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In more than 20% of the world population, sensitization to house dust mite allergens
triggers typical allergic diseases such as allergic rhinitis and asthma. Amongst the 23
mite allergen groups hitherto identified, group 1 is cysteine proteases belonging to the
papain-like family whereas groups 3, 6, and 9 are serine proteases displaying trypsin, chy-
motrypsin, and collagenolytic activities, respectively.While these proteases are more likely
to be involved in the mite digestive system, they also play critical roles in the initiation and
in the chronicity of the allergic response notably through the activation of innate immune
pathways. All these allergenic proteases are expressed in mite as inactive precursor form.
Until recently, the exact mechanisms of their maturation into active proteases remained
to be fully elucidated. Recent breakthroughs in the understanding of the activation mech-
anisms of mite allergenic protease precursors have highlighted an uncommon and unique
maturation pathway orchestrated by group 1 proteases that tightly regulates the proteolytic
activities of groups 1, 3, 6, and 9 through complex intra- or inter-molecular mechanisms.
This review presents and discusses the currently available knowledge of the activation
mechanisms of group 1, 3, 6, and 9 allergens of Dermatophagoides pteronyssinus laying
special emphasis on their localization, regulation, and interconnection.
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INTRODUCTION
House dust mites (HDMs; Dermatophagoides spp.) are common
reservoirs of potent airborne allergens, which induce Th2-biased
inflammatory diseases such as allergic asthma, perennial rhini-
tis as well as atopic dermatitis in sensitized patients (1). To date,
over 23 different HDM allergen groups inducing the production
of allergen-specific IgE in humans have been referenced (2).

A growing amount of literature suggests that HDM allergens
can stimulate numerous innate immune activation pathways to
initiate the Th2 allergic response (3). Although HDM allergens
can induce lung inflammation by protease-independent mech-
anisms, the proteolytic activities of HDM allergens trigger key
innate signaling to initiate the allergic response through, among
others, the disruption of the airway/skin epithelial barrier, the
protease-activated receptor-2 (PAR-2) activation, and other cell-
surface receptor cleavages (3–5). These proteolytic attacks facilitate
the uptake of the allergens by dendritic cells (DCs) in subepithe-
lial tissues and lead to the release of numerous proinflammatory
(IL-6, IL-8, and IL-1β) as well as innate Th2 (IL-25, IL-33, and
TSLP) cytokines from the target cells. While the crystal struc-
ture of Der p 1 demonstrated that this allergen is a papain-like
cysteine protease, sequence homologies, and protease inhibition
assays proved that Der p 3, Der p 6, and Der p 9 belong to
the trypsin-like, chymotrypsin-like, and collagenolytic-like serine
protease families, respectively (6). Although the biological roles
of these proteases in mites have not hitherto been completely

unraveled, these allergens could more probably play a digestive
function for the mite as they were detected in the gut as well as in
mite feces. The four HDM allergen proteases are all synthesized as
pre-zymogens formed by a signal peptide essential for the secre-
tion, an N-terminal propeptide followed by the mature protease
domain. Each corresponding prosequence inhibits the respective
protease to prevent cellular toxicity during their expression. Con-
sidering the critical role of proteolytically active HDM allergens
in the initiation of the allergic response, the elucidation of the
pathways for the maturation of these allergens offers opportuni-
ties to deeply characterize their proteolytic specificities allowing
the identification of their corresponding protein substrates on the
target innate and adaptive immune cells.

The present minireview will update the information about
the inter- and intra-molecular maturation mechanisms of the
protease allergens from Dermatophagoides pteronyssinus with spe-
cial emphasis on particular features of propeptides and protease
interactions. We will highlight that the HDM protease quartet
processing follows an uncommon and interconnected maturation
pathway, which is uniquely orchestrated by Der p 1.

