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Chronic stress during the developmental period of adolescence increases susceptibility
to many neuropsychiatric diseases in adulthood, including anxiety, affective, and
alcohol/substance use disorders. Preclinical rodent models of adolescent stress have
produced varying results that are species, strain, sex, and laboratory-dependent.
However, adolescent social isolation is a potent stressor in humans that has been reliably
modeled in male rats, increasing adult anxiety-like and alcohol drinking behaviors, among
others. In this study, we examined the generalizability and sex-dependence of this model
in C57BL/6J mice, the most commonly used rodent strain in neuroscience research.
We also performed a parallel study using social isolation in adulthood to understand the
impact of adult social isolation on basal behavioral phenotypes. We found that 6 weeks of
social isolation with minimal handling in adolescence through early adulthood [postnatal
day (PD) 28–70] produced a hypersocial phenotype in both male and female mice and
an anxiolytic phenotype in the elevated plus-maze in female mice. However, it had no
effects in other assays for avoidance behavior or on fear conditioning, alcohol drinking,
reward or aversion sensitivity, or novel object exploration in either sex. In contrast,
6 weeks of social isolation in adulthood beginning at PD77 produced an anxiogenic
phenotype in the light/dark box but had no effects on any other assays. Altogether, our
results suggest that: (1) adolescence is a critical period for social stress in C57BL/6J
mice, producing aberrant social behavior in a sex-independent manner; and (2) chronic
individual housing in adulthood does not alter basal behavioral phenotypes that may
confound interpretation of behavior following other laboratory manipulations.
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INTRODUCTION

Adolescence is a critical developmental period marked by
increased reward-seeking and impulsivity and the establishment
of apposite social behaviors (Spear, 2004; Steinberg, 2004,
2010; Romer, 2010; Leshem, 2016). In humans, adolescence is
associated with increased peer affiliation and separation from
family (Noom et al., 1999; Keijsers et al., 2009; Eichelsheim
et al., 2010). In rodents and other mammals, it is marked
by the heightened incidence of play behavior, altered social
interactions, and increased exploration (Spear, 2004; Hawk et al.,
2009; Trentacosta and Shaw, 2009; Walker et al., 2019). The
quality and quantity of social interactions during adolescence
have been linked to later-life behavioral outcomes in humans,
including rates of drug and alcohol use and the formation of
healthy social relationships (Bray et al., 2001; Kochenderfer-Ladd
and Wardrop, 2001; Trentacosta and Shaw, 2009; Masten et al.,
2012; Deutsch et al., 2015; Jager et al., 2015).

Adolescence is also marked by increased stress sensitivity,
and chronic stress exposure during this period has been shown
to alter brain structure and function (Paus, 2007; Eiland and
Romeo, 2013). As peer interactions are especially important
during adolescence (Steinberg, 2004; Jager et al., 2015), exposure
to social stress may have particularly deleterious consequences
on brain development and behavior (Casey et al., 2010;
Platt et al., 2013; Burke et al., 2017). This increased stress
sensitivity may partly explain why substance use disorders and
many other psychiatric conditions frequently emerge during
adolescence (Turner and Lloyd, 2004; Kessler et al., 2005, 2007;
Ernst and Fudge, 2009; Casey and Jones, 2010; Blakemore
and Robbins, 2012). Also, circulating gonadal hormones that
emerge at puberty may influence stress responses in adolescence
by modulating arousal and salience of stressful stimuli, and
additionally can physiologically interact with stress hormones to
alter behavior in a sex-specific manner during development and
adulthood (Romeo et al., 2016; Bell, 2018). Understanding how
adolescent social stress alters neurophysiology and behavior may
prove crucial to treating stress-related disorders in adolescence
and throughout later life.

