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Simple Summary: Microsporidia are widespread insect pathogens and a single species may infect
different hosts. Nosema pyrausta from the corn borer was tested against the gypsy moth. Thirty days
after larvae were fed with spores, infection was established in the salivary glands and fat body of
pupae and prepupae. Up to 10% of insects became infected. The gypsy moth can be referred to as a
resistant host of N. pyrausta.

Abstract: The gypsy moth, Lymantria dispar, is a notorious forest defoliator, and various pathogens
are known to act as natural regulators of its population density. As a widespread herbivore with a
broad range of inhabited areas and host plants, it is potentially exposed to parasitic microorganisms
from other insect hosts. In the present paper, we determined the susceptibility of gypsy moth larvae
to the microsporidium Nosema pyrausta from the European corn borer, Ostrinia nubilalis. Gypsy moth
samples from two localities of Western Siberia were used. N. pyrausta developed infections in the
salivary gland and adipose tissue of gypsy moth prepupae and pupae, forming spore masses after
30 days of alimentary exposure to the second instar larvae. Among the experimental groups, the
infection levels ranged from 0 to 9.5%. Effects of a covert baculovirus infection, phenylthiourea
pretreatment and feeding insects on an artificial diet versus natural foliage were not significant in
terms of microsporidia prevalence levels. Thus, L. dispar showed a low level of susceptibility to a
non-specific microsporidium. It can be referred to as a resistant model host and not an appropriate
substitute host for laboratory propagation of the microsporidium.

Keywords: microsporidia; host range; gypsy moth; parasite–host interactions; substitute host

1. Introduction

The gypsy moth, Lymantria dispar L. (Lepidoptera: Erebidae), is one of the most
widespread forest defoliators, which induces outbreaks in most parts of its range in the
Holarctic and is the target for pest control in many European, Asian and North American
countries [1].

Microsporidia constitute a group of obligate intracellular animal parasites. They
are most abundant in insects, and gypsy moth populations harbor several species of
these pathogens [2]. Microsporidia have been reported with high prevalence in European
populations of gypsy moth and are considered important to the mortality of their hosts [3].
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Attempts were made to control gypsy moth populations with microsporidia both in Europe
and North America [2,4].

Biotic factors are highly important for insect density dynamics [5]. In European gypsy
moth populations, the natural prevalence levels of microsporidia were noted to increase
during the period preceding a gypsy moth outbreak and persist at low levels between
the outbreaks. Meanwhile, viruses were critical for the termination of a microsporidian
outbreak [2].

The host range of some microsporidia is relatively wide and dissemination of a
particular species between hosts from different insect orders has been reported [6–9]. In
some cases, their effect can be more detrimental in new hosts than in the typical (adapted)
ones [10].

Various microsporidia species were detected in L. dispar and some of them were
assayed for infectivity in other lepidopteran hosts belonging to different genera and fami-
lies [11–13]. However, studies of susceptibility of the gypsy moth to microsporidia from
other hosts (the non-specific parasites) are limited [14]. Some microsporidia species are
used for pest control and this means that non-target insects could be challenged by those mi-
crosporidia. Moreover, occasional infections due to natural contamination by non-specific
microsporidia could also occur in nature. Thus, the aspects of interaction of non-specific
microsporidia with non-target hosts remain unexplored. Clarification of these issues are
important for understanding patterns of the parasite–host interactions, as well as for
biocontrol issues [10].

In the present study, the interaction of Nosema pyrausta (Paillot) with L. dispar was
chosen to be investigated. It is a widespread pathogen of corn borers of the genus Ostrinia
and is able to infect other Lepidoptera [15], as well as hymenopteran parasitoids [16]. This
microsporidium represents, therefore, a non-specific parasite species with an ability to host
shift. Testing its infectivity in non-target insect hosts contributes to our understanding of
microsporidia host ranges and may have broader applications, such as pathogen circulation
in natural ecosystems, substitute host selection for biotechnological production, etc.

The following two questions were addressed in the current study: (i) whether the
gypsy moth is susceptible to N. pyrausta and (ii) whether infection with a non-specific
species of microsporidia may be augmented by environmental factors causing immuno-
suppression in the gypsy moth.