THE MATURATION OF ALLERGEN PROTEASES FROM
DERMATOPHAGOIDES PTERONYSSINUS
proDer p 1
Mite cysteine protease Der p 1 (group 1) belongs to the papain-
like protease family (CA1) and is considered one of the most
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potent HDM allergens on the basis of the high frequency (70–
100%) of specific IgE in HDM allergic patients (7, 8) as well
as of its capacity to proteotically trigger innate immune activa-
tion (3). Through the removal of its signal peptide (18 residues),
Der p 1 is secreted as an inactive zymogen, proDer p 1, com-
posed of a catalytic domain of 222 residues and an N-terminal
propeptide of 80 residues, which acts as an internal chaperone
during protease folding and then locks the protease active site (9,
10). The crystallographic structure of proDer p 1 revealed that
the propeptide of Der p 1 adopts a unique fold within the CA1
protease family (10). The propeptide of Der p 1 notably displays
an intermediate size (80 residues) and is devoid of the canonical
ERFNIN motif in its N-terminal globular domain (Table 1). The
propeptide of Der p 1 is also characterized by the presence of an
additional fourth α-helix replacing the unstructured C-terminal
tail normally found in the other propeptide subfamilies (60 or 100
residues).

In vitro activation of proDer p 1 produced by the yeast Pichia
pastoris or by S2 insect cells was shown to be induced under acidic
conditions (i.e., pH 4) (11–14). Biophysical studies demonstrated
that under acidic conditions, the propeptide of Der p 1 partly
unfolds, leading to a considerable increase in the solvent acces-
sibility and flexibility of the residues located in the N-terminal
globular domain. Under these conditions, the propeptide loses its
inhibitory ability and becomes a substrate for Der p 1 and most
probably for other mite allergen proteases (11, 15–17). In vitro,
the auto-activation of proDer p 1 at pH 4 leads to the forma-
tion of intermediates, which correspond to the successive loss of
the first and second N-terminal α-helices following cleavages at
the -NKSY19-A20TFE- and -KYVQ40-S41NGG- sites, respectively,
considering the first residue of the zymogen as residue 1 (11, 13,
18) (Table 1). Generation of fully active Der p 1 with or with-
out two additional residues (AE80) is then achieved through a
final cleave at overlapping cleavage sites (-FDLN78-A79ETN- or
-LNAE80-T81NAC-) located at the propeptide C-terminus (11, 13,
18–20). It is noteworthy that these cleavages take place in propep-
tide regions that correspond to solvent exposed coil connecting the
different α-helices and at sequences corresponding to Der p 1 pro-
teolytic specificity (21). Activation of proDer p 1 was also shown
to occur through inter-molecular cleavages of the precursor by
active Der p 1 protease (14, 15). The proDer p 1 sequence contains
two N-glycosylation sites, one within the propeptide (-N16KS-)

and one within the catalytic domain (-N132QS-) the latter being
glycosylated in the recombinant and natural forms of Der p 1 (11,
13, 14, 22, 23). Surprisingly, while pH is the major factor triggering
proDerp 1 maturation, the glycosylation of the Der p 1 propeptide
by the yeast P. pastoris at Asn16, which is N-terminally located to
the -N16KSY19-A20TFE- cleavage site, was shown to decelerate the
activation rate of the zymogen (11, 24). Although the glycosyla-
tion pattern of the Der p 1 precursor in mites is most probably
different, one cannot rule out that such interference might also be
observed in mites and could consequently constitute a regulation
system for allergen maturation.

proDer p 3
Based on the high percentage of its sequence identity with trypsin-
like enzymes but also on its proteolytic specificity (i.e., preference
for an Arg or a Lys residue in P1 position), Der p 3 (group 3) was
classified into the S1A serine protease family (25–27). To date, the
binding of IgE from sera of allergic patients to Der p 3 appears
controversial and varies between 10 and 100% (7, 25, 27–30).
Although the protein substrates targeted by Der p 3 still need to be
fully elucidated, the proteolytic activation of PAR-2 by Der p 3 was
clearly demonstrated (31, 32). Moreover, the enzymatic activity of
a recombinant form of Der p 3 toward the QAR-AMC fluorescent
peptide substrate was demonstrated to be 50 times higher than
that of Der p 1, thereby indicating that although present in low
quantity in the HDM extracts, Der p 3 greatly contributes to the
total proteolytic activity of the HDM extracts (33).

