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Abstract: This research proposes a multiple-input deep learning-driven ion-sensitive field-effect
transistor (ISFET) scheme to predict the concentrations of carbaryl pesticide. In the study, the carbaryl
concentrations are varied between 1 × 10−7–1 × 10−3 M, and the temperatures of solutions between
20–35 ◦C. To validate the multiple-input deep learning regression model, the proposed ISFET scheme
is deployed onsite (a field test) to measure pesticide concentrations in the carbaryl-spiked vegetable
extract. The advantage of this research lies in the use of a deep learning algorithm with an ISFET
sensor to effectively predict the pesticide concentrations, in addition to improving the prediction
accuracy. The results demonstrate the very high predictive ability of the proposed ISFET scheme,
given an MSE, MAE, and R2 of 0.007%, 0.016%, and 0.992, respectively. The proposed multiple-input
deep learning regression model with signal compensation is applicable to a wide range of solution
temperatures which is convenient for onsite measurement. Essentially, the proposed multiple-input
deep learning regression model could be adopted as an effective alternative to the conventional
statistics-based regression to predict pesticide concentrations.

Keywords: deep learning; ISFET; carbaryl; acetylcholinesterase

1. Introduction

Pesticides are substances that are commonly used in agriculture to deter, incapacitate,
kill, or discourage pests while increasing crop yields. Along with these benefits, pesticides
are toxic to humans and other species. Pesticides can translocate to cultivated crops
and contaminate the environment. Furthermore, excessive use of pesticide and pesticide
residues in fruit and vegetables prove harmful to human health [1,2].

Of particular concern is carbaryl, which is a broad-spectrum N-methyl carbamate
insecticide widely used to control agricultural pests, such as aphids, fire ants, fleas, ticks,
and spiders. Human exposure to carbaryl occurs through residues in food and skin con-
tact [3,4]. Long-term carbaryl exposure can also cause blurred vision, vomiting, abdominal
pain, breathing difficulty, and disruption of the nervous system [5–7].

Carbaryl is toxic to humans as the chemical inhibits acetylcholinesterase (AChE)
enzyme activity, which disrupts the transmission of the nerve system. AChE is the
cholinesterase enzyme primarily found in the neuromuscular junctions of insects and
vertebrates, including humans [8–11]. AChE catalyzes the hydrolysis of acetylcholine
(AChCl) to choline and acetic acid (CH3COOH). CH3COOH consists of four hydrogen
atoms, but only one hydrogen bonded to oxygen is ionizable, yielding hydrogen ion (H+).

The advanced quantitative techniques commonly used to detect pesticide residues
in fresh produce are high-performance liquid chromatography (HPLC) [12,13] and gas
chromatography (GC) [14,15]. It should be underlined that the analytes can be detected in
very low concentrations in these techniques. However, the advanced detection techniques
encounter certain limitations, including costliness, high complexity, lengthy analysis, highly
skilled personnel requirement, and unsuitability for onsite (field test) measurement.
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To overcome the limitations inherent in the advanced detection techniques, the small
size of the sensor is an advantage to its application for pesticide detection. The ISFET
sensor is one of the alternative techniques utilized in this field due to its robustness and
ease of integration, requiring little routine maintenance. Unlike other conventional sensors,
ISFET probes can easily be inserted into samples such as fruit and vegetables. These
are the reasons that ISFET is an appealing transduction platform. The ISFET sensor is a
sensing device capable of measuring H+ in solution [16,17]. Due to its high sensitivity, rapid
response, and compact size, the ISFET sensor is commonly used in biochemical analysis [18].
Additionally, the ISFET form factor is compact, energy-efficient, and affordable, rendering it
highly suitable for onsite (field test) measurement [19–22]. However, the device suffers from
inherent nonidealities (i.e., temperature drift), which considerably affect its performance
due to the characteristic of the semiconductor substrate [23]. There have been works that
use machine learning to compensate for sensor readout, in which the complex system or
circuit design to reduce signal drift can be neglected [24–27]. The pesticide measurement
using the ISFET sensor is carried out by immobilizing the AChE enzyme onto the ISFET
sensing area before reacting with the AChCl substrate to obtain choline and CH3COOH.
The ISFET sensor detects changes in H+ in the solution, which in turn induces changes in
voltage between the gate and the source (i.e., ISFET signal response). Carbaryl inhibits the
reaction between the AChE enzyme and the AChCl substrate, resulting in a decrease in H+

in the solution [11].
The ISFET sensor schemes with machine learning-based support vector machine (SVM)

and artificial neural network (ANN) are used to predict pH values in solutions. The results
show that the SVM model outperforms the ANN model. In Ref. [28], ANN is utilized
to improve the prediction accuracy of the ISFET sensor. Furthermore, the application of
machine learning to biosensors to enhance the performance of sensors is on a continual rise.
Particularly, machine learning has been used for imaging, electronic-nose and electronic-
tongue, and surface-enhanced Raman spectroscopy (SERS) biosensors [29–31].