2. Materials and Methods
2.1. Insects and Pathogen Cultures

The gypsy moth, L. dispar, from Western Siberia, Russia, was used as the model host.
The progeny of approximately 200 females were collected as egg masses from two localities
in the Novosibirsk region, corresponding to the two local populations. According to our
recent mtDNA data, insects from both studied localities belong to same metapopulation [17].
The locality #1 originated from Bazovo, Novosibirsk Region, Russia (54.56◦ N, 81.21◦ E)
and was at the phase of the rise in population density. Conversely, the insects from
locality #2 (Bespyatyy, Novosibirsk Region, Russia 54.14◦ N, 79.71◦ E) were at the phase
of collapse in population density. Approximately 100 egg masses were collected from
locality #1 and another sample of 100 egg masses was obtained from locality #2. These
two insect cohorts were additionally characterized for the presence of covert Lymantria
dispar multiple nucleopolichedrovirus (LdMNPV), as it is known to differ significantly
depending on the phase of the host population cycle [18]. The collected egg masses were
stored in a refrigerator at +4 ◦C for winter diapause from September to April [19]. Before
the beginning of the experiments (at the end of diapause), the egg masses were cleaned
of setae, homogeneously mixed as described by Martemyanov et al. [20] and then surface
sterilized with sodium hypochlorite according to the method of Doane (1969). The egg
stocks were sampled to estimate the covert LdMNPV prevalence levels and for bioassays
as described further.
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For the diapause interruption, the egg masses were placed into a thermal incubator set
at 28 ◦C for 3 days prior to mass larval hatching according to the routine procedure for this
species [19,20]. Hatched larvae were maintained in 20 L plastic containers (100 individuals
per container) and fed with branches of silver birch, Betula pendula Roth, its primary host
plant for the studied population. The tree leaves were preliminarily washed with sterile
water to decrease the risk of contaminating the larvae with wild LdMNPV.

Nosema pyrausta [21] was propagated in a temporary laboratory culture of the Euro-
pean corn borer, Ostrinia nubilalis Hbn, which is the typical host of this parasite. The larvae
were maintained on an artificial diet [22] and infected with N. pyrausta spores according to
Tokarev et al. [15]. To isolate the parasite spores, infected insects were dissected, adipose
tissue was homogenized using plastic pestles and centrifuge tubes in distilled water and
spun at 500–1000 g for 5–10 min. Debris was removed using pipette tips, and spore pellets
were stored in water for 2–3 months at +8 ◦C prior to the experiments. Spore concentrations
were scored using Neubauer’s hemocytometer (Merck, Darmstadt, Germany).

Infectivity of the microsporidia spore batches used to infect the gypsy moth lar-
vae (see below) was confirmed by standard bioassays using O. nubilalis [23], showing a
90–100% infection level in the test insect groups as opposed to the control groups showing
no infection.

2.2. Estimation of Prevalence Levels of Covert LdMNPV Infection in L. dispar Populations

As coexisting infections may alter the interactions of the target parasite with its insect
host, we tested the host samples for prevalence of covert LdMNPV, which may persist
within the L. dispar populations [18]. A pooled sample of 10 randomly chosen eggs was
taken from egg mass mixtures of each studied locality (see above) to representatively
determine the presence of covert LdMNPV by PCR. Ten pooled samples per locality (i.e.,
in total 100 eggs per population) were studied. For the positive samples, as many as
30 additional randomly picked eggs were analyzed individually to verify the percentage of
the stock infected with LdMNPV. Total DNA was extracted using the phenol-chloroform
method [24], with some modifications. Egg masses were mechanically homogenized with
a pestle in a lysis solution containing guanidine thiocyanate (Amresco, Solon, OH, USA).
For detection with higher sensitivity, qPCR was used for the qualitative analysis of the
virus, as we described in detail previously [25] using the CFX-96 Touch™ Real-Time PCR
Detection System (Bio-Rad Laboratories, Hercules, CA, USA).

In populations for which LdMNPV presence was confirmed, late instar larvae were
additionally assayed for covert infection to examine persistence of the baculovirus during
insect development. This was done using the same technique applied to the DNA extracts
from inner tissues (fat body), as described below.