Adolescent social isolation in rats has emerged as a preclinical
model that recapitulates many of the deleterious behavioral
outcomes linked to chronic adolescent stress in humans (Lukkes
et al., 2009b; Butler et al., 2016; Walker et al., 2019). In male
rats, this paradigm has been shown to increase anxiety-like
behavior and drug and ethanol intake and decrease fear memory
extinction (McCool and Chappell, 2009; Whitaker et al., 2013;
Butler et al., 2014a, 2016; Karkhanis et al., 2015, 2019; Skelly
et al., 2015; Yorgason et al., 2016), although these effects
were not recapitulated in female rats (Butler et al., 2014b).
Isolation during adolescence has also been linked to decreased
social interaction in rats (Ferdman et al., 2007). Less is known
about the effects of protracted adolescent isolation on these
behaviors in mice, even though they are commonly used in
neuroscience research, including studies that model human
psychiatric conditions such as drug self-administration that
require individual housing (Becker and Ron, 2014). Like humans,
adolescent mice demonstrate a potentiated response to stress

(Romeo et al., 2006). Although there are some reports that
chronic isolation beginning in adolescence increases depressive-
and anxiety-like behaviors and drug self-administration in mice
(Lopez et al., 2011; Amiri et al., 2015), these results are variable
and may be strain and sex-dependent (Arakawa, 2018; Mumtaz
et al., 2018; Walker et al., 2019). C57BL/6J mice are commonly
used in studies of alcohol self-administration (Rhodes et al., 2005;
Melendez et al., 2006; Lyons et al., 2008; Yoneyama et al., 2008;
Hwa et al., 2011; Mulligan et al., 2011) and as such are regularly
singly housed for long periods. However, the lasting behavioral
effects of social isolation (either in adolescence or adulthood) on
escalated alcohol self-administration and anxiety-like behaviors
in this strain have been variable (Lopez et al., 2011; Lopez and
Laber, 2015; Huang et al., 2017; Caruso et al., 2018).

Here, we evaluated the behavioral consequences of prolonged
social isolation on behavior in male and female C57BL/6J mice
and determined whether adolescence was a specific period of
stress sensitivity. Following 6 weeks of social isolation beginning
in either adolescence or adulthood, we measured anxiety,
anhedonia, alcohol intake, reward and aversion sensitivity, fear
memory formation, and social behavior in adulthood. We found
that social isolation produced few behavioral deficits overall,
however, exposure to thismanipulation beginning in adolescence
led to aberrant social behavior in adulthood, marked by hyper-
sociability and reduced avoidance behavior. Overall, these results
suggest that extended single housing beginning in adulthood
does not robustly impact the basal behavioral state of C57BL/6J
mice and that adolescence is a sensitive period for the effects of
chronic social stress in this strain.

METHODS

Animals
Male and female C57BL/6J mice were purchased from Jackson
Laboratories (Bar Harbor, ME, USA) at postnatal day (PD) 21
(for adolescent isolation experiment) or 63 (for adult isolation
experiment) and housed on a 12 h:12 h light:dark cycle with
lights off at 7:30 am and ad libitum access to food and water.
One week after arrival, mice were randomly assigned to socially
isolated (SI, one mouse per cage) or maintained in group-housed
(GH, five mice per cage) conditions for 6 weeks before behavioral
testing. In the adolescent SI cohort, mice that were GH through
adolescence were singly housed at PD77 for the duration of the
study. In the adult SI cohort, GHmice remained in group-housed
conditions. All experimental protocols were approved by the
Institutional Animal Care and Use Committee at Weill Cornell
Medicine following the guidelines of the NIH Guide for the Care
and Use of Laboratory Animals.

Behavioral Assays
Assays were conducted under 250 lux lighting conditions as
previously described (Pleil et al., 2015; Crowley et al., 2016;
Marcinkiewcz et al., 2016) and Panlab SMART 3.0 video tracking
software was used to track and analyze behavior unless otherwise
described. All behavioral experiments commenced 2 h into
the start of the dark cycle. Each behavioral apparatus was
thoroughly cleaned with 70% ethanol before each trial. Timeline
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graphs illustrating the sequence of experiments conducted in
the adolescent and adult isolation cohorts can be found in
Figures 1A, 2A, respectively.