In Ref. [32], InGaZnO-based Electrolyte-Gate Field-Effect Transistors (EGFET) is used
for glucose sensor by applying machine learning-based techniques to enhance the accuracy
of data detection. Although EGFET is small and highly sensitive, a custom material design
and optimization are required [33]. Other papers have reported using an ISFET sensor for
environmental monitoring [34,35]. Still, a published article has not written the application
of deep learning in measuring pesticides based on enzyme inhibition assay using an
ISFET sensor. Typically, an enzyme-ISFET sensor is used for pesticide measurements at
room temperature. Due to the robustness, compact size, low power consumption, and
high sensitivity of ISFET, it is an alternative technology for development as the screening
device of samples for pesticide in field testing. The temperature can affect the enzyme
activity; enzymes work differently at different temperatures that should not exceed 40 ◦C.
Temperatures also affect the ISFET sensor, which can cause signal drift and may affect
the accuracy of pesticide concentrations. Therefore, this work is interested in developing
a technology platform of ISFET combined with a deep learning model for measuring
pesticide concentration at any temperature in 20–35 ◦C. The developed deep learning
regression model can improve the prediction accuracy of pesticide concentration and could
be easily deployed on onsite screening devices due to the feed-forward computing in deep
learning processes. Pesticide concentrations can be measured at any temperature (20–35 ◦C)
without complicated programming.

The commercialized ISFET is used in this research to obtain a relatively stable and
reliable device. The platform technology (ISFET combined with the deep learning model)
presented here is more flexible than the conventional testing in the laboratory. It has
the potential to be the quick and inexpensive screening of samples for pesticides. This
will strengthen the utilization of ISFET sensors in pesticide detection, improve consumer
demand for safe foods, and increase the trading value of vegetables and fruits tested to be
organic products.
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To demonstrate the detection of carbaryl pesticide by ISFET sensor at various tem-
peratures in the range of 20–35 ◦C, which resemble the ambient temperatures in tropical
countries, the machine learning is utilized to simplify signal compensation and improve the
accuracy of predicted carbaryl concentration. Due to the variation of enzyme immobiliza-
tion on different ISFET sensors, the uncertainty yields different sensor values. The variation
of ISFET reference signals have been compensated through machine learning techniques.

Specifically, this research proposes an ISFET scheme driven by multiple-input deep
learning regression with signal compensation to predict carbaryl concentrations at different
temperatures. Based on the ISFET signal response and the solution temperature, the
prediction performance of the proposed multiple-input deep learning regression is reported
in terms of mean squared error (MSE), mean absolute error (MAE), and correlation (R2). In
addition, the proposed multiple-input deep learning regression is deployed to a portable
device for onsite application by measuring the spiked carbaryl concentrations in ethanolic
vegetable extract solution and comparing the results with the actual concentrations.

2. Materials and Research Methodology
2.1. Materials and Methods
2.1.1. ISFET Sensor

In this research, the ISFET sensor was acquired from the Thai Microelectronics Center
(TMEC), National Electronics and Computer Technology Center (NECTEC), Thailand. The
ISFET sensor is of complementary metal-oxide-semiconductor (CMOS) technology, with
silicon nitride (Si3N4) as the gate electrode, with the width (W) and the length (L) of the
sensing area of 2.0 and 0.1 mm, respectively. The sensing area measures H+ in the solution
as the gate material (Si3N4) donates and accepts protons.

Prior to the measurement, the ISFET sensor is connected to the silver/silver chloride
(Ag/AgCl) reference electrode to measure the ISFET signal response in the solution. The
ISFET signal response is the potential difference at the interface between the gate electrode
and solution, which varies in response to H+ in the solution [36,37].

2.1.2. Preparation of Experimental Solutions and Pesticide

The experimental solutions are phosphate-buffered saline (PBS) and acetylcholine
chloride (AChCl) substrate, and the pesticide is carbaryl of varying concentrations. In the
PBS preparation, 4.0 g of sodium chloride (NaCl), 1.45 g of disodium hydrogen phosphate
(Na2HPO4), 0.1 g of potassium dihydrogen phosphate (KH2PO4), and 0.1 g of potassium
chloride (KCl) are dissolved in 500 mL of deionized (DI) water for 5 mM PBS buffer with
pH of 7.4. The pH of the PBS buffer is maintained at 7.4 using sodium hydroxide.

In the AChCl substrate preparation, AChCl (Sigma-Aldrich, St. Louis, MI, USA) is
dissolved in PBS buffer for 5 mM AChCl substrate to react with the acetylcholinesterase
(AChE) enzyme. In the carbaryl pesticide preparation, carbaryl (in powder form;
Sigma-Aldrich, St. Louis, MI, USA) is first dissolved in 100% ethanol for the stock so-
lution of carbaryl before diluting in PBS solution containing 5% ethanol. The experimental
concentrations of carbaryl are 1 × 10−7, 1 × 10−6, 1 × 10−5, 1 × 10−4, and 1 × 10−3 M.