2.3. Microsporidia Infection Assay

To test the susceptibility of L. dispar to infection with N. pyrausta, a series of artificial
infection experiments were performed. To increase chances of infection with this non-
specific parasite, young larvae (second instar) were used, which are more vulnerable to
entomopathogens [26]. Insects were sampled from two different localities at two contrast
population phases (rise vs. decline) suggesting differential susceptibility to infections [27].
To induce depression of immune status, one half of both insect samples was pretreated
with phenylthiourea (PTU; Merck, Darmstadt, Germany) which causes specific immuno-
suppression in insects by inhibition of the prophenoloxidase cascade [28]. Finally, all the
experimental variants were split into two equal groups, one fed with natural forage (birch
leaves) and another with an artificial diet, which is known to increase host susceptibility to
alimentary infections [29].

Briefly, the bioassay scheme was as following (see details below): (1) collection of II
instar larvae reared from eggs collected from two localities; (2) 24 h pretreatment with
PTU or water as control; (3) overnight starvation of larvae and alimentary treatment with
microsporidia spores or water as control; and (4) separation of each experimental group
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into two subgroups, fed on birch leaves and on an artificial diet, respectively (Figure 1),
with four replicates in each variant.
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Figure 1. Experimental scheme showing the four stages of insect manipulation, corresponding to the four factors examined:
(1) sampling from two localities, (2) pretreatment with phenylthiourea (PTU) or no pretreatment (naïve), (3) treatment with
microsporidia or no treatment (control) and (4) feeding either with fresh birch leaves or an artificial diet.

As a result, the following variants were assayed for microsporidia infection:

- Naïve insects fed on birch leaves;
- Naïve insects fed on an artificial diet;
- Immunosuppressed insects fed on birch leaves;
- Immunosuppressed insects fed on an artificial diet.

This principal scheme was exploited to test the susceptibility of insects from two
localities (#1 and #2) with opposite phases of population cycle to the microsporidium
N. pyrausta.

To model insect immunosuppression using PTU pretreatment, birch leaves were
sprayed with an aqueous solution of 0.1% PTU (or distilled water as control) and fed to
the newly molted second instar larvae. After 24 h, the forage was removed and the larvae
were starved overnight. For microsporidia treatment, dosed spore suspensions, adjusted to
16 × 107 spores, were carefully applied to both sides of a limited number of birch leaves, air
dried for 10–15 min and exposed to the experimental groups of larvae (Figure 2A), either
pretreated or not pretreated with PTU. Each treatment group consisted of 80 larvae, and the
mean infection dose was 2 × 106 spores/larvae. The control larvae were fed with leaves
not treated with microsporidia spores. After complete consumption of contaminated leaves
(Figure 2B), the larvae were transferred to 0.5-mL plastic containers (10 larvae per container)
and supplied with birch leaves or an artificial diet [20,30] according to the experimental
scheme above.
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Figure 2. Infection of Lymantria dispar larvae with microsporidia. (A,B) A sample group of larvae before (A) and after (B)
the contaminated birch leaves were consumed. (C,D) Bright field microscopy showing parasite spore-loaded infected cells
(arrows) surrounded with lipid granules (LG) of uninfected cells, as well as immature (is) and mature spores (ms) on a
smear. Scale bar = 10 micrometers.

2.4. Detection of Pathogens through Infection Assays

For light microscopy detection of microsporidia, smears were prepared from inner
tissues (fat body, salivary glands and midgut epithelium) of newly perished fresh larvae or
from whole-body homogenates of macerated/dried cadavers (where inner tissues could
not be sampled). Smears were examined at a minimum of 30 fields of view using a bright
field Axio 10 Imager M1 microscope (Carl Zeiss, Oberkochen, Germany) at 400–1000×
magnification. Samples that were positive for microsporidia spores were subjected to rou-
tine genomic DNA extraction [31]. PCR was run with a standard protocol using DreamTaq
DNA polymerase (Thermo Fisher Scientific, Waltham, MA, USA) as a ready-to-use mixture
(https://www.thermofisher.com/order/catalog/product/EP0701, accessed on 12 May
2021). The partial small subunit ribosomal RNA (SSU rRNA) gene of the microsporidia
was amplified using 18f and 1047r primers [32]. The PCR products were directly sequenced
using an ABI Prism Genetic Analyzer 3500 (Applied Biosystems, Waltham, MA, USA).
Alternatively, the N. pyrausta-specific NpyrHKfor1:NbHKrev1 primers were used for direct
PCR detection of the pathogen [33].