Der p 3 is synthesized in mites as a pre-zymogen constituted
of a signal peptide (18 residues), a propeptide of 11 residues,
and a serine protease domain of 232 residues (Table 1) (25). In
contrast to the Der p 1 propeptide, the Der p 3 prosequence
was shown as not involved in the correct folding of the zymo-
gen (34). Although it shows poor inhibitory capacity toward the
mature protease, the Der p 3 propeptide is essential to block
the Ile12 residue of Der p 3 and to maintain the allergen in
less active conformation as previously observed for trypsinogen,
the precursor of trypsin (33–35). Trypsinogen is commonly acti-
vated through inter-molecular cleavages by the membrane serine
protease enterokinase, following the recognition of a conserved
poly-aspartyl lysine motif [(D)DDDK] located at the end of the
propeptide (36, 37). Alternatively, trypsinogen can be activated
through autocatalytic cleavage occurring after neutralization of

Table 1 | Propeptides of Dermatophagoides pteronyssinus proteases.

Der p 1 R1PSSIKTFEEYKKAFNKSYATFEDEEAARKNFLESVKYVQSNGGAINHLSDLSLDEFKNRFLMSAEAFEHLKTQFDLNAE

↓

↓

↓ ↓↓ ↓

↓

↓ ↓ ↓

80

Der p 3 N1PILPASPNAT11

Der p 6 D1CRFPRILQPKWSYLDSLPASSSMMNDNSSPIAG34

Der p 9 T1RNIPLG7

The arrows indicate the identified Der p 1 cleavage sites.

Frontiers in Immunology | Immunotherapies and Vaccines March 2014 | Volume 5 | Article 138 | 2

http://www.frontiersin.org/Immunotherapies_and_Vaccines
http://www.frontiersin.org/Immunotherapies_and_Vaccines/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dumez et al. Maturation cascade of mite proteases

the negative charges of the poly-aspartyl lysine motif by calcium
ions (36, 38, 39). Compared with other trypsin proteases, the
propeptide of proDer p 3 (NPILPASPNAT11-) shows some dis-
tinct features such as the presence of a Thr instead of an Arg or a Lys
residue in P1 position. Consequently and in contrast to trypsino-
gen, no auto-activation of recombinant proDer p 3 was observed
(33). The activation mechanism of proDer p 3 produced in P. pas-
toris was shown to be inter-molecular and led by cysteine protease
Der p 1 (33) (Table 1). It is noteworthy that the N-glycosylation at
-N9AT11- site within the propeptide decreased the maturation rate
as observed for proDer p 1 (33). The maturation of proDer p 3 was
also shown to depend on the interactions between the polyproline
motif (P2ILP5ASP8) of the propeptide and Der p 1, since mutation
or deletion in this motif, especially of Pro5 and Pro8, drastically
reduced the activation rate of the zymogen (33, 34). This uncom-
mon polyproline motif within the protease propeptide was also
demonstrated to protect proDer p 3 against undesired hydrolysis
(33, 34). Indeed, as observed for trypsin, mature Der p 3 under-
goes rapid autolysis through cleavages at the -GGEK17-A18LAG-
and -KNAK115-A116VGL- sites, explaining more probably the low
amount of Der p 3 detected in HDM extracts (25, 27, 33, 34).

proDer p 6
Der p 6 (group 6) is a chymotrypsin-like serine protease (S1 family)
that preferentially cleaves peptide bonds preceded by an aromatic
residue (i.e., Phe, Tyr, and Trp) (30). The precursor of Der p 6 is
composed of a signal peptide of 16 residues, a propeptide of 34
amino acids, and a catalytic domain of 231 amino acids (Table 1)
(40). The propeptide of Der p 6 has recently been shown to act as
an inhibitor of the cognate catalytic domain (16). This suggested
that as for Der p 1 and Der p 3, the propeptide of Der p 6 regulates
the spatio-temporal activation of the protease zymogen in mites
(16). Similarly to Der p 3, the propeptide of Der p 6 was shown
as not required for the correct folding of recombinant Der p 6
expressed in P. pastoris (16).