2.1.3. pH Sensitivity Test

Prior to the measurement of carbaryl, the pH sensitivity of the ISFET sensor is cali-
brated by testing in pH buffer (Merck, Darmstadt, Germany) of different pH values (pH 4, 7,
and 10), where pH 4, 7, and 10 represent acidity, neutrality, and alkalinity. In the sensitivity
test, the ISFET sensor with Ag/AgCl reference electrode is sequentially immersed into
three beakers containing the pH buffer of different pH values (pH 4, 7, and 10 for the first,
second, and third beakers, respectively). Specifically, in one cycle of sensitivity test, the
ISFET sensor is immersed in the first beaker (pH 4) for one minute before transferring to
the second beaker (pH 7) for one minute and then to the third beaker (pH 10) for another
minute; the cycle is conducted three times. The ISFET signal responses under different pH



Sensors 2022, 22, 3543 4 of 19

values are collected. The sensitivity of the ISFET sensor is the slope of the plot of the ISFET
signal response relative to pH value, given the acceptable sensitivity of 45–55 mV/pH.

2.1.4. Measurement of Carbaryl Concentrations

Prior to the measurement, the ISFET sensing area is cleaned with isopropanol and DI
water and left to dry. Afterward, 2.0 µL agarose gel (2.0% w/v in DI water) is applied to the
sensing area and left for 15 min to dry before dropping (i.e., immobilizing) 1 unit of AChE
enzyme as shown in Figure 1a–c. The ISFET sensor containing the AChE enzyme is then
left to dry at room temperature before refrigerating at 4 ◦C for 24 h.
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Figure 1. Schematic of the ISFET surface preparation: (a) ISFET sensing area, (b) application of
agarose gel, and (c) enzyme immobilization.

After 24 h, the AChE-coated ISFET sensor is immersed in beakers containing PBS
buffer for 3 min (180 s), given that the ISFET signal response remains unchanged after
3 min. The temperatures of the PBS buffer are varied between 20, 25, 30, and 35 ◦C (T1–T4,
respectively). The baseline ISFET signal response data (i.e., baseline signal response) under
various PBS temperatures are collected. Afterward, the AChE-coated ISFET sensor is
transferred to beakers containing AChCl substrate for another 3 min (180 s) [38], with the
corresponding AChCl substrate temperatures of 20, 25, 30, and 35 ◦C (T1–T4, respectively).
The ISFET signal response under various AChCl substrate temperatures is then collected.

In this study, ∆Vgs
w/o carbaryl is the ISFET signal response without carbaryl (i.e., ref-

erence signal response), which is the difference between the baseline signal response and
the signal response in AChCl substrate, given T1–T4. The experiments are carried out in
triplicate.

Once the ∆Vgs
w/o carbaryl data collection is complete, 5 µL of carbaryl diluted with PBS

buffer containing 5% ethanol is pipetted onto the sensing area of the AChE-coated ISFET
sensor and incubated for 5 min. Likewise, 5 µL of carbaryl diluted with ethanolic vegetable
extract is applied onto the sensing area of the AChE-coated ISFET sensor and incubated for
5 min. In this study, the PBS-diluted and vegetable extract-diluted carbaryl concentrations
are 1 × 10−7, 1 × 10−6, 1 × 10−5, 1 × 10−4, and 1 × 10−3 M. The experimental vegetable is
organically grown white cabbage (Brassica oleraceae var. capitata f. alba). In the vegetable
extraction, white cabbage is cut into small shreds of 0.5 × 0.5 cm (W × L) in dimension,
extracted by ethanol, and filtered by Whatman No. 1 for vegetable extract. According
to [39], carbaryl is commonly used to deter cabbage worms (Pieris rapae) in white cabbage
due to its high efficacy.

For both the PBS-diluted and vegetable extract-diluted carbaryl experiments, the
carbaryl-incubated ISFET sensor is then immersed in beakers containing PBS buffer for
3 min (180 s), given the PBS temperatures of 20, 25, 30, and 35 ◦C (T1–T4, respectively). The
carbaryl-incubated baseline ISFET signal response data under various PBS temperatures
are collected. Afterward, the carbaryl-incubated ISFET sensor is transferred to beakers
containing AChCl substrate for another 3 min (180 s), with the corresponding AChCl
substrate temperatures of 20, 25, 30, and 35 ◦C (T1–T4, respectively). The ISFET signal
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response under various AChCl substrate temperatures is also collected. The ISFET signal
response with carbaryl (∆Vgs

carbaryl) is the difference between the carbaryl-incubated
baseline signal response and the signal response in the AChCl substrate, given T1–T4.

