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Abstract: Detecting genomes with similar expression patterns using clustering techniques plays
an important role in gene expression data analysis. Non-negative matrix factorization (NMF) is
an effective method for clustering the analysis of gene expression data. However, the NMF-based
method is performed within the Euclidean space, and it is usually inappropriate for revealing
the intrinsic geometric structure of data space. In order to overcome this shortcoming, Cai et al.
proposed a novel algorithm, called graph regularized non-negative matrices factorization (GNMF).
Motivated by the topological structure of the GNMF-based method, we propose improved graph
regularized non-negative matrix factorization (GNMF) to facilitate the display of geometric structure
of data space. Robust manifold non-negative matrix factorization (RM-GNMF) is designed for cancer
gene clustering, leading to an enhancement of the GNMF-based algorithm in terms of robustness.
We combine the l2,1-norm NMF with spectral clustering to conduct the wide-ranging experiments
on the three known datasets. Clustering results indicate that the proposed method outperforms the
previous methods, which displays the latest application of the RM-GNMF-based method in cancer
gene clustering.
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1. Introduction

With the progressive implementation of human whole-genome and microarray technologies,
it is possible to simultaneously observe the expressions of numerous genes in different tissue
samples. By analyzing gene expression data, genes with varying expressions in tissues and their
relationships may be identified to figure out the pathogenic mechanism of cancers based on genetic
changes [1]. Recently, cancer classification based on gene expression data has become a hot research
topic in bioinformatics.

Due to the fact that the analysis of genome-wide expression patterns can provide unique
perspectives into the structure of genetic networks, the clustering technique has been used to analyze
gene expression data [2,3]. Cluster analysis is the most widespread statistical techniques for analyzing
massive gene expression data. Its major task is to classify genes with similar expressions to discover
groups of genes with identical features or similar biological functions, in order that people can acquire
a deeper understanding about the essence of many biological phenomena such as gene functions,
development, cancer, and pharmacology [4].

Currently, it has been shown that non-negative matrix factorization (NMF) [5,6] is superior to the
hierarchical clustering (HC) and self-organizing map (SOM) [7] in the application of cancer samples
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in clustering gene expression data. Over the past few years, the NMF-based method has been used
for the gene expressions of statistically analyzing data for clustering [8–13]. The main idea is to
approximately factorize a non-negative data matrix into a product of two non-negative matrices, which
makes sure that all elements of the matrices are non-negative. Therefore, the appearance of NMF
has attracted considerable attention. Recently, various variants based on the original NMF have been
developed by modifying the objective function or the constraint conditions [14–16]. For instance,
Cai et al. proposed graph regularized non-negative matrix factorization (GNMF), giving forth to
the neighboring geometric structure. It illustrates the nearest neighbor graph that preserves the
neighborhood information of high-dimensional space in low-dimensional space. The GNMF reveals
the intrinsic geometrical structure by incorporating a Laplacian regularization term [17], which is
effective for solving clustering problems. After that, the sparse NMF [18] was proposed with sparse
constraints upon the basis matrices and coefficient matrices factored by the NMF so that the sparseness
may be reflected from data. The non-smooth NMF [19] can realize the global or local sparseness [20] by
making basis and encoding matrices sparse simultaneously. For the sake of enhancing the robustness
of the GNMF-based method in gene clustering, we propose improved robust manifold non-negative
matrix factorization (RM-GNMF) by making use of the combination of l2,1-norm and spectral clustering
with Laplacian regularization, leading to the internal geometry of data representations. It facilitates
the display purposes of intrinsic geometric structure of the cancer gene data space.

This paper is organized as follows. In Section 2, we give a brief review on the NMF and the GNMF.
In Section 3, we propose an improved RM-GNMF algorithm. In Section 4, we give the experimental
results comparing with the previous methods. Finally, the conclusions are drawn in Section 5.

2. The NMF-Based and GNMF-Based Method

The NMF-based method [5] is a linear and non-negative approximate data description for
non-negative matrices. We consider an original decomposed matrix X of size m× n, where m represents
data characteristics and n represents the number of samples. Based on the NMF method, the matrix X
is decomposed into two non-negative matrices W ∈ Rm×r and H ∈ Rn×r, i.e.,

X = WHT , (1)

where r ≤ min(m, n). For a given decomposition X = WHT , sample m can be divided into r classes
according to matrix HT . Each sample is placed in the highest metagene expression level in the sample,
meaning that if HT

ij is the largest in column j, then sample j is assigned to class i .