Elevated Plus Maze
The elevated plus maze (EPM) test was conducted in a plexiglass
maze with two open and two closed arms (35 cm l × 5.5 cm w,
with 15 cm h walls for closed arms) extending from a central
platform (5.5 cm ×5.5 cm) elevated 50 cm above the floor. At
the beginning of each trial, the mouse was placed in the center
of the maze facing an open arm, and movement was tracked
continuously for 5 min. The total time spent on the open and
closed arms of the assay and the total number of open and closed
arm entries (defined as placement of all four paws into the arm)
were quantified. Percent time spent in the open arms of the assay
was calculated to measure anxiety-like behavior, and closed arm
entries were used as a measure of locomotion.

Open Field Test
The open-field test was conducted in a plexiglass arena
(50 × 50 × 34.5 cm) with a gray floor. The mouse was placed in
one corner of the arena and allowed to explore freely for 30 min.
Total time spent in the center of the maze (defined as having all
four paws in the 25 cm × 25 cm area in the center of the arena)
and periphery were quantified to calculate the percent center
time. The total distance traveled in the maze (cm) was used to
measure locomotion, and percent time in the center of the maze
was used to assess anxiety-like behavior.

Light/Dark Box
The light/dark box assay was conducted in a rectangular box
divided into two equal compartments (20 cm l × 40 cm
w × 34.5 cm h), one dark with a closed lid and the other with an
open top and illuminated by two 60 W bulbs placed 30 cm above
the box. The two compartments were separated by a divider
with a 6 cm x 6 cm cut out passageway at floor level. At the
beginning of each trial, the mouse was placed in a corner of the
light compartment and allowed to move freely between the two
compartments for 10 min. The number of lightbox entries and
total time spent in the light compartment as compared to the dark
compartment was used to assess anxiety-like behavior.

Social Interaction Test
The social interaction test was conducted in three 10-min phases
in an open plexiglass arena (50 cm × 50 cm × 34.5 cm),
and mice could explore freely during each phase. Between each
testing phase, the experimental mouse was briefly placed in a
holding cage while the experimenter altered the arena settings as
follows: phase 1: empty arena; phase 2: two empty wiremesh cups
(diameter 4′′, height 4′′) located at opposite corners of the arena
10 cm from each wall; phase 3: a novel age- and sex-matched
mouse of the same strain was placed inside one of the two cups,
while the other cup remained empty. The placement of the cups
and social partner were pseudorandom and counterbalanced.
Interaction zones for each cup were defined as encompassing
a 5 cm radius around the center of the cup, and the ratio of
interaction time with the social partner vs. the empty cup during
phase 3 was used to determine a social preference score.

Novel Object Interaction
The novel object interaction assay was conducted under the
same conditions and using the same analyses as the social
interaction test (see above) but using objects, to assess whether
effects observed in novel social partner preference could be
generalized to a non-social novel object. The objects used in
this experiment included plastic cuboids with orange color
(3 cm × 3 cm × 6 cm) and half-sphered plastic cylinders
with the blue color of the same dimensions, as described in
previous publications (Lueptow, 2017; Tian et al., 2019); these
objects were determined to be of equal interest to C57BL/6J
mice in pilot testing. The objects were affixed to the floor of
the arena during behavioral testing, which proceeded as follows:
phase 1: empty arena; phase 2: two versions of the same object
located at opposite corners of the arena 10 cm from each
wall; phase 3: a novel object replaced one of the two familiar
objects in the arena. The ratio of interaction time with the novel
vs. familiar object during phase 3 was used as a novel object
preference score.

Fear Conditioning
Fear conditioning was performed in an operant box with a
stainless-steel grid floor within a sound-attenuating chamber
(Colbourn Instruments, Allentown, PA, USA). The mouse was
placed in the chamber at the beginning of the test, and following
a 5 min habituation period received six pairings of a 30 s,
80 dB tone (conditioned stimulus, CS) co-terminating with a
2 s, 0.5 mA foot shock (unconditioned stimulus, US) separated
by pseudorandom intra-interval times (from 31–119 s, with an
average ITI of 75.5 s). Video tracking and FreezeFrame software
(Colbourn Instruments, Allentown, PA, USA)were used to assess
freezing behavior during the 28 s period preceding the shock
across tone/shock presentations.