2.2. Deep Learning Regression-Based Models with Signal Compensation

Figure 2 depicts the multiple-input deep learning regression-based model to predict
the pesticide (i.e., carbaryl) concentration based on the ISFET signal response and the
solution temperature. The model inputs (features) include the signal response from the
ISFET sensor and the temperatures of solutions (i.e., PBS buffer and AChCl substrate). The
model output (target) is the concentrations of carbaryl. The algorithmic model consists of
two hidden layers, with 20 and 16 nodes in the first and second hidden layers, respectively.
The numbers of nodes in both hidden layers are doubled, vis à vis the single-input deep
learning model, to enhance the predictive ability of the multi-input model. The W and B
between layers (W1, B1, W2, B2, W3, and B3) are optimized by gradient descent iterative
optimization algorithm. The activation function of the two hidden layers is hyperbolic
tangent function (tanh(z)), and that of the output layer is rectified linear unit (ReLU)
activation function.
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Figure 2. The multiple-input deep learning regression-based model predicts pesticide concentration
based on the ISFET signal response and solution temperature.

In this research, the carbaryl concentrations are varied between 1× 10−7 and 1 × 10−3 M
(i.e., 1 × 10−7, 1 × 10−6, 1 × 10−5, 1 × 10−4, and 1 × 10−3 M) and the temperatures of
solutions between 20, 25, 30, and 35 ◦C (T1–T4, respectively). The experimental solutions
are PBS buffer and AChCl substrate. The experiments are carried out 10 times for each
temperature. The initial number of datasets for training and testing the multiple-input
algorithmic model is thus 200 datasets (5 carbaryl concentrations× 4 solution temperatures
× 10 times). To improve the predictive ability of the model, the number of datasets is
mimicked 10 times using additive white gaussian noise (AWGN) to 2000 datasets.

This is to increase the number of data sets by mimicking the noise with AWGN to
relate to the noise that can naturally occur from the measurement, such as thermal noise,
electronic noise, sunlight, etc. [40]. In deep learning development, AWGN are added to
the signal measurement of training data. For AI to learn the signals that correspond to
actual use, AI can still be effective in work. Refs. [41,42] support that increasing datasets by
AWGN can eliminate noisy versions of the signal to train and test the model.

The additive datasets (2000 datasets) are subsequently divided into two groupings:
training (80%) and testing groupings (20%). As a result, the training and testing groupings
consist of 1600 and 400 datasets. Specifically, for each solution temperature (T1–T4), there
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are 400 training datasets, giving rise to a total of 1600 training datasets (400 × 4 solution
temperatures). Likewise, there are 100 testing datasets for each solution temperature.

The training dataset comprises Xtrain (normalized training input dataset) and Ytrain
(normalized training output dataset). The testing dataset consists of Xtest (normalized
testing input dataset) and Ytest (normalized testing output dataset). The initial randomized
W1, B1, W2, B2, W3, and B3 are optimized by a gradient descent iterative optimization
algorithm with the given learning rate (α) and epoch of 0.01 and 5000. The iteration is
terminated once divergence occurs between the MSE of the training and testing datasets.

Prior to training and testing the multiple-input deep learning models, the ISFET signal
response without carbaryl (∆Vgs

w/o carbaryl) or reference signal is needed to compensate
for solving the variation of different AChE-coated ISFET sensors [43–45]. In addition, the
voltage for the calibrated sensor is required to determine the reference signal compensation.
To compensate the reference signal is the first step before implementing the signal into the
multiple-input deep learning regression model.

To determine the voltage for the calibrated sensor, the data of reference signals
(∆Vgs

w/o carbaryl) have been collected at various temperatures (20, 25, 30, and 35 ◦C). The
single-input deep learning model of the relation between temperature and reference signals
is created (Figure 3).
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Figure 3. The single-input deep learning regression-based model calculates the voltage for calibrating
the sensor.

When applying the AChE-coated ISFET sensors to detect carbaryl, the ISFET signal
(no carbaryl) is needed to be measured. We apply the signal to the model in which the tem-
perature of that signal and the Vgs (reference) will be obtained. Then, the ISFET signal (no
carbaryl) is compared to the obtained Vgs (reference) to calculate the voltage for calibrated
sensor and then implemented to the multiple-input deep learning regression model.

The single-input deep learning model to calculate the voltage for a calibrated sensor
for signal compensation is shown in Figure 3. The algorithmic model consists of two hidden
layers, with 10 and 5 nodes in the first and second hidden layers, respectively. The initial
randomized weight (W) and bias (B) between layers (i.e., Wcal1, Bcal1, Wcal2, and Bcal2)
are optimized by gradient descent iterative optimization algorithm, adjusted weight, and
bias with gradient descent number of learning rate 0.01 and epoch 3000. The iteration is
terminated once divergence occurs between the MSE of the training and testing datasets
or the MSE equal to 0.01. The number of datasets equals the multiple-input deep learning
regression model (2000 datasets).

Prior to training and testing the deep learning models, the training and testing input
and output datasets (Xtrain, Ytrain, Xtest, and Ytest) under variable concentrations of carbaryl
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(1 × 10−7, 1 × 10−6, 1 × 10−5, 1 × 10−4, and 1 × 10−3 M), given a specific solution
temperature (T1–T4), are normalized using min–max normalization in Equation (1).