Using the square of the Euclidean distance between X and WHT [21], we have the objective
function of the NMF method

ONMF = ||X−WHT ||2 = ∑
ij
(xij −

r

∑
k=1

wikhjk)
2. (2)

According to the iterative update algorithms [6], the NMF-based method is performed on the
basis of multiplicative update rules of W and H given by

wik ← wik
(XH)ik

(WHT H)ik
, hjk ← hjk

(XTW)jk

(HWTW)jk
. (3)

In order to overcome the limitation of the NMF-based method, Cai et al. [17] proposed the
GNMF-based method, in which an affinity graph is generated to encode the geometrical information
followed by a matrix factorization with respect to the graph structure. In contrast to the NMF-based
method, it has a regular graph constraint, which preserves the advantage of the local sparse
representation of the NMF-based method and preserves the similarity between the original data
points after dimensionality reduction.
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There are several weighting schemes, such as zero-one weighting, heat kernel weighting, and
Gaussian weighting [17]. In what follows, we consider the zero-one weighting described as

Qij =

{
1, if xi ∈ Nk(xj) or xj ∈ Nk(xi),
0, otherwise.

(4)

Based on the weight matrix Q, we obtain the objective function of the GNMF method given by

OGNMF = ||X−WHT ||2 + λTr(HT LH), (5)

where Tr(·) denotes the trace of matrices and L = D− Q. D is a diagonal matrix whose entries are
column or row sums of Q with Djj = ∑l Qjl [22]. The regularization parameter λ ≥ 0 can be used for
the smoothness control of the new representation. By the iterative algorithms to minimize the objective
function OGNMF , we achieve the updating rules

wik ← wik
(XH)ik

(WHT H)ik
, hjk ← hjk

(XTW + λWH)jk

(HWTW + λDH)jk
. (6)

3. The RM-GNMF-Based Method for Gene Clustering

So far, we have described the NMF-based method and GNMF-based method. In what follows,
we seek RM-GNMF gene clustering by making use of the combination of l2,1-norm and spectral
clustering with the Laplacian regularization.

3.1. The l2,1-Norm

The l2,1-norm of a matrix was initially employed as a rotational invariant l1-norm [23],
which was usually used for multi-task learning [24,25] and tensor factorization [26]. Instead of
using l2-norm-based loss function that is sensitive to outliers, we resort to the l2,1-norm-based loss
function and regularization [23], which is convergence-proved.

For the sake of getting over the drawbacks of the NMF-based method and enhancing the
robustness of the GNMF-based method, we employ the l2,1-norm for the matrix factorization in
the RM-GNMF-based method. For a non-negative matrix X of size m× n, the l2,1-norm of matrice X is
defined as

||X||2,1 =
n

∑
i=1
||xi||2, (7)

where data vectors are arranged in columns, and the l2,1-norm calculates the l2-norm for column
vectors first. Subsequently, the matrix factorization assignment becomes

min
H≥0
||X−WHT ||2,1. (8)

3.2. Spectral-Based Manifold Learning to Constrained GNMF

The spectral method is a classical method of analysis and algebra in mathematics. It is widely
used in low dimensional representation and clustering problems of high dimensional data [27,28].
A relational matrix describing the similarity of the pair of data points is defined according to the
given sample dataset, and the eigenvalues and eigenvectors of the matrices are calculated. After that,
the appropriate eigenvectors are selected and the low dimensional embedding of the data is obtained.
The degree matrices are defined on a given graph, such as an adjacency matrix of the graph, a Laplacian
matrix, and so on [22].

Based on the spectrum of the matrices with respect to the graph, spectral theory further reveals
the information contained in the graph , and establishes the connection between the discrete space and
the continuous space through the techniques of geometry, analysis, and algebra. It has a wide range
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of applications in manifold learning. In this section, the p-nearest neighbor method can be used for
establishing the relationship between each data point and its neighborhood.

For a data matrix X ∈ Rm×n, we treat each column of X as a data point and each data point as
a vertex, respectively. The p-nearest-neighbor graph G can be constructed with n vertices. Then the
symmetric weight matrix Q ∈ Rn×m is generated, where the element qij denotes the weight of the edge
joining vertices i and j and the value of qij is given by

qij =

{
1, if xi ∈ Np(xj) or dj ∈ Np(xi),
0, otherwise.

(9)

where Np(xi) denotes the set of p-nearest neighbors of xi. It is obvious that the matrix Q represents
the affinity between the data points.

