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Early detection of germinated 
wheat grains using terahertz image 
and chemometrics
Yuying Jiang1,3, Hongyi Ge2, Feiyu Lian2, Yuan Zhang2 & Shanhong Xia1

In this paper, we propose a feasible tool that uses a terahertz (THz) imaging system for identifying 
wheat grains at different stages of germination. The THz spectra of the main changed components 
of wheat grains, maltose and starch, which were obtained by THz time spectroscopy, were distinctly 
different. Used for original data compression and feature extraction, principal component analysis 
(PCA) revealed the changes that occurred in the inner chemical structure during germination. Two 
thresholds, one indicating the start of the release of α-amylase and the second when it reaches the 
steady state, were obtained through the first five score images. Thus, the first five PCs were input 
for the partial least-squares regression (PLSR), least-squares support vector machine (LS-SVM), 
and back-propagation neural network (BPNN) models, which were used to classify seven different 
germination times between 0 and 48 h, with a prediction accuracy of 92.85%, 93.57%, and 90.71%, 
respectively. The experimental results indicated that the combination of THz imaging technology and 
chemometrics could be a new effective way to discriminate wheat grains at the early germination stage 
of approximately 6 h.

Wheat grain is a major cereal crop and an ingredient in many food products. It contains high amounts of starch, 
protein, and fat and provides important minerals, vitamins, and fibre to the diet1. Grain germinates easily during 
improper post-harvest storage, thus decreasing its quality, even making it inedible and causing enormous loss of 
the harvest. Visual and manual inspection, staining, and immunochromatography are used to detect sprouted 
grain2,3, but these methods are inefficient, time consuming, subjective, and lack the sensitivity to detect early ger-
mination. Any method capable of rapidly identifying germinated wheat or grading the quality of the individual 
kernels could be used by the food industry for quality assessment, which is important for maintaining national 
food security and reducing loss of stored grain.

The research community uses automated visual systems for non-destructive measurement of sprouted grains. 
Takeuchi et al.4 used computer visualization to detect morphological changes in barley kernels during germina-
tion. Neethirajan et al.5 used an X-ray imaging system to evaluate sprouted and healthy wheat kernels and found 
white specks in the X-ray images of the sprouted kernels. Krishnan et al.6 used nuclear magnetic resonance spec-
troscopy to characterize the changes in the water content of germinating and non-germinating wheat seeds. Xing 
et al.7 used visible/near-infrared hyperspectral imaging to detect sprout damage in Canada Western Red Spring 
wheat. Although these methods have been widely used to detect sprouted grain, their applications are limited in 
certain circumstances.

Terahertz (THz) radiation is electromagnetic waves in the frequency range of 0.1–10 THz, which corresponds 
to wavelengths of 30 μm to 3 mm and energies of 0.41–41 meV, i.e., between infrared and microwave radiation8. 
Unlike optical and infrared radiation, THz waves can “see through” obscuring materials such as plastic, card-
board, clothing, and wood with relatively little loss in energy. As opposed to X-rays, THz waves are generally 
regarded as completely safe for humans and objects. Compared to microwave radiation, THz radiation has shorter 
wavelengths, providing better spatial resolution, thus making it easier to identify objects9–11. Because of recent 
progress in laser technology, THz spectroscopy and imaging have emerged as techniques in optics research and 
have been used in biomedical applications12, art conservation13, detection of explosives14 and illicit drugs15, and 
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agricultural quality and safety control16,17. THz imaging can be performed in transmission or reflection geometry, 
depending on the object being analysed. In THz reflection imaging, THz pulses propagate within the specimen, 
so information about the surface and the internal physical structure of an object can be obtained in a non-invasive 
manner18.

In our study, we used the THz imaging system to classify wheat grain at different times (0, 6, 12, 18, 24, 36, and 
48 h) during germination. The THz images underwent principal component analysis (PCA) for original spectral 
data compression and feature extraction to observe the changes in the chemical structure of the wheat grains dur-
ing germination. The first five principal components (PCs) were used as input for the classification models used 
to identify the germination stages of wheat grains.