Datanormalization =
(Dataset− Datasetmin)

(Datasetmax − Datasetmin)
(1)

where Dataset is the training and testing input and output datasets (i.e., Xtrain, Ytrain, Xtest,
and Ytest); Datasetmin is the minimum dataset of the training input and output datasets
(Xtrain and Ytrain), and the minimum dataset of the testing input and output datasets (Xtest
and Ytest); and Datasetmax is the maximum dataset of the training input and output datasets
(Xtrain and Ytrain) and the maximum dataset of the testing input and output datasets (Xtest
and Ytest). The value of the normalized datasets (Datanormalization) is between 0 and 1 [0, 1].

In the feedforward of the deep learning models, the activation function between
hidden layers is a hyperbolic tangent function (tanh(z)), as shown in Equation (2), where
tanh(z) = [−1, 1]. The activation function ReLU(z) is used in the output layer, as shown
in Equation (3), where z is the linear combination (Equation (4)). The predicted output ŷn
of the single-input deep learning regression-based model is the Vgs (reference), and that
(predicted) of the multiple-input deep learning model is the carbaryl concentration.

tanh(z) =
(ez − e−z)

(ez + e−z)
(2)

ReLU(z) =
{

0, z < 0
z, z ≥ 0

(3)

Z =


z1
z2
...

zN

 =


x1

1w1
x1

2w1
...

x1
Nw1

x2
1w2

x2
2w2
...

x2
Nw2

. . .

. . .
...

. . .

xD
1 wD

xD
2 wD

...
xD

NwD

+
[

B1 B2 . . . BD
]

(4)

In the back propagation of deep learning models, the mean squared error (MSE) be-
tween the normalized training output dataset (Ytrain; yn) and predicted normalized output
ŷn is first calculated using Equation (5), and the gradient descent iterative optimization
algorithm is subsequently applied to fine-tune W and B by using Equation (6) and the chain
rule derivative.

MSE =
1
n ∑n

i =1(yn − ŷn)
2 (5)

∂MSE
∂Wi

and
∂MSE

∂Bi
(6)

where i = 1, 2, 3 corresponding to W1, B1, W2, B2, W3, and B3, respectively, and the
derivative of tanh(z) activation function for hidden layers is expressed in Equation (7).

∂[tanh(Az)]
∂z

= 1− tanhz2 (7)

The prediction performance (i.e., predictive ability) of the multiple-input deep learning
regression-based model is assessed by mean squared error (MSE; Equation (5)), mean
absolute error (MAE; Equation (8)), and coefficient of determination (R2; Equation (9)).

MAE =
1
n

n

∑
i =1
|yn − ŷn| (8)

where yn is the normalized testing output dataset (Ytest), ŷn is predicted normalized output
(Ypredict), and n is the number of datasets.
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The coefficient of determination (R2) is a goodness-of-fit measure for regression models
and the dependent variables on a scale of 0–1.

R2 =
(Var(Y)−MSE)

Var(Y)
(9)

where Var is the mean of differences between yn and average (yn) squared and MSE is
expressed in Equation (5).

Figure 4 shows the multiple-input deep learning regression model to predict the
concentrations of carbaryl (target) based on the ISFET signal response and solution tem-
peratures (features). In the proposed multiple-input deep learning model, the features are
normalized prior to feedforwarding for the normalized target, given the optimized W1, B1,
W2, B2, W3, and B3. The normalized target is subsequently denormalized to obtain the
carbaryl concentration.
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model for predicting the pesticide concentration.

3. Experimental Setup and Data Analysis
3.1. Experimental Equipment Setup and Data Collection

In this research, a database of the datasets for training and testing the deep learning
regression-based models is first created in the laboratory. The database consists of the
ISFET signal response and the temperatures of solutions (PBS and AChCl substrate), given
the concentrations of carbaryl of 1 × 10−7, 1 × 10−6, 1 × 10−5, 1 × 10−4, and 1 × 10−3 M.

In Figure 5, the ISFET signal response data at various carbaryl concentrations
(1 × 10−7–1 × 10−3 M) are collected using Keysight 34461A Truevolt Digital Multime-
ter. The ISFET signal response is amplified using Winsense (Winsense Co., Ltd., Bangkok,
Thailand) and stored on a laptop computer in spreadsheet format. Meanwhile, the solution
temperatures at different carbaryl concentrations are collected by Keysight 34461A Truevolt
Digital Multimeter with a two-wire 10 kΩ thermistor temperature sensor and retained on
the laptop computer in spreadsheet format. The data on the ISFET signal response and
solution temperatures are collected in a concurrent fashion at one-second interval. Table 1
tabulates the specifications of the equipment and the ISFET sensor used in this research.
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Figure 5. Diagram of the experiment setup and data collection, where VG, VD, and VS denote gate
voltage, drain voltage, and source voltage, respectively.

Table 1. Specification of the experimental equipment and sensor.