There is an assumption about manifold. Namely, if two data points xi and xj are close in the
intrinsic geometric structure of the data distribution, then their presentations under a new basis will
be close [29]. Therefore, we define the relationship as follows

min
xp

∑
ij
||xi − xj||2qij, (10)

where mi and mj denote the mappings of xi and xj, respectively. The degree matrix D is a diagonal
matrix given by dii = ∑j qij. Obviously, dii is the sum of all the similarities related with xi. Then, the
graph Laplacian matrix is given by

L = D−Q. (11)

The graph embedding can be written as

min
x ∑

ij
||xi − xj||2qij = min

X
tr(X(D−Q)XT)

= min
X

tr(XLXT). (12)

In the RM-GNMF-based method, we combine the GNMF-based method with the spectral
clustering, resulting in the l2,1-norm constrained GNMF as follows

ORMGNMF = ||X−WHT ||2,1 + λTr(HT LH), (13)

where λ ≥ 0 is the regularization parameter. We resort to the augmented Lagrange multiplier (ALM)
method to solve the above problem.

For an auxiliary variable Z = X−WHT , we rewrite the ORMGNMF in Equation (13) as

min
W,H,Z

||Z||2,1 + αTr(HT LH), (14)

satisfying the constraints Z − X + WHT = 0 and HT H = I. Then, we define the augmented
Lagrangian function

Lµ(Z, W, H, Λ) = ||Z||2,1 + TrΛT(Z− X + WHT) + µ
2 ||Z− X + WHT ||2,1

+αTr(HT LH).
(15)

satisfying the constraint HT H = I, where µ is the step size of update and Λ is the Lagrangian multiplier.
To optimize Equation (15), we rewrite the objective function to get the following task

Lµ(Z, W, H, Λ) = ||Z||2,1 +
µ

2
||Z− X + WHT +

Λ
µ
||2F + αTr(HT LH), (16)
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satisfying the constraint HT H = I.

3.3. Computation of Z

For the given W and H, we can solve Z in Equation (15) by using the update of Z related to the
following issue

Zr+1 = arg min
Z
||Z||2,1 +

µ

2
||Z− (X−Wr(Hr)T − Λr

µ
||2F. (17)

We need the following Lemma to solve Z in Equation (15). Please see the Appendix A1 for a
detailed proof.

Lemma 1. Given a matrix W = [w1, · · · , wn] ∈ Rm×n and a positive scalar λ, Z∗ is the optimal solution of

min
1
2
||Z−W||2F + λ||Z||2,1, (18)

and the i-th column of Z∗ is given by

Z∗(:, i) =

{ ||wi ||−λ
||wi ||

Wi, if λ < ||Wi||,
0, otherwise.

(19)

3.4. Computation of W and H

For the given other parameters, we solve the optimal W. The update of W amounts to solve

Wr+1 = arg min
W

µ

2
||Zr − X + Wr(Hr)T +

Λ
µ
||2F. (20)

Let X− Z + Λ
µ = M. The problem in Equation (20) can be rewritten as

Wr+1 = arg min
W

µ

2
||M + Wr(Hr)T ||2F. (21)

If the partial derivative of W is set to be 0, we obtain

Wr+1 = MHr. (22)

Then, we derive the optimal H. Taking W = MH, the update problem of H can be expressed as

Hr+1 = arg min
H

µ

2
||M−MHHT ||2F + αTr(HT LH), (23)

satisfying the constraint HT H = I. We have

Hr+1 = arg min
H
||M−MHHT ||2F +

2α

µ
Tr(HT LH)

= arg min
H

TrHT(−MT M +
2α

µ
L)H. (24)

Therefore, the optimal Hr+1 can be achieved by counting eigenvectors of

Hr+1 = (h1, · · · , hk). (25)
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3.5. Updating of Λ and µ

The update standard of Λ and µ can be described as follows

Λr+1 = Λr + µ(Zr+1 − X + Wr(Hr)T), (26)

µr+1 = pµr, (27)

where p is the nearest neighbor graph parameter. The detailed process of the RM-GNMF-based method
is listed in Algorithm 1.