Results
Germination progression analysis.  The internal and external structure of the wheat grain as illustrated 
in Fig. 1. The biological process of wheat grain germination is highly complex and has many stages, so our study 
considered only the general steps. The first step of the germination process is water absorption by the wheat grains 
under suitable environmental conditions, i.e., humidity and temperature; this initiates a series of biological steps 
starting with the release of α -amylase from the aleurone layer into the endosperm. The enzyme breaks down the 
starch molecules into sugars such as maltose and glucose, which are transported to the embryo for growth. At 
first, there is a short period of little amylase activity when α -amylase starts to be released. Then as the amylase 
activity reaches a maximum, the maltose content increases until it finally reaches a steady level when the starch 
within the grain has been completely converted into sugars.

The main constituents of wheat grain that change during germination, i.e., pure maltose and starch, and wheat 
in powder form were characterized by our THz time-domain spectroscopy system. Figure 2 shows the refractive 
indices and absorption spectra for the frequency range 0.2–2.5 THz. The maltose and starch spectra are distinctly 
different. The maltose spectrum has strong absorption peaks at 1.12 THz, 1.57 THz, and 1.99 THz that originate 
from the vibrational motion of the maltose molecule. The positions of the absorption peaks correspond to those 
in previous reports19,20. The absorption peak at 1.67 THz is due to the absorption of water molecules. However, 
for the high-molecular-weight component, starch, and the multicomponent mixture such as starch and wheat, 
no sharp absorption peak is observed in the effective spectral range. Therefore, we expect to identify the spectral 
activity of wheat grains during germination using the THz imaging system.

Wheat grain segment and feature extraction.  Fifty kernels for each germination time (0, 6, 12, 18, 24, 
36, and 48 h) were selected and placed on the x-y motorized stage and imaged individually using the THz imaging 
system. The data in the THz images were visualized using the PCA data compression step. The advantage of using 
PCA is that a fewer PCs capture the most important information, which is estimated from a set of evaluated pro-
jection loadings. The first five PCs explain 91.15, 5.34, 1.03, 0.46, and 0.06% data variance, accounting for 98% of 
the data variance, which not only achieves suitable compression but also ensures that the relevant information is 
retained in the data. The first five score images are illustrated in Fig. 3.

Activity at the wheat embryo (the red and yellow areas at the top of the Fig. 3) is distinctly expressed by the 
third, fourth, and fifth score images at 36 h. The husk of wheat grains act as irregular attenuators arising from edge 
scattering of THz radiation. Figure 4 presents fifth score images for germination at 0, 6, 12, 18, 24, 36, and 48 h. 
The images show the progression of the breakdown of starch into maltose increasing over time, which indicate 
that the change in the internal structure of wheat grains in general and during germination can be captured by 
analysing the acquired score images. Meanwhile, the progression of the germination can be seen by following the 
small area at the embryo (the red and yellow areas at the top of the score images).

By subjective visual appraisal of these score images, one can clearly see a threshold of approximately 6 h of 
germination, after which α -amylase begins to be released and the major chemical components start to change. 
Meanwhile, the small difference between the 24 and 36 h score images shows that the α -amylase activity had 
returned to the steady state, so another threshold is obtained between 24 and 36 h. These properties coincide 
well with the THz absorption spectra of wheat grains at each germination time as show in Fig. 5. The absorption 
coefficients show slight differences between 0h and 6 h, however, the differences tend to distinctness after the 
germination time of 6h.

Multivariate Data Analysis.  Upon separation the wheat grain area from the background to exclude the 
interfering information, each wheat grain on average was represented by approximately 800 pixels. The spectra 

Figure 1.  The internal and external structure of wheat grain. 
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of each pixel within the wheat grain image were extracted and averaged at each frequency to generate a mean 
value and subsequently scatter-corrected using the standard normal variate (SNV) transformation21. PCA was 
performed on all spectra obtained from each wheat sample at different germination times to reduce the high 
dimensionality of the problem. Thus, the spectra contained the maximum amount of information across all wheat 
samples and the dimensions decreased from 512 spectral measurements for the classification of different germi-
nation stages to only five components. The wheat grains were divided into seven classes based on germination 
times, which depend on the PCA feature set.

Figure 2.  (a) Refractive index and (b) absorption coefficient of pure maltose and starch in powder form.

Figure 3.  PC score images of wheat grain after 36 h of germination. 

