrosine, glycine, and serine (Figure S3).

4. DISCUSSION
Despite advancements in understanding PPIs in the past two
decades, understanding of how BA is controlled by physical/
chemical parameters and how these parameters can be used to

Table 6. Comparison of R Values Calculated for the
PRODIGY Dataset (Set 1) and PDBbind Dataset (Set 2)
Using Minimum AIC Models Trained on the Combined
Dataset

Model
Number of features used in the

model Set 1 Set 2

Residue ICs/NIS 5 0.69 0.54
Atomic ICs/NIS 2 0.61 0.49
Residue/atomic ICs/NIS 7 0.69 0.59
Residue/atomic ICs/
HS/NIS

9 0.71 0.60

AA-INs 6 0.69 0.65

Table 7. Comparison of the Performance of the Minimum AIC Models Using the PRODIGY Dataset (Set 1), PDBbind Dataset
(Set 2), and the Combined Dataset (Set 3)a

Set 1 Set 2 Set 3

Model R Test R R Test R R Test R

Residue ICs/NIS 0.72 0.63 (0.04) 0.54 0.53 (0.07) 0.61 0.55 (0.01)
Atomic ICs/NIS 0.68 0.64 (0.02) 0.50 0.49 (0.04) 0.55 0.54 (0.02)
Residue/atomic ICs/NIS 0.73 0.63 (0.06) 0.62 0.52 (0.05) 0.64 0.60 (0.02)
Residue/atomic ICs/HS/NIS 0.74 0.68 (0.03) 0.62 0.45 (0.07) 0.67 0.61 (0.02)
AA-INs 0.74 0.66 (0.03) 0.71 0.61 (0.04) 0.68 0.63 (0.02)

aR is the Pearson’s correlation coefficient of predictions after training on the respective complete datasets. Test R is Pearson’s correlation coefficient
(mean with standard deviation) of the test set after 10× fourfold cross-validation.
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make predictions about complex binding affinities remains a
challenge. One key set of features that has been commonly
used to build models that predict binding affinity from a
complex’s structure are the numbers and identities of the
protein−protein contacts that hold the complex together.
However, inconsistent performance of contact-based models
indicates that there is a need for further investigations into the
relationship between binding affinity and the contacts in
protein−protein complexes. To better understand this relation-
ship, we compiled and studied a data set of 141 protein−
protein complexes with diverse functions and a wide range of
BAs and used it to build and test a series of LR models with a
range of contact features. These features include both residue-
based contact features that have been commonly used in
previous BA prediction models and other features (atomic
contacts, hydrogen bonding, hydrophobic indices, and the
identities of the amino acid at the binding interface) that have
received little or no attention in previous models.
In general, we found that the different sets of features

provided roughly similar performance in predicting exper-
imental binding affinities. First, a large number of single
features produced a Pearson’s correlation R between
experimental and predicted BA of around −0.45. The single
features that were able to achieve this performance were from
all the major contact feature groups investigated here and
included total residue ICs and polar/apolar residue ICs; total,
polar/apolar, and polar/polar atomic ICs, Tyr-IN, Gly-IN, and
Ser-IN. Second, the performance of both minimum AIC and
all-feature models for the different investigated feature sets
were roughly comparable, with the models for the different
feature sets providing R values between 0.55 to 0.65 after 4-
fold cross-validation. Additionally, continuing to add new
features to the models typically resulted in no or very slight
improvements in performance. For example, despite the
relatively large single-feature R values for all the atomics-
based contact classes, the minimum AIC atomic ICs model
contained only two features (%NIS_polar and polar-apolar
ICs). Thus, adding polar-polar and apolar-apolar atomic
contacts to this two-feature model was not able to improve
the model, despite the high single-feature R of atomic polar-
polar and apolar-apolar contacts. One possible exception to
this trend was that combining atomic and residue ICs resulted
in a modest increase in performance, and the future
development of models containing both atomic and residue
ICs would be of interest. Taken together, our results indicate
that currently used contact features alone may not be able to
make highly accurate predictions of experimental BA, as the R
between contact feature-based predicted and experimental BA
seems to have an upper limit of ∼0.7. Improving models
beyond this limit will likely require the addition of noncontact
features or novel ways of describing the contacts at the binding
interface, such as the AA-INs introduced here.
One of the key results of this study was the determination

that the numbers of amino acids in protein−protein contacts
(AA-INs) could be used to produce models that have more
consistent performance across data sets than models built with
standard contact features. Indeed, the AA-INs model had the
highest correlation with BA of any of the model groups
investigated here, and, in particular, it had the most consistent
performance across the two different benchmark data sets
(Table 7). Using a diverse set of 141 complexes from two
benchmark data sets, we generated a best-performing AA-INs
model with a simple and explicit linear equation involving six

amino acids (tyrosine, glycine, serine, arginine, valine, and
isoleucine).
We identified three top amino acids that underlie the

protein−protein binding strength, which were tyrosine,
glycine, and serine. We showed that tyrosine played the
leading role in predicting BA, with the highest correlation of all
amino acids between INs and ΔG (R = −0.49). Its impact
surpassed that of the top polarity-classified residue ICs, polar-
apolar residues (R = −0.44), and charged-apolar residues (R =
−0.39). Using the interfacial number of tyrosine alone, we can
generate an LR model to predict BA with R of nearly 0.5.
Combing tyrosine with one of the other amino acids used in
the minimal AIC AA-INs model (eq 2), R as high as 0.59 (with
glycine or serine) was reached (Tables S10 and S11). Tyrosine
is known to have unique physicochemical properties that make
it the most effective amino acid in mediating molecular
recognition.38 Tyrosine is a large and apolar amino acid with a
hydroxyl group. Its unique side chain makes it well-suited for
antibodies to make productive contacts with antigen.53

Tyrosine is the second most-enriched amino acid at the
binding interface (Figure 4C and Table S6). While tyrosine is
large, glycine is small and serine is relatively small. These small
residues may provide space and flexibility for tyrosine to
mediate molecular contacts.38 Thus, tyrosine, glycine, and
serine seem to intrinsically work together to mediate molecular
recognition. In fact, tyrosine, glycine, and serine have been
combined to make highly specific synthetic antibodies with
high affinity.54 Tyrosine together with arginine and tryptophan
are the three amino acids with the highest enrichment at the
interface (1.99× for tyrosine, 1.65× for tryptophan, and 1.61×
for arginine) (Table S6). These three amino acids have been
shown to appear in hot spots of the complex interface with a
frequency over 10% (21% for tryptophane, 13% for arginine,
and 12% for tyrosine).36 However, the interfacial number of
tryptophan has low correlation with BA. Thus, tryptophan was
not found to contribute to interface energetics in our analysis
although it is highly enriched at interface and shares many
attributes with tyrosine.
In summary, there have been decades of major effort at

anatomizing protein−protein interfaces to better understand
PPIs and develop therapeutic drugs. The results from this
study further our understanding of PPIs by unraveling a
quantitative link between the abundance of specific amino
acids at the interface and the strength of PPIs. Thus, interfacial
amino acids-based features, such as AA-INs, should be
considered in future attempts to build ML models to predict
BA for drug design and screening in the pharmaceutical
industry or for other applications.
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