Home Cage Ethanol Drinking
We used a modified version of the standard Drinking in the
Dark (DID) binge ethanol drinking paradigm (mDID) to assess
binge ethanol intake under limited-access conditions as well
as 24-h preference for ethanol over water. Mice were singly
housed for several days before the first ethanol presentation.
For each mDID cycle, the home cage water bottle was replaced
with a bottle containing 20% (cycles 1–4) or 30% (cycles
5–6) ethanol for 2 h beginning 3 h into the dark cycle for
three days. On day 4, two bottles (one containing ethanol
solution, one containing water) were placed in the cage for
24 h (bottles were weighted after 2 h, 4 h, and 24 h of
access). Bottle weights were used to calculate ethanol and water
consumption daily (normalized to body weight) and 24 h
ethanol preference on day 4, calculated as the ratio of the
volume of liquid consumed from the ethanol bottle to the
water bottle.

Aversion-Resistant Ethanol Drinking
Consumption and preference of quinine-adulterated ethanol
over water in a two-bottle choice home cage assay was measured
to evaluate aversion-resistant ethanol drinking behavior. Mice
received 4 h of access to two bottles, one containing 20% ethanol
adulterated with 100 µM (Days 1 and 2) or 250 µM (Day 3)
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FIGURE 1 | Adolescent social isolation behavior battery. (A) Experimental timeline. (B) In the elevated plus-maze (EPM), adolescent social isolation (SI) increases
the percent time spent exploring the open arms, an effect driven by females (left), without altering locomotor activity as measured by closed arm entries (right).
(C) Adolescent SI oppositely affects the percent time spent exploring the center of an open field in males and females (left) but does not affect the distance traveled
in this assay (right). (D) On the social interaction test, all but group-housed (GH) females display a significant preference for a novel social partner over an empty cup,
and adolescent SI increases preference (left) without impacting total time spent exploring both objects (right). (E) Adolescent SI does not affect anxiety-like behavior
in the light/dark box. (F) All groups display a preference for a novel object over a familiar one, and this preference was greater in males than females but unaffected
by adolescent SI (left). The total time spent exploring both objects is likewise increased in males compared to females (right). (G) Females display enhanced fear
conditioning compared to males, but adolescent SI does not alter this measure. Data are expressed as means + SEM; *p < 0.05, **p < 0.01, ***p < 0.001 between
groups; #p < 0.05, ##p < 0.01, ###p < 0.001 compared to null hypothesis of preference score = 1.

quinine hemisulfate (Sigma–Aldrich, St. Louis, MO, USA) and
the other containing water. Bottle placement was pseudorandom
and switched daily, and consumption and preference were
measured as described for mDID.

Sucrose Preference Test
A similar procedure to that described above was used to
evaluate consumption and preference for 1% (w/v) sucrose
solution vs. water, except that mice were given access to
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FIGURE 2 | Adult isolation behavior battery. (A) Experimental timeline. (B) Females spend more time exploring the open arms of the EPM, but adult SI does not
influence this measure (left); there is no difference in general locomotor behavior, measured by the number of entries into the closed arms (right). (C) There are no
effects of sex or adult SI on the percent time spent exploring the center of the open field (OF; left), however, there is a sex-dependent effect of adult SI on the total
distance traveled in the OF (right). (D) Adult SI does not alter preference for a novel social partner over an empty cup in the social interaction test (left) but does
decrease total time spent interacting with the social partner and empty cup, an effect driven by males (right). GH males also spend more total time exploring both
objects compared to GH females. (E) Adult SI decreases the percent time spent exploring the light side of the light/dark box in both males and females. (F) In the
novel object interaction test, all groups except GH males display a preference for a novel vs. familiar object (left), however, this is driven by greater overall interaction
time with both objects in males (right). (G) Adult SI mice show delayed fear acquisition compared to GH mice. Data are expressed as means + SEM; *p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.001 between groups; #p < 0.05 compared to null hypothesis of preference score = 1.

the sucrose and water bottles for 24 h per day. Intake and
preference were measured every 24 h for four consecutive days.
For all drinking experiments, empty ‘‘dummy’’ cages on the
same rack as housed behavior mice received the same ethanol,
sucrose or water bottle replacement, and consumption was
adjusted for a leak from dummy bottles and normalized to
body weight.