Figure 4.  Fifth score images for germination times of 0, 6, 12, 18, 24, 36, and 48 h. 
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Figure 6 shows the percentage of classification errors for different numbers of wheat grains for each germina-
tion time. The classification error decreases with increasing number of wheat grains. When the number reaches 
50, the classification error is similar to only 25. Therefore, the 350 samples were divided into a calibration set (210 
samples, with an average of 30 grains for each of the seven germination times) and a prediction set (140 samples) 
by using the leave-one-out approach.

The PLSR model was constructed by using the first five PCs of the spectra as input variables, while output 
variables were associated with the seven germination times, where 1, 2, 3, 4, 5, 6, and 7 represent 0, 6, 12, 18, 24, 
36, and 48 h, respectively. The predictability of the model was evaluated using the RMSE. If the predicted value 
was within the defined threshold value (dummy variable ±  0.5), the samples were considered to be correctly 
identified by the PLSR model. The subintervals of 0.5–1.5, 1.5–2.5, 2.5–3.5, 3.5–4.5, 4.5–5.5, 5.5–6.5, and 6.5–7.5 
represent sprouting times of 0, 6, 12, 18, 24, 36, and 48 h, respectively. Figure 7 plots the actual values versus the 
predicted values for each germination time for the calibration set using the PLSR model. The misclassifications 
of the seven classes are concentrated around 6 h because the inner structure of the wheat kernel has yet to change 
macroscopically during germination. The R2 and RMSE of the PLSR calibration model were 0.9841 and 0.577, 
respectively, and the prediction accuracy of the calibration set and the prediction set were 93.81% and 92.85%, 
respectively, as shown in Table 1. The prediction results indicated that the PLSR model could differentiate wheat 
samples at different germination stages.

The LS-SVM model was constructed to improve discrimination accuracy by rearranging the original spectral 
data in a higher-dimensional feature space using kernel functions. Therefore, we used the RBF kernel function 
to construct a LS-SVM classification model. The RMSE was calculated for each combination of regularization 
parameter γ and RBF kernel function parameter c. The optimal values for γ and c are reached when the smallest 
RMSE was obtained. In our study, the optimal γ and c were determined by the grid-search algorithm to be 3.8 
and 2, respectively.

Figure 5.  THz absorption spectra of wheat grains at each germination time. 

Figure 6.  Classification errors for different average numbers of wheat grains. 



www.nature.com/scientificreports/

5Scientific Reports | 6:21299 | DOI: 10.1038/srep21299

The BPNN model was used to compare the performance of the models. After several attempts to optimize the 
parameters, the optimal BPNN for the classification of sprouting wheat was obtained when the learning rate fac-
tor, the momentum factor, the initial weight, the permitted training error, and the maximum number of training 
times were 0.1, 0.1, 0.6, 0.00001, and 1000, respectively.

The quantitative relationship between the predicted values and the actual values for the wheat samples in the 
calibration set at each germination time was obtained using the LS-SVM model and the BPNN model and is 
shown in Fig. 8(a,b), respectively. The prediction results of the two models are quite similar, with the misclassifi-
cations concentrated around 6 h. However, predicted values in Fig. 8(a) are more concentrated along the reference 
line than in Fig. 8(b), indicating that the LS-SVM prediction results are more accurate than those of the BPNN 
model. The prediction accuracies of the LS-SVM model for the calibration set and the prediction set were 95.23% 
and 93.57%, respectively, thus indicating its predictive ability and robustness. On the other hand, the BPNN had 
relatively poor predictive ability, with prediction accuracies for the calibration set and the prediction set of 92.38% 
and 90.71%.

Table 1 presents the discrimination results for the calibration set and the prediction set from the PLSR, 
LS-SVM, and BPNN models. The performances of these three models were quite similar. The LS-SVM yielded 
the best discrimination results because it is more capable of self-learning and self-adjusting nonlinear models to 
solve complex relationships among samples. The performance of the PLSR model was worse than that of LS-SVM 
but superior to that of BPNN. The BPNN model yielded discrimination results slightly worse than those of the 
other models, probably because we have not searched the optimum topological network architecture to identify 
wheat grains in their different germination stages.

Discussion
In this paper, we demonstrated the feasibility of the proposed modelling framework, based on THz imaging 
technology, for discriminating the changes that occur in a single wheat grain at different germination times. In 
addition, THz imaging technology has been proven superior to traditional machine vision methods with respect 
to visualizing the changes in the major chemical components of wheat grains that occur during germination. Our 
results indicate that THz imaging technology is a potential tool for early identification of the germination status 
of stored wheat grains to ensure their quality and quantity.