2.5. Statistical Analysis

Statistical analysis was performed to elucidate the effect of experimental conditions
on survival and microsporidia prevalence levels (where applicable) using a generalized

https://www.thermofisher.com/order/catalog/product/EP0701
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linear model (GLM) with binary distributions and the logit link function in Statistica
7.0 (StatSoft, Inc., Tulsa, OK, USA). Locality, PTU pretreatment, N. pyrausta treatment
and forage type were set as categorical predictors (factors), and mortality was the binary
dependent variable.

3. Results
3.1. Prevalence of Covert LdMNPV in the Lymantria dispar Populations

In Western Siberia, LdMNPV is widespread in gypsy moth populations in the form
of a covert infection [18,30,34]. It was therefore necessary to consider the presence of this
pathogen as it might have influenced the interactions of the microsporidia and the gypsy
moth in the present study.

Insects from locality #1 were free from covert LdMNPV. No positive response was
detected when 10 pooled samples (10 eggs in each sample) were studied by qPCR. In
contrast, the insect sample from locality #2 was totally infected by covert LdMNPV, as 100%
of egg samples (number of examined specimens = 130) and fully grown larvae (n = 10)
were found positive for infection, according to the results of the qPCR analysis.

3.2. Insect Survival Estimates

The second instar gypsy moth larvae from locality #1 fed with Nosema pyrausta spores
and maintained on birch leaves successfully completed larval development and proceeded
to pupation at the level of 72.5 ± 7.06% (mean ± SE, number of assayed insects n = 40)
when not pretreated with PTU (naïve). Similarly, 70 ± 7.26% (n = 40) of PTU-pretreated
insects pupated. When an artificial diet was used instead of fresh birch leaves, the pupation
level estimates reached only 55.5 ± 7.86% (n = 40) and 52.5 ± 7.90% (n = 40), respectively.
Survival levels in N. pyrausta-treated groups were about the same as in the respective
control groups (Figure 3).Insects 2021, 12, x FOR PEER REVIEW 7 of 11 
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A generalized linear model was applied to test effects of four factors according to the experimental
scheme shown in Figure 1. Factors causing statistically significant differences between the respective
variants (p < 0.01) are indicated by arrows.
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The survival estimates for locality #2 were lower. When fed with birch leaves, naïve
and PTU-pretreated larvae showed 55 ± 7.87% (n = 40) and 52.5 ± 7.90% (n = 40) survival,
respectively. When fed with an artificial diet, naïve and PTU-pretreated larvae showed
40 ± 7.75% (n = 40) and 35 ± 7.54% (n = 40) survival, respectively. Again, these values
were similar to those of the respective control groups (Figure 3).

Statistical analysis using a GLM model showed the following. The effects of locality
(df = 1, W = 19.413, p = 0.000011) and diet type (df = 1, W = 15.486, p = 0.000083) on survival
levels were statistically significant at the 0.01 significance level. Conversely, the effects of
PTU pretreatment (df = 1, W = 0.137, p = 0.711) and microsporidia (df = 1, W = 1.07633,
p = 0.299) treatment were not significant.

3.3. Microsporidia Prevalence Levels

N. pyrausta infection was revealed in several pupae and prepupae across the exper-
imental groups treated with parasite spores. The parasite spore masses were located in
salivary gland and/or adipose tissue cells (Figure 2C,D). In the sample from locality #1, 0%
(number of examined insects n = 29) and 3.6 ± 3.52% (n = 28) of the insects fed on birch
leaves were infected in the naïve and PTU-pretreated groups, respectively, and 4.3 ± 4.23%
(n = 23) and 9.5 ± 6.40% (n = 21) of the insects fed on artificial diet were infected in the naïve
and PTU-pretreated groups, respectively. In locality #2, the microsporidia prevalence levels
were 4.5 ± 4.42% (n = 22) and 9.5 ± 6.40% (n = 21) in naïve and PTU-pretreated larvae,
respectively, while insects fed on an artificial diet showed respective values of 6.3 ± 6.05%
(n = 16) and 7.1 ± 6.88% (n = 14). The effects of locality (df = 1, W = 0.248, p = 0.619), diet
type (df = 1, W = 0.248, p = 0.619) and PTU pretreatment (df = 1, W = 0.420, p = 0.517) were
not statistically significant (Figure 4).Insects 2021, 12, x FOR PEER REVIEW 8 of 11 
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4. Discussion