Algorithm 1: The RM-GNMF-based Algorithm

Input: The dataset X = [x1, x2, · · · , xn] ∈ Rm×n,
a predefined number of clusters k,
parameters µ, λ,
the nearest neighbor graph parameter p,
maximum iteration number tmax.
Initialization:
Z = Λ = 0, W0 ∈ Rm×k, H0 ∈ Rk×n.
Repeat
Fix other parameters, and then update Z by formula (17);
Fix other parameters, and then update W by:
W = (X− Z + Λ

µ )H;

Update H by H = UVT , where U and V are
the left and right singular values of the SVD decomposition;
Fix other parameters, and then update Λ and µ by formulas (26)(27);
t = t + 1;
Until t ≥ tmax.
Output: matrix W ∈ Rm×k , matrix H ∈ Rk×n.

4. Results and Discussion

In this section, we evaluate the performance of the proposed method on the three gene
expression datasets. We compare the RM-GNMF-based method with the NMF-based method [6],
the l2,1-NMF-based method [23], the LNMF-based method [20], and the GNMF-based method [17].

4.1. Datasets

In order to evaluate the performance of proposed RM-GNMF algorithm, the clustering experiment
was conducted on several gene expressions datasets of cancer patients. Three classical genetic
datasets were used in the experiment, including leukemia [1], colon, and GLI_85 [30]. These gene
expression datasets are downloaded from: http://featureselection.asu.edu/datasets.php.The colon
cancer datasets consist of the gene expression profiles of 2000 genes for 62 tissue samples among which
40 are colon cancer tissues and 22 are normal tissues. The leukemia datasets consist of 7129 genes and
72 samples (47 ALL and 25 AML).

A brief description of experimental datasets is described in Table 1.

Table 1. Statistics of three gene expression datasets.

Data Sets Instances Features Classes

Colon 62 2000 2
GLI_85 85 22,283 2

Leukemia 72 7070 2
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More detailed information on these datasets can be found in the relevant references, and these
datasets are available for download from the reference website.

4.2. Evaluation Metrics

For the sake of evaluating the clustering results, we use the clustering accuracy and normalized
mutual information (NMI) to demonstrate the performance of the proposed algorithm.

Clustering accuracy can be calculated as

ACC =
∑n

i=1 δ(map(ci), li)
n

, (28)

where ci is the cluster label of xi, and li is the true class label i-th sample, n denotes the total number
of samples, and δ(map(ci), li) is a delta function. If map(ci) = li, we obtain δ(map(ci), li) = 1,
where map(ci) is the mapping function that maps the cluster label ci into the actual label li. Otherwise,
we have δ(map(ci), li) = 0. We can find the best mapping by the Kuhn–Munkres method [31]. NMI can
be described as

NMI =
∑N

i=1 ∑N
j=1 ni,jlog

ni,j
ni n̂j√

(∑N
i=1 nilog ni

n )(∑
N
j=1 n̂jlog

n̂j
n )

, (29)

where ni is the size of the i-th cluster and n̂j is the size of the j-th class, ni,j is the number of data between
the intersections, and N denotes the number of clusters. We perform 100 experiments under each
target feature dimension, taking the mean of the accurate and NMI values as the experimental results.

4.3. Parameter Selection

The RM-GNMF-based method involves two essential parameters, i.e., the regularization
parameter λ and the regularity coefficient µ determining the penalty for infeasibility.

We set the parameters λ and µ in the range of λ ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1} and
µ ∈ {10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7} . We use the cross-validation method to get the best
parameter values λ = 0.05 and µ = 10−3. In order to intuitively to analyze the influence of parameters
λ and µ of the RM-GNMF-based method on the accuracy of clustering, Figure 1 shows the variation on
clustering accuracy when the two parameters are modified. The three subgraphs in Figure 1 correspond
to three gene expression datasets respectively. As can be viewed in Figure 1, the parameter µ = 10−3

can get higher ACC. With the change of regular parameter λ, the change of ACC is relatively flat, and
the clustering accuracy is higher when the value of λ is smaller. Therefore, we set λ = 0.05, µ = 10−3

in the follow-up experiments.

Figure 1. Influence of parameters on clustering accuracy.
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4.4. Clustering Results

In Table 2, we demonstrate the clustering results on the colon, GLI_85 and leukemia
datasets, respectively. Reported is the mean of clustering results from 100 runs of different NMF
methods together.

Table 2. Clustering results on different datasets. NMF: non-negative matrix factorization; GNMF:
graph regularized non-negative matrices factorization; RM-GNMF: robust manifold non-negative
matrix factorization; NMI: normalized mutual information.