Equipment/Sensor Specification

Keysight 34461A Truevolt Digital Multimeter DCV accuracy 35 ppm
Max reading rate 1000 rdgs

Keysight 34461A Truevolt Digital Multimeter Thermistor 2 wire (10 kΩ)
ISFET sensor ISFET pH sensor kit (Winsense)

3.2. Calculation of Enzyme Inhibition by Carbaryl

The AChE enzyme inhibition by carbaryl of various concentrations (1 × 10−7–1 ×
10−3 M), given the solution temperatures of 20, 25, 30, and 35 ◦C (T1–T4, respectively), is
calculated by Equation (10).

percentage of enzyme inhibition =

∣∣∣∣∣∆Vw/o carbaryl
gs − ∆Vcarbaryl

gs

∆Vw/o carbaryl
gs

∣∣∣∣∣× 100 (10)

where ∆Vgs
w/o carbaryl is the ISFET signal response without carbaryl (i.e., reference signal

response), which is the difference between the baseline signal response and the signal
response in AChCl substrate; and ∆Vgs

carbaryl is the ISFET signal response with carbaryl,
which is the difference between the carbaryl-incubated baseline signal response and the
signal response in AChCl substrate.

3.3. Preparation of Training and Testing Datasets

The initial number of datasets for training and testing the deep learning algorithmic
models is 200 datasets (5 carbaryl concentrations × 4 solution temperatures × 10 times).
The carbaryl concentrations are varied between 1 × 10−7, 1 × 10−6, 1 × 10−5, 1 × 10−4,
and 1 × 10−3 M and the temperatures of solutions between 20, 25, 30, and 35 ◦C (T1–T4,
respectively). In this research, the solutions are PBS buffer and AChCl substrate. To
improve the predictive ability of the models, the number of datasets is mimicked 10 times
using AWGN to 2000 datasets.

The datasets for the deep learning model are divided into two groupings: training
(80%) and testing (20%). The training and testing groupings thus consist of 1600 and 400
datasets. Specifically, for each solution temperature (T1–T4), there are 400 training datasets,
resulting in a total of 1600 training datasets (400 × 4 solution temperatures). Additionally,
there are 100 testing datasets for each solution temperature.
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Figure 6 shows the real-time data collection of ISFET signal response and solution
temperature using the ISFET sensor and experimental equipment.
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Figure 6. Laboratory experimental setup to collect the ISFET signal and temperature data.

3.4. Onsite Application of the Multiple-Input Deep Learning Model

Figure 7 illustrates the experimental setup and onsite application of the proposed multiple-
input deep learning regression model using a portable digital multimeter (KEYSIGHT U1231A)
outfitted with a real-time infrared (IR)-to-Bluetooth (BT) adapter (KEYSIGHT U1117A).
The ISFET with reference electrode is connected to the portable digital multimeter with
an IR-to-BT adapter. The optimized train parameters (W1, B1, W2, B2, W3, and B3) can
be loaded onto the mobile device to construct a portable system. The compensated ISFET
signal and temperature are normalized and fed to the deep learning algorithm model at
the initial step. The output was calculated by the values of weight and bias applied in
the feed-forward process. The result is a denormalized carbaryl concentration. From this
context, the ISFET signal and temperature are sent to mobile devices that program the
multiple-input deep learning regression model. This renders the onsite scheme economical
and convenient to use.
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In the actual application, the concentrations of carbaryl in fresh produce (i.e., white
cabbage) are predicted based on the ISFET signal response and solution temperatures
using the multiple-input deep learning regression model (Figure 4). In this research, the
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proposed multiple-input model is applied to determine the carbaryl concentrations in the
ethanolic extract of organically grown white cabbage deliberately spiked with variable
concentrations of carbaryl (1 × 10−7 to 1 × 10−3 M).

In the onsite implementation, the prediction performance of the proposed multiple-
input ISFET scheme is validated by testing with the ethanolic extract of white cabbage
spiked with various concentrations of carbaryl. The ex-ante (input) and ex-post (output)
concentrations of carbaryl should closely resemble one another. The input refers to the
carbaryl concentrations in the spiked vegetable extract and the output to the carbaryl
concentrations displayed on a Bluetooth-enabled mobile device.

4. Results and Discussion
4.1. ISFET pH Sensitivity Result

Figure 8a illustrates the pH sensitivity of the experimental ISFET sensor in terms of
signal response (mV) relative to time (s) at pH of 4, 7, and 10. (Please refer to Section 2.1.3
for the sequential procedure of the pH sensitivity test.) Figure 8b shows the linear re-
lationship between the ISFET signal response (y) relative to the pH value (x), where
y = 49.86x + 418.98, with R2 = 0.998. The slope of the linear relationship (i.e., the ISFET
sensitivity) is 49.86 mV/pH. Given the acceptable ISFET sensitivity of 45–55 mV/pH, the
experimental ISFET sensor can be deployed to measure the carbaryl concentrations.
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Figure 8. The pH sensitivity of ISFET sensor: (a) ISFET signal response given pH of 4, 7, and 10,
(b) signal response relative to pH (mV).