Home Cage Social Interaction
Home cage social interaction with a novel same-sex conspecific
mouse was conducted in the experimental mouse’s home cage
(28 cm × 18 cm × 12.5 cm). The novel mouse was placed
into the cage and overhead video was used to record behavior
for 5 min. An experimenter blind to condition hand-scored
discrete behaviors performed by the experimental mouse,
including the number and duration of the total, head-to-head,
and head-to-tail social interactions, as well as digging and
climbing bouts.

Statistical Analysis
Statistical analyses were conducted using GraphPad Prism
8 software. Distributions of data within the group were analyzed
for normality, and outliers were identified using Q-Q plots and
confirmed by the Rout method (Q = 0.5%); when an individual
mouse’s behavior was identified as an outlier for at least half of
the reported dependent measures for a given behavioral assay, it
was excluded from analysis for that assay only and reported in
the ‘‘Results’’ section. No animal was excluded from analysis on
more than one behavioral assay. Two-way analysis of variance
(ANOVA) was used to assess the effects of housing condition
and sex on behavior in the elevated plus-maze, open field
test (adult cohort), novel object test, light/dark box, and social
interaction assays. Two-way repeated-measures ANOVAs (RM
ANOVA) or two-factor mixed models were used to assess the
effects of housing conditions on home-cage drinking behaviors
within sex over time. Three-way RM ANOVA was used to assess
the freezing across consecutive tone/shock pairings in the fear
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conditioning assay and behavior in the open field test across time
(adolescent cohort). Equal variance across time was not assumed
in RM ANOVAs with three or more repeated measures, and a
Greenhouse-Geisser correction of degrees of freedom was used.
Significant effects in all ANOVAs were followed up with post hoc
two-tailed t-tests corrected for multiple comparisons using the
Holm-Sidak method, and adjusted p-values are presented. Alpha
values of 0.05 were used throughout all analyses, and data are
presented as mean + SEM.

RESULTS

Elevated Plus Maze
Following 6 weeks of adolescent SI or GH conditions, mice
underwent testing in the EPM to assess differences in anxiety-like
behavior (Figure 1B; GH females n = 9, GH males n = 10, SI
females n = 10, SI males n = 9; one GH female met outlier
exclusion criteria and was excluded from this assay). A two-way
ANOVA comparing the percent time spent on the open arms
revealed a main effect of housing condition (F(1, 34) = 12.78,
p = 0.001) but no main effect of sex (F(1, 34) = 0.53, p = 0.472)
and a significant interaction between sex and housing condition
(F(1, 34) = 0.41, p = 0.026). Post hoc analysis showed that this
effect was driven by females, as SI females spent significantly
more time on the open arms than their GH counterparts
(t(34) = 4.17, adjusted p = 0.0004), while SI males did not
(adjusted p > 0.05). A two-way ANOVA on the number of
closed arm entries revealed no effects of housing (F(1, 34) = 0.08,
p = 0.776) or sex (F(1, 34) = 1.41, p = 0.776), nor a sex by housing
condition interaction (F(1, 34) = 1.10, p = 0.301), suggesting that
the increased open arm exploration in SI females was not due to
a general increase in locomotion.

In contrast, social isolation during adulthood did not alter
anxiety-like behavior on the EPM (Figure 2B). A two-way
ANOVA revealed a main effect of sex (F(1, 34) = 6.66, p = 0.014)
but no main effect of housing condition (F(1, 34) = 0.01, p = 0.928)
nor a sex by housing condition interaction (F(1, 34) = 0.10,
p = 0.753). Despite this significant main effect of sex in the
omnibus test, post hoc analysis did not reveal any significant
differences between males and females (adjusted p > 0.05). A
two-way ANOVA on the number of closed arm entries revealed
no effects of sex (F(1, 34) = 3.17, p = 0.084) or housing condition
(F(1, 34) = 0.33, p = 0.569), nor was there a significant interaction
between these factors (F(1, 34) = 1.95, p = 0.171).