Methods Colon GLI_85 Leukemia

ACC NMI ACC NMI ACC NMI
NMF 0.6290 0.0110 0.6088 0.1906 0.6389 0.0193

L2,1-NMF 0.5323 0.0048 0.6088 0.1916 0.6328 0.0258
LNMF 0.6129 0.0181 0.5294 0.0011 0.6250 0.0306
GNMF 0.6290 0.0110 0.6000 0.1584 0.6389 0.0193

RM-GNMF 0.6613 0.0220 0.7529 0.1925 0.6528 0.0369

It can be found that the RM-GNMF-based method outperforms the original NMF-based method,
while the RM-GNMF-based method achieves the best performance compared with the other three
datasets. The clustering accuracies of the RM-GNMF-based method are 66.13%, 75.29%, and 65.28%
for the colon, GLI_85, and leukemia datasets, respectively.

Our tests on several gene expression profiling datasets of cancer patients consistently indicate that
the RM-GNMF-based method achieves significant improvements in comparison with the NMF-based
method, the l2,1-NMF-based method, the LNMF-based method, and the GNMF-based method, in terms
of cancer prediction accuracy.

As shown in Figure 2, the RM-GNMF-based method always gives birth to better clustering results
than other NMF-based method using the three original datasets.

Figure 2. Clustering results on different datasets.
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To demonstrate the robustness of our approach to data changes, we add uniform noise onto the
three gene expression datasets. A disturbed matrix Ynoise is generated by adding independent uniform
noise, defined as follows:

Ynoise = Y + r, (30)

where Y is the original matrix, r is a random number generated by a uniform distribution on the
interval [0, max], and max is the maximum expression of Y .

The experimental results with noise added are shown in Figure 3. It can be seen that the clustering
result of RM-GNMF algorithm is still stable with the addition of noise, which shows that RM-GNMF
algorithm is robust.

Figure 3. Influence of noise on clustering accuracy.

In order to verify the results obtained from the algorithms in the experiments, we import the
clustering result of the comparison methods into STAC web platform to perform the statistical test
(http://tec.citius.usc.es/stac/). We selected the Friedman test of non-parametric multiple groups;
the significance level is 0.05. The analysis results obtained are presented in Tables 3 and 4.

Table 3. Friedman test (significance level of 0.05).

Statistic p-Value Result

7.00000 0.01003 H0 is rejected

Table 4. Ranking.

Rank Algorithm

1.33333 LNMF
2.33333 NMF
2.66667 L2,1-NMF
3.66667 GNMF
5.00000 RM-GNMF

From the above test results it can be concluded that H0 is rejected. Hence, we believe that the
clustering results of five algorithms are significantly different.

5. Conclusions

We have proposed the RM-GNMF-based method with the l2,1-norm and spectral-based manifold
learning. This algorithm is suitable for cancer gene expression data clustering with an elegant geometric
structure. Our tests on several gene expression profiling datasets of cancer patients consistently
indicate that the RM-GNMF-based method achieves significant improvements in comparison with the
NMF-based method, the l2,1-NMF-based method, the LNMF-based method, and the GNMF-based
method, in terms of cancer prediction accuracy and robustness.
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Appendix A

Lemma A1. With the given matrix W = [w1, · · · , wn] ∈ Rm×n and the positive scalar λ, Z∗ is the optimal
solution of

min
1
2
||Z−W||2F + λ||Z||2,1, (A1)

and the i-th column of Z∗ can be calculated as

Z∗(:, i) =

{ ||wi ||−λ
||wi ||

Wi, if λ < ||Wi||,
0, otherwise.

(A2)

Proof. The objection function in Equation (A1) is equivalent to the following equation

n

∑
i=1
||zi − wi||2F + λ

n

∑
i=1
||zi||2, (A3)

which can be solved in a decoupled manner

min
zi

1
2
||zi − wi||22 + λ||zi||2. (A4)

After taking derivative with respect to zi, we get

∂||zi||2
∂zi

=

{
r, if zI = 0

zi√
zT

i zi
, otherwise, (A5)

where r is a subgradient vector and ||r||2 ≤ 1. For zi = 0, we get

− wi + λr = 0, (A6)

where λ ≥ ||wi||. For zi 6= 0, we get

zi − wi + λ
zi√
zT

i zi

= 0. (A7)

Combining Equation (A6) with Equation (A7), we obtain

zi = αwi, (A8)

where α = ||zi ||2
||zi ||2+λ

> 0. Plugging zi in Equation (A8) to Equation (A7), we solve α, which is substituted
back into Equation (A8). After performing the above-mentioned steps, we obtain

zi = (1− λ

||wi||
)wi. (A9)
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