4.2. Measurement of Concentrations of Carbaryl Diluted with PBS Buffer

Figure 9a shows the ISFET signal response without carbaryl (∆Vgs
w/o carbaryl) and

with carbaryl (∆Vgs
carbaryl) under variable carbaryl concentrations (1 × 10−7–1 × 10−3 M),

given the solution temperature of 25 ◦C. (Please refer to Section 2.1.4 for the ISFET signal
response measurement procedure). The experiments are carried out in triplicate, and the
experimental solutions include PBS buffer and AChCl substrate.

Figure 9b illustrates the corresponding percentage of AChE enzyme inhibition under
different carbaryl concentrations, given the solution temperature of 25 ◦C (i.e., standard
reference ambient temperature). In order to achieve uniformity in measurements, 25 ◦C
has been internationally adopted as the standard reference ambient temperature. This
ISFET sensor can be detected carbaryl in the range of 1 × 10−6 to 1 × 10−4 M with a linear
equation as y = 6.6098ln(x) + 134.62 and R2 = 0.985.
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(b) a corresponding percentage of AChE enzyme inhibition.

In Figure 9a, the mean and standard deviation (SD) of the ISFET signal response
without carbaryl (∆Vgs

w/o carbaryl) are 45.35 mV and 1.6 mV, respectively. Meanwhile, the
measured ISFET signal response with carbaryl at the lowest experimental carbaryl concen-
tration of 1 × 10−7 M (∆Vcarbaryl

gsminimum
) is 28.78 mV. The limit of detection (LOD) of the ISFET

sensor with the multiple-input deep learning regression is determined by Equation (11),
the lowest experimental carbaryl concentration of 1 × 10−7 M (∆Vcarbaryl

gsminimum
) (i.e., 28.78 mV)

taking into account three standard deviations of the mean (3 × SD = 4.8 mV) is less than the
ISFET signal response without carbaryl (∆Vgs

w/o carbaryl) (i.e., <45.35 mV). The ISFET signal
response of LOD calculated using Equation (11) is 33.50 mV. Given that 33.50 < 45.35 mV,
the proposed scheme (i.e., ISFET sensor with the multiple-input deep learning regression)
can measure the carbaryl concentrations in solutions as low as 1 × 10−7 M. Specifically, the
LOD of the proposed ISFET scheme is 1× 10−7 M (0.02 ppm) which is below the maximum
residual limits (MRLs) of carbaryl in cabbage (0.05 ppm).

LOD = ((3 × SD) + ∆Vcarbaryl
gsminimum

) < ∆Vw/o carbaryl
gs (11)
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Figure 10 illustrates the ISFET signal response relative to carbaryl concentrations
under variable solution temperatures: 20, 25, 30, and 35 ◦C. The experimental solutions are
PBS buffer and AChCl substrate. Essentially, the solution temperatures affect the carbaryl-
induced AChE enzyme inhibition [46,47] and the subsequent ISFET signal response.
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Figure 10. The ISFET signal response under variable concentrations of PBS-diluted carbaryl, given
the solution temperatures of 20, 25, 30, and 35 ◦C.

In addition, the effects of interferent compounds such as imidacloprid and chlorpyrifos
were tested on the AChE-coated ISFET sensors (data not shown). The test showed no
noticeable changes in the ISFET signal response detected in the presence of imidacloprid.
Still, the observed ISFET signal response is changed in the presence of chlorpyrifos. The
results indicate that chlorpyrifos can interfere with the determination of carbaryl because
chlorpyrifos is the organo-phosphate pesticide that can inhibit the activity of AChE, unlike
imidacloprid, an insecticide in a class of chemicals called the neonicotinoids that cannot
inhibit the function of AChE with their substrate. Moreover, when applied to an actual
sample test, the ionic strength, pH value, and interaction of some components of the
analyzed sample on the enzyme activity may affect the ISFET signal.

4.3. Comparison of the Actual and Predicted Carbaryl Concentrations in PBS Buffer

Figure 11a–d compare the actual and predicted carbaryl concentrations using the
multiple-input deep learning regression model, given the solution temperatures of 20, 25,
30, and 35 ◦C, respectively.

The MSE, MAE and R2 (Equations (5), (8), and (9), respectively) of the proposed
multiple-input deep learning regression model are 0.007%, 0.016% and 0.992, respectively.
Given the substantially low MSE and MAE (i.e., <1.0%), the multiple-input deep learning
model possesses very high predictive ability and thus could be adopted to predict the
pesticide concentrations in solutions. In addition, R2 of 0.992 shows a goodness-of-fit
measure of the multiple-input deep learning regression model.

More importantly, the proposed multiple-input deep learning regression model is
applicable to a wide range of solution temperatures in fractional (e.g., 20.5, 26.7, and 32.6 ◦C)
and non-fractional increments (e.g., 20, 26, and 32 ◦C) which can deploy onsite testing.
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and (d) 35 ◦C.