The THz images of each wheat grain underwent PCA for original data compression and feature extraction. 
The changes that occurred in the wheat grains at different germination times were illustrated in the fifth score 
images. The activity of α -amylase increasing over time, which could be clearly captured at embryo area by these 
score images. In addition, two thresholds were obtained by visual subjective evaluation, one indicating the com-
mencement of α -amylase activity and the other indicating its release until it reached the steady state, which 
agreed well with the results of THz absorption spectra of every germination time wheat grains and a previous 
report using the falling number analysis22. The falling number method is the most common for determining 

Figure 7.  Predicted wheat grains for different germination times (0, 6, 12, 18, 24, 36, and 48 h) in the 
calibration set using the PLSR model. 

Calibration set Prediction set

Model R2 RMSE accuracy R2 RMSE accuracy

PLSR 0.984 0.577 93.81% 0.965 0.656 92.85%

LS-SVM 0.99 0.485 95.23% 0.986 0.587 93.57%

BPNN 0.961 0.638 92.38% 0.937 0.886 90.71%

Table 1.   Comparison of discrimination results for the calibration set and the prediction set using different 
models.
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α -amylase activity. α -Amylase activity increases as the falling number value decreases. The falling number value 
is usually > 300 s for normal wheat grain and < 200 s for germinating wheat grain. Figure 9 shows the change in 
falling number with respect to the progression of wheat grain germination. The falling number value is > 300 s for 
germination time up to 12 h, and during that time, the change in the inner structure of wheat grain is minimal. 
Thus, wheat grains with the germination time less than 12 h can continue to be stored, as long as the moisture 

Figure 8.  Comparison of the predicted and actual values of wheat samples in the calibration set at each 
germination time obtained using (a) the LS-SVM model and (b) the BPNN model. 

Figure 9.  Falling number values for germination times of 0, 6, 12, 18, 24, 36, and 48 h. 
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content is kept below 12%, which is considered as a stable level for long time storage. Therefore, the classification 
models should be used early to determine the germination stage of the wheat grains. We used the first five PCs as 
input to the classification models for nuanced discrimination of the wheat grains during germination. We per-
formed the classification on a single-grain level and obtained classification errors in the prediction set of 7.15%, 
6.43%, and 9.29% for the PLSR, LA-SVM, and BPNN models, respectively.

We used our approach to analyse only a small number of wheat grains; more reliable and accurate data can be 
acquired if a larger number of samples is used. In addition, in this study, we attributed the changes in the quality 
of the wheat grains solely to germination and were unable to discriminate other forms of grain damage such as 
fungal infection and worm infestation. Our model was based on a single variety of wheat and should be tested 
with other varieties. Thus, future work should focus on identifying these other properties based on dedicated 
wheat grain experiments or other germinating grain types by optimizing the classification models to construct 
an even more comprehensive classification model. In addition, the Fig. 1 illustrated strong absorption peaks 
in the maltose spectrum; hence, we also could qualitative and quantitative analysis of the content of maltose. 
Meanwhile, an abundance band (frequency range =  0.2–2.5 THz) for each pixel in a THz image was obtained via 
THz imaging technology. It would be helpful to study the use of a specific frequency to simplify the imaging sys-
tem and reduce the imaging time; however, classification accuracy similar to that of our model must be ensured.

Materials and methods
Sample preparation.  Zhengzhou 9339 wheat, widely grown in China, was selected for our experiment from 
the School of Food Science and Technology, Henan University of Technology, Zhengzhou, China. The parameters 
of the wheat measured before germination by near-infrared spectroscopy (Perten, Springfield, IL, USA) were 
moisture: 11.6%, protein: 15.33%, unit weight: 774 g/l, starch: 65.8%, and falling number: 398 s. The process of 
germination was conducted by the following procedures.

The wheat samples were cleaned and soaked in water for 1 h and drained. The grains were divided into seven 
groups, enclosed in containers, and incubated at 25 °C. The organic and inorganic impurities and imperfect 
grains, e.g., grains with breakage, grains with black embryos, and grains eaten by worms, were removed before 
incubation. At different times during germination (0, 6, 12, 18, 24, 36, and 48 h), samples were removed from the 
containers and immediately dried at 40 °C in a cabinet tray dryer to about 10% moisture level, which is considered 
the level at which germination stops.