Open Field Test
To further investigate the impact of adolescent social isolation
on anxiety-like and locomotor behavior in early adulthood, we
next compared open field exploration in GH and SI female
and male mice (Figure 1C; n = 10 per group). A three-way
RM ANOVA comparing the impact of sex and adolescent
housing condition on the percent time spent in the center
of an open field across time (30 min total, broken into
5 min intervals) revealed a significant main effect of time
(F(5, 180) = 18.63, p < 0.0001) but no effects of sex (F(1, 36) = 3.20,
p = 0.082) or housing condition (F(1, 36) = 0.001, p = 0.971).
No significant interactions were identified between time and

sex (F(5, 180) = 0.31, p = 0.906), time and housing condition
(F(5, 180) = 0.31, p = 0.904), or sex and housing condition
(F(1, 36) = 3.35, p = 0.075).While there was a significant three-way
time by sex by housing condition interaction (F(5, 180) = 2.94,
p = 0.014), post hoc analysis did not reveal any significant
comparisons (adjusted ps > 0.05). A three-way RM ANOVA
comparing the total distance traveled in the open field across
these time points revealed a significant main effect of time
(F(5, 180) = 57.65, p < 0.0001) but no main effects of sex
(F(1, 36) = 0.53, p = 0.473) or housing condition (F(1, 36) = 1.66,
p = 0.205). There was an interaction between time and sex
(F(5, 180) = 2.41, p = 0.038) but no significant interaction between
time and housing condition (F(5, 180) = 0.85, p = 0.516) or
sex and housing condition (F(1, 36) = 4.01, p = 0.052), and no
three-way interaction between time, sex, and housing condition
(F(5, 180) = 1.57, p = 0.171). Post hoc analysis did not reveal any
significant differences between sexes at any time point, however
(adjusted p > 0.05).

In the adult SI cohort, we used a 10 min open field test
(Figure 2C; GH females n = 8, GHmales n = 10, SI females n = 10,
SI males n = 10). A two-way ANOVA comparing the percent
time in the center of this assay did not reveal a main effect of sex
(F(1, 34) = 2.29, p = 0.139) or housing condition (F(1, 34) = 4.07,
p = 0.051), and the interaction between these variables also failed
to achieve significance (F(1, 34) = 0.01, p = 0.931). Interestingly, a
two-way ANOVA comparing the total distance traveled during
this 5 min assay did not reveal main effects of sex (F(1, 34) = 1.38,
p = 0.248) or housing condition (F(1, 34) = 0.41, p = 0.526)
but did reveal a significant interaction between these factors
(F(1, 34) = 18.72, p = 0.001). Post hoc comparisons revealed that
GH females traveled a greater distance than their SI counterparts
(t(34) = 3.41, adjusted p = 0.005) while GH males traveled
significantly less distance in this assay than SI males (t(34) = 2.69,
adjusted p = 0.021). Furthermore, the total distance traveled was
higher in GH females than GH males (t(34) = 2.17, adjusted
p = 0.037), and higher in SI males than SI females (t(34) = 4.01,
adjusted p = 0.001).