4.4. Prediction of Vegetable Extract-Diluted Carbaryl Concentrations Using a Multiple-Input Deep
Learning Model

In this section, the proposed multiple-input deep learning model is applied to predict
the concentrations of carbaryl diluted with ethanolic extract of organically grown white
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cabbage. In this research, the multiple-input deep learning model is initially constructed
using the datasets of the carbaryl concentrations diluted with PBS buffer. Therefore, the
direct application of the initial multiple-input deep learning model (i.e., without input
compensation) renders the prediction outcomes susceptible to error.

To minimize the prediction error, the input of the multiple-input deep learning re-
gression model (i.e., ISFET signal response) needs to be compensated. To calculate the
compensated input, we examine the relationship between the percentage of enzyme inhibi-
tion of PBS-diluted carbaryl and that of vegetable extract-diluted carbaryl, under variable
carbaryl concentrations as shown in Figure 12.
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the solution temperature of 25 ◦C.

In Figure 12, the percentage of AChE enzyme inhibition of vegetable extract-diluted
carbaryl is below that of PBS-diluted carbaryl under all carbaryl concentrations
(1× 10−7–1× 10−3 M). Specifically, the percentage of AChE enzyme inhibition of vegetable
extract-diluted carbaryl is 2.68–3.24% lower than that of PBS-diluted carbaryl. The lower
percentage of enzyme inhibition indicates higher ISFET signal response. As a result, the
input (i.e., ISFET signal response) of the multiple-input deep learning regression model has
to be compensated by 1.206–1.458 mV, given that 1% enzyme inhibition is equivalent to
0.45 mV (i.e., inverse of Equation (10)).

Table 2 compares the actual carbaryl concentrations in organically grown white cab-
bage extracts from three vendors of their different supermarkets (vendors 1, 2, and 3) and
those predicted by the proposed scheme (i.e., the ISFET sensor with the multiple-input
deep learning regression model), given the solution temperatures of 28–32 ◦C. In vegetable
extraction, white cabbage is cut into small shreds of 0.5 × 0.5 cm (W × L) in dimension,
extracted by ethanol, and filtered by Whatman No. 1 for vegetable extract.

The experimental solution temperatures of 28–32 ◦C resemble the ambient tempera-
tures in tropical countries where white cabbage is widely cultivated for domestic consump-
tion and export. The onsite application of the proposed ISFET scheme is carried out in
accordance with Figure 7. As shown in Table 2, the discrepancies between the actual and
predicted results are negligible, suggesting that the proposed scheme could be deployed
onsite (i.e., field test) to efficiently measure the carbaryl concentrations.
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Table 2. The actual and predicted carbaryl concentrations using the ISFET sensor with the proposed
multiple-input deep learning regression model.

Carbaryl Concentrations in
Ethanolic Extract of White

Cabbage (M) *

Predicted Carbaryl Concentrations Using the ISFET Sensor with
Multiple-Input Deep Learning Regression (M)

Vendor 1 Vendor 2 Vendor 3

1 × 10−7 0.998 × 10−7 0.941 × 10−7 0.965 × 10−7

1 × 10−6 0.966 × 10−6 0.977 × 10−6 0.958 × 10−6

1 × 10−5 0.946 × 10−5 0.979 × 10- 5 0.997 × 10−5

1 × 10−4 0.955 × 10−4 0.957 × 10−4 0.968 × 10−4

1 × 10−3 0.995 × 10−3 0.998 × 10−3 0.998 × 10−3

Note: * The values indicate the actual carbaryl concentrations in ethanolic extracts of organically grown white
cabbage from vendors 1, 2, and 3.

5. Conclusions

This research proposes an ISFET scheme driven by a multiple-input deep learning
regression model with signal compensation to efficiently predict carbaryl concentrations
based on the ISFET signal response and the solution temperature. In the experiment, the
carbaryl concentrations are varied between 1 × 10−7–1 × 10−3 M, and the temperatures of
solutions were between 20, 25, 30, and 35 ◦C. The experimental solutions are PBS buffer
and AChCl substrate. The MSE, MAE, and R2 of the proposed ISFET scheme (i.e., ISFET
sensor with the multiple-input deep learning regression model) are 0.007%, 0.016%, and
0.992, indicating very high predictive ability of the proposed ISFET scheme. Further
experiments were also carried out whereby the proposed ISFET scheme was deployed in
a field test to measure carbaryl concentrations in ethanolic extract of organically grown
white cabbage spiked with variable concentrations of the pesticide and results compared
with the actual concentrations. The results reveal small discrepancies between the actual
and predicted results, indicating the high predictive ability of the proposed ISFET scheme.
More importantly, the proposed multiple-input deep learning regression model with signal
compensation is applicable to a wide range of solution temperatures in both fractional
(e.g., 20.5, 26.7, and 32.6 ◦C) and non-fractional increments (e.g., 20, 26, and 32 ◦C) which is
facilitated to perform the experiment in field testing with the high predictive ability still
be obtained.

In the future development, the data input for the training deep learning regression
model should be improved with the field test data (i.e., different environments or different
areas) to increase the training datasets and the variability of the data from actual use.
Moreover, the proposed ISFET scheme could be utilized to test with the other carbamate
pesticides for onsite screening devices.
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