The 50 wheat grains of each germination times (0, 6, 12, 18, 24, 36, and 48 h) were used for measurement in 
order to analyse when the major chemical change within the grains would start and stop during the germination. 
In this time interval, the germination of each wheat grains would be visible for the long germination times, how-
ever, for the short germination times, the germination may not be verified by visual inspection. Therefore, prior 
to the Terahertz imaging experimentation, in order to minimize the differences of the samples, the epicotyl and 
radicle were rubbed off.

Terahertz imaging system.  In our experiment, we used a THz time-domain system (TDS) in reflection 
mode to obtain the THz images. The THz imaging system includes a pulsed femtosecond Ti:sapphire laser with a 
pulse width and a centre wavelength of 100 fs and 800 nm, respectively. A beam splitter splits the laser beam into 
pump and probe beams. The split beams irradiate a photoconductive dipole antenna fabricated on an LT-GaAs 
wafer for generation and an electro-optic ZnTe crystal for detection of THz waves23. The THz pulse emitted from 
the generator passes through two metal parabolic mirrors, which focus it on the sample. It is then reflected from 
the sample and guided to the detection antenna by two other metal parabolic mirrors24. The spectral range of 
the system is 0.1–3.5 THz and its peak dynamic range is > 1000 (70 dB), with a signal-to-noise ratio of > 3000. 
For imaging, the sample is mounted on an x-y motorized stage and moved perpendicular to the incoming THz 
beam. During measurements, the temperature is kept at room temperature and the room humidity emulates the 
conditions of practical applications.

Image acquisition.  The wheat grains at each germination time were place on the moving platform of the 
Terahertz imaging system with a maximum scanning area of 50 mm ×  50 mm and scanned point to point at a 
speed of 0.05s and resolution of 0.1 mm. The total image acquisition procedure was controlled and implemented 
by Terahertz analysis and control software.

Once the scanning procedure was finished, THz images of every wheat grain with a form of three-dimensional 
including not only spatial information but also spectral information were created, recorded, and stored. While an 
entire THz waveform contained 512 time-domain points which covered a time range of 30 ps, corresponded to a 
frequency range of 0–3.5 THz, could be acquired at each pixel position. These acquired THz images and spectra 
were analysed via MATLAB R2013a and Origin 8.5 software for feature extraction and built up models to detect 
the early germination wheat grains.

Classification models.  Prior to classifying the wheat grains, the image data were processed to extract the 
spatial features that reveal the physical structure and chemical changes inside the wheat kernels that are related to 
the germination process. Principal component analysis (PCA) is one of the generally feature extraction methods. 
Theoretically, PCA provides optimal linear reduction that results in fewer independent variables but maximum 
representation of original variables and requires no underlying assumptions about spatial information25.

Partial least-squares regression (PLSR) is a robust and reliable multianalysis and regression method used 
in spectroscopy. Because it has better flexibility with linear algorithms, PLSR was developed to predict a set of 
dependent variables, such as physical and chemical data, from a large set of independent variables, e.g., spectral 
and image data26. Least-squares support vector machine (LS-SVM) is an optimized version of the standard SVM 
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method. It uses a nonlinear map function to map the input features to a high-dimensional space and a Lagrange 
multiplier to calculate the partial differential of each feature to obtain the optimal solution27. We used the radial 
basis function (RBF) kernel as the kernel function of the LS-SVM and the grid-search algorithm to determine the 
regularization parameter c and the RBF kernel function parameter γ2. The optimum parameters are reached when 
the smallest root-mean-square error (RMSE) is produced28.

The performances of the PLSR and LS-SVM models were compared using the back-propagation neural net-
work (BPNN), a classical feed-forward multilayer network used to solve several types of classification and regres-
sion problems. BPNN corrects the weights within each layer in proportion to the error acquired from the previous 
layer29 and arranges the three layers into an input layer, a hidden layer, and an output layer. By optimizing the 
hidden nodes from the input variables (e.g., spectral data) based on a “trial-and-error” fundamental, BPNN can 
classify samples into predefined varieties, resulting in a new output layer consisting of transformed values, which 
supply a more precise discrimination of sample varieties.
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