Microsporidia infections in the gypsy moth are frequent in European and North
American populations and have been extensively studied under natural and experimen-
tal conditions [2,4,13,35]. Although microsporidia infections were not revealed during
surveys of gypsy moth populations in the Novosibirsk region [36], it is known that cer-
tain species of microsporidia are able to infect non-specific hosts. For example, Nosema
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bombycis and Vairimorpha necatrix were isolated from representatives of several families of
Lepidoptera [37].

The present study was therefore aimed at challenging gypsy moth larvae with a
microsporidium species that typically develops in another lepidopteran host to test insect
susceptibility to this pathogen. Because the prophenoloxidase system is involved in insect
immunity to pathogens, including microsporidia [38] but not viruses [28], PTU in vivo
pretreatment was used at a concentration that significantly inhibits PO activity in L. dispar
hemolymph without causing an antifeedant effect in the larvae [28].

N. pyrausta showed a principal ability to parasitize L. dispar but was only slightly in-
fective. Approaches based on immunosuppression in this study, such as PTU pretreatment,
tended to increase the prevalence level of the non-specific microsporidium, though the
limited sample size did not allow us to reveal a significant difference as compared to naïve
insects challenged with N. pyrausta. A similar observation was made in a previous study,
where the prevalence level of this microsporidium in another substitute host (G. mellonella)
tended to increase under the influence of either PTU or Bacillus thuringiensis pretreatments,
but a significant increase (as compared to control) was observed only when both stressors
(PTU and B. thuringiensis) were combined [15]. Thus, inhibition of insect prophenoloxidase
system itself does not cause drastic changes in the infection process, suggesting that insect
immunity to microsporidia is more complex.

The insects from the two subpopulations (sampled from the two localities, respectively)
showed significantly different survival levels when compared between respective variants
of diet types (Figure 3), and this corresponded to their population cycle phase (rising vs.
collapsing) accompanied with contrasting levels (0% vs. 100%) of the covert baculovirus
infection. Diet type was also found to affect the fitness of gypsy moths from both localities,
as survival levels were significantly lower in the artificial diet-fed larvae as compared
to the birch-fed ones (Figure 3). Additionally, though survival levels were about the
same in microsporidia-challenged and control insects, the response to microsporidia in
terms of the parasite prevalence levels tended to be different in the two gypsy moth
subsamples depending upon the diet type. Unfortunately, the sample size was not great
enough to support the observations statistically, but we can speculate that insects in the
rising phase are less susceptible to infection when fed with fresh birch leaves (resulting in
microsporidia prevalence levels of 0–3.6%) as compared to artificial diet variants (4.3–9.5%).
This suggestion fairly corresponds to the fact that feeding with an artificial diet suppresses
insect resistance to alimentary infections, in particular, by decreasing the peritrophic
membrane thickness [29]. Meanwhile, insects at the collapse phase display decreased
fitness and their resistance to infections is lower in both cases, suggesting that diet type is
not important in this case and optimal forage quality (exemplified by fresh birch leaves)
does not facilitate resistance to the disease.

5. Conclusions

The following conclusions may be drawn from the data obtained through the present
study. First, the microsporidium N. pyrausta is only slightly infective to the second instar
gypsy moth larvae and does not have a detrimental effect on insect survival. Second, the
immunosuppressive state of the gypsy moth larvae, caused by various environmental
factors, does not significantly affect infection levels by N. pyrausta. Third, diet type has
a notable influence on insect fitness and in certain cases tends to change gypsy moth
susceptibility to microsporidia. Finally, the gypsy moth can be considered as a resistant
model host and not an appropriate substitute host for laboratory rearing of N. pyrausta.
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