Surprisingly, while chymotrypsinogen displays an Arg at the
C-terminus of its propeptide for the recognition and cleavage by
trypsin (41, 42), the C-terminal extremity of the Der p 6 propep-
tide (-P31IA33G-) is highly similar to that of the Der p 3 propeptide
(-P8NA10T-). In line with this observation,we recently showed that
as for proDer p 3, proDer p 6 can be activated by Der p 1 provid-
ing a fully active Der p 6 protease presenting the expected mature
N-terminal extremity (V35IGG-) (Table 1) (16).

proDer p 9
Although very poorly characterized, Der p 9 (group 9) is clas-
sified as a collagenolytic-like serine protease on the basis of its
ability to hydrolyze collagen (43). Interestingly, its high percent-
age of identity with Der p 3 (76%) together with the conservation
of the residues corresponding to the catalytic triad (His48–Asp88–
Ser200) as well as those related to the specificity pocket all suggest
that Der p 9 could be a trypsin-like protease. Moreover, like Der
p 3 and trypsin, Der p 9 was shown to activate PAR-2 through a
proteolytic cleavage occurring at the -SKGR36-S37LIG- site of the
receptor (32).

The Der p 9 pre-zymogen is composed of a signal peptide of 17
residues, a propeptide of 7 amino acids (TRNIPLG7−) preceding a

220-residue catalytic domain (Table 1) (43) (Uniprot: Q8MWR5).
The role of the propeptide and the activation mechanism leading
to fully active protease Der p 9 remain to be fully elucidated. By
using fluorescence resonance energy transfer (FRET) substrates,
we have recently demonstrated that recombinant and natural
active Der p 1 cleave the peptide mimicking the junction between
the propeptide and the mature form of Der p 9 (Dnp-IPLG7-
V8IGG-AMC), which suggests that Der p 1 could also be critical
for the maturation of proDer p 9 (Table 1) (16). Nevertheless,
the isolation of another cDNA coding for a Der p 9 related ser-
ine protease with an alternative putative extended propeptide
sequence (Uniprot: Q7Z163, Q8MWR4) would require additional
experiments.

UNCOMMON AND UNIQUE ACTIVATION PATHWAY
Taken together, the in vitro results generated using recombinant
forms of the different zymogens and FRET substrates clearly
demonstrate the major role of Der p 1 in the activation process
of the D. pteronyssinus mite allergen proteases (11, 13, 14, 16, 18,
33). Following its auto-activation under acidic conditions, Der p
1 remarkably orchestrates the inter-molecular maturation of its
own precursor (proDer p 1) but also of serine protease precursors
proDer p 3, proDer p 6, and most probably proDer p 9 (Figure 1)
(11, 13, 14, 16, 18, 33).

Although the exact location where the maturation of the aller-
gen proteases takes place in the mite remains unknown, different
hypotheses can be considered. Mite proteases Der f 1, Der p 1, Der
f 3, and Der p 6 were all immuno-localized in the digestive tract
of the Dermatophagoides farinae and D. pteronyssinus species (16,
44–46). In particular, Der p 1 was localized in the cells lining the
anterior midgut (AMg) corresponding to an acidic environment
(pH 4), in the posterior midgut (PMg) (pH 5) as well as in the
hindgut (Hg) where the pH was shown to reach a value of 6 (16,
44, 45, 47, 48). It is therefore plausible that proDer p 1 is secreted
in the anterior gut and activated in the acidic lumen. Alterna-
tively, it is worth noticing that the Der p 1 propeptide contains a
highly conserved two-lysine motif (Lys37 and Lys72) that might be
involved in the targeting of the zymogen to the acidic vesicles of
the anterior gut cells to initiate its intracellular maturation before
its release in the lumen (49, 50). Serine proteases Der f 3 and Der
p 6 were observed in the Hg (16, 46) and Der p 1 was co-localized
with Der p 6 in the Hg of D. pteronyssinus sections indicating that
mature protease Der p 1 could activate the secreted serine pro-
tease zymogens in the Hg where pH corresponds to its maximum
activity (i.e., pH 6.5) (16, 48).