Social Interaction Test
To determine whether chronic social isolation during
adolescence effects adult social behavior, mice in the adolescent
SI cohort underwent a social interaction test (Figure 1D;
GH females n = 10, GH males n = 10, SI females n = 9, SI
males n = 10). Male and female mice reared in isolation,
as well as GH males, demonstrated a significant preference
for a social partner as compared to an empty cup (one-
sample t-tests; GH males, t(9) = 2.15, p = 0.004; SI females,
t(8) = 2.69, p = 0.027; SI males, t(9) = 4.40, p = 0.001);
however adolescent GH females did not demonstrate this
social preference (t(9) = 2.15, p = 0.060). Interestingly, a two-way
ANOVA analyzing preference for a social partner over a
non-social object revealed a significant main effect of housing
condition (F(1, 35) = 5.98, p = 0.019) but no main effect of
sex (F(1, 35) = 2.49, p = 0.123) or interaction between these
factors (F(1, 35) = 0.07, p = 0.787). However, post hoc analysis
did not reveal any significant differences in social preference
between GH and SI animals of either sex (adjusted p > 0.05).
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A two-way ANOVA assessing general activity in this assay,
as measured by combining the total time spent exploring
both a social partner and a non-social empty cup, revealed
no significant differences between groups (main effect of sex:
F(1, 35) = 0.50, p = 0.484; main effect of housing condition:
F(1, 35) = 2.69, p = 0.110; sex by housing condition interaction:
F(1, 35) = 0.55, p = 0.462).

In the adult SI cohort (Figure 2D; GH females n = 8, GH
males n = 10, SI females n = 10, SI males n = 10), no group
demonstrated a reliable preference for a social partner over an
empty cup (one-sample t-tests; GH females: t(7) = 2.23, p = 0.060;
GH males: t(9) = 1.87, p = 0.094; SI females: t(9) = 2.10, p = 0.065;
SI males: t(9) = 2.05, p = 0.070). A two-way ANOVA did
not reveal significant differences in social preference between
groups (main effect of sex: F(1, 29) = 3.15, p = 0.086; main
effect of housing condition: F(1, 29) = 0.02, p = 0.896; sex by
housing condition interaction: F(1, 29) = 0.59, p = 0.448). A
two-way ANOVA comparing the total combined time spent
exploring both the non-social object (empty cup) and social
partner revealed significant main effects of sex (F(1, 34) = 10.04,
p = 0.003) and housing condition (F(1, 34) = 4.32, p = 0.045), but
there was no interaction between these factors (F(1, 34) = 2.51,
p = 0.122). Follow-up post hoc analyses revealed that GH males
spent more combined time exploring a social partner and empty
cup than GH females (t(34) = 3.27, adjusted p = 0.010) and SI
males (t(34) = 2.67, adjusted p = 0.034).

Light/Dark Box
A two-way ANOVA did not reveal any effects of adolescent
social isolation or sex (Figure 1E; n = 10 per group) on the
percent time spent in the light side of a light/dark box (main
effect of sex: F(1, 35) = 0.21, p = 0.646; main effect of housing
condition: F(1, 35) = 1.21, p = 0.279; sex by housing condition
interaction: F(1, 35) = 0.023, p = 0.879). A two-way ANOVA
comparing the effects of 6 weeks of adult social isolation vs. group
housing conditions on behavior in the light/dark box in males
and females (Figure 2E; GH females n = 8, GH males n = 10,
SI females n = 10, SI males n = 10) revealed a significant main
effect of housing condition (F(1, 34) = 21.78, p < 0.0001), but
no main effect of sex (F(1, 34) = 0.020, p = 0.886) or significant
interaction between these variables (F(1, 34) = 0.550, p = 0.463).
Post hoc analysis revealed that GH animals spent significantly
more time in the light compartment of the light/dark box than
their SI counterparts (GHmales vs. SI males: t(34) = 3.94, adjusted
p = 0.0008; GH females vs. SI females: t(34) = 2.70, adjusted
p = 0.011).

Novel Object Interaction
To determine whether the increased social exploration observed
following adolescent social isolation could be generalized to
non-social contexts, we performed a novel object interaction
task designed similarly to the social interaction task described
above (Figure 1F). GH females (n = 9) demonstrated a preference
for a novel object over a familiar object (one-sample t-test,
t(8) = 2.71, p = 0.026), as did GH males (n = 10; t(9) = 4.83,
p = 0.0009), SI females (n = 9; t(8) = 6.02, p = 0.0003), and SI males
(n = 9; t(8) = 3.29, p = 0.011). A two-way ANOVA comparing