The activation mechanisms of the serine protease zymogens
of the trypsin-like family (proDer p 3 and proDer p 6) by a cys-
teine protease (Der p 1) appear to be very uncommon for such
protease families and are most probably related to the presence
of specific residues at the C-termini of the propeptides. Notice-
ably, the P4–P3–P2–P1 residues (Schechter and Berger nomen-
clature) N-terminally located to the cleavage sites of the Der
p 1 (LNAE80-), Der p 3 (PNAT11-), Der p 6 (PIAG34-), and
Der p 9 (I PLG7-) proteases are all similar and perfectly match
Der p 1 specificity (21). It is noteworthy that the propeptides
of homologous zymogens from other dust mites such as the D.
farinae and Euroglyphus maynei species exhibit a high degree
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Dumez et al. Maturation cascade of mite proteases

FIGURE 1 | Protease activation cascade in the digestive tract of the mite Dermatophagoides pteronyssinus. The box represents the activation cascade in
the hindgut. AMg, Anterior midgut; PMg, Posterior midgut; Hg, Hindgut.

of similarity to those from D. pteronyssinus suggesting that a
similar proteolytic pathway might also occur in these organisms
(Table 2) (16).

CONCLUSION
During the last decade, we and others have unraveled the in vitro
activation mechanisms of the mite cysteine (Der p 1) and ser-
ine (Der p 3, Der p 6, and Der p 9) protease precursors. All the
generated data highlighted the role of Der p 1 as the “maestro”
in the maturation processes of the different HDM protease aller-
gens. This orchestration which appears rather uncommon among
the protease world depends on specific sequences present at the
C-terminus of the different propeptides.

Although it remains to be demonstrated that in vivo HDM
protease allergen maturation is similar to the in vitro observa-
tions, the elucidation of the present activation cascade firstly
provides key information for the design of new potent specific
inhibitors to these clinically relevant allergens. Such molecules
represent potential novel acaricidal compounds to control the
HDM population by impairing their digestive function. The crit-
ical role of PAR-2 activation in HDM allergy and the effective
PAR-2 cleavage by at least Der p 3 and Der p 9 demonstrates the
interest in the blockage of the proteolytic activity to modulate
the HDM allergic response (31, 32, 51, 52). It must be pointed

Table 2 | Activation sites of zymogens from Dermatophagoides

pteronyssinus, Dermatophagoides farinae, and Euroglyphus maynei

species.

Groups Proteins Sequences

Group 1 Der p 1

Der f 1

Eur m 1

..H
70
LKTQFDLNAE

80
-T

81
NACSINGNA

90
..

..Q
70
LKTQFDLNAE

80
-T

81
SACRINSVN

90
..

..Q
70
LKTQFDLNAE

80
-T

81
YACSINSVS

90
..

Group 3 Der p 3

Der f 3

Eur m 3

  N
1
PILPASPNAT

11
-I

12
VGGEKALAG

21
..

  T
1
PILPSSPNAT

11
-I

12
VGGVKAQAG

21
..

  N
1
PILPSSPNAT

11
-I

12
VGGQKAKAG

21
..

Group 6 Der p 6

Der f 6

Eur m 6

..M
24
MNDNSSPIAG

34
-V

35
IGGQDAAEA

44
..

..R
20
SKIGDSPIAG

30
-V

31
VGGQDADLA

40
..

/

Group 9 Der p 9

Der f 9

     T
1
RNIPLG

7
-I

8
VGGSNASPG

17
..

/

↓

The arrow indicates the putative cleavage sites between the propeptide and the

mature protease sequences which are in bold. (/) Unknown sequences.

out that the first preclinical results generated with inhaled Der p
1-specific allergen delivery inhibitors also provide clear evidence
for the interest of such therapeutics in the treatment of HDM
allergy (53).

Secondly, consistent productions of highly pure and fully active
recombinant mature HDM protease allergens could open the way
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for further characterization of their proteolytic specificities, for
better definition of their respective interplay with the innate and
adaptive immune system and for analysis of their IgE reactivity.
Finally, the mapping of their corresponding IgE-binding epitopes,
in the absence of any propeptide interference (epitope masking),
could initiate the development of hypoallergenic variants for novel
immunotherapeutic treatments.
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