novel object preference across groups revealed a significant main
effect of sex (F(1, 33) = 5.20, p = 0.029) but no main effect of
housing condition (F(1, 33) = 0.766, p = 0.387) or significant
interaction between these factors (F(1, 33) = 1.31, p = 0.261).
Post hoc analysis revealed that GHmales exhibited a significantly
increased novel object preference as compared to GH females
(t(33) = 2.45, adjusted p = 0.039). To assess general exploratory
behavior in this assay, we compared the total time that animals in
each group spent exploring both the novel plus familiar objects
in this assay. A two-way ANOVA revealed a significant main
effect of sex (F(1, 33) = 17.91, p = 0.0002), but no main effect
of housing condition (F(1, 33) = 0.54, p = 0.469) or interaction
between these factors (F(1, 33) = 0.36, p = 0.553). Post hoc analysis
revealed that GH females spent significantly less time exploring
the novel and familiar objects than GH males (t(33) = 3.46,
adjusted p= 0.002). Consistent with this, SI females also spent less
time exploring these objects that SI males (t(33) = 2.54, adjusted
p = 0.016). Altogether, these results suggest that while there are
sex differences in the preference for and exploration of novel
objects over familiar, adolescent social isolation had no effect
on this task. In contrast, adolescent social isolation increased
preference for a social partner, suggesting that its effects were
specific to a social context.

In the adult SI cohort (Figure 2F), GH females displayed a
significant preference for the novel object (n = 7; t(6) = 3.13,
p = 0.026), as did SI females (n = 8; t(7) = 3.07, p = 0.017)
and SI males (n = 9; t(8) = 2.84, p = 0.022), but not GH males
(n = 9; t(8) = 1.99, p = 0.082); one GH and one SI female met
outlier criteria and were excluded from statistical analysis for this
assay. A two-way ANOVA comparing novel object preference
across groups revealed no significant differences between groups
(main effect of sex: F(1, 29) = 3.15, p = 0.896; main effect of
housing condition: F(1, 29) = 0.017, p = 0.896; sex by housing
condition interaction: F(1, 29) = 0.59, p = 0.448). A two-way
ANOVA comparing the total combined time spent exploring
the novel and familiar objects revealed a significant main effect
of sex (F(1, 29) = 10.64, p = 0.002), but no main effect of
housing condition (F(1, 29) = 0.019, p = 0.890) or sex by housing
interaction (F(1, 29) = 4.13, p = 0.051). Post hoc tests revealed that
GH males spent significantly more combined time exploring a
social partner and novel object than GH females (t(29) = 3.68,
adjusted p = 0.002).

Fear Conditioning
We next assessed whether adolescent social isolation impacts
fear learning by measuring acquisition of freezing behavior in
response to a foot shock-paired tone (assessed by freezing during
tone presentation across six consecutive tone/shock pairings;
Figure 1G). A three-way RM ANOVA was used to measure
the effects of sex and adolescent housing condition on freezing
behavior across time (GH females n = 5, SI females n = 4, GH
males n = 5, SI males n = 5). This test revealed a significant main
effect of time, as expected (F(3, 045, 45) = 34.28, p < 0.0001). A
main effect of sex also emerged (F(1, 15) = 5.36, p = 0.035) as well
as a significant time by sex interaction (F(5, 75) = 2.68, p = 0.027).
There was no significant main effect of housing condition
(F(1, 15) = 0.23, p = 0.638), time by housing condition interaction
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(F(5, 75) = 0.80, p = 0.550), sex by housing condition interaction
(F(1, 15) = 0.010, p = 0.919), or time by sex by housing condition
interaction (F(5, 75) = 0.63, p = 0.680). Post hoc comparisons did
not reveal any significant sex-dependent differences at any time
point, however (adjusted p > 0.05).

We also assessed fear conditioning in the adult SI cohort
(Figure 2G; GH female n = 8, GH male n = 10, SI female n = 10,
SI male n = 10). A three-way RM ANOVA revealed a main effect
of time (F(3.851, 130.9) = 78.78, p < 0.0001), as well as a main
effect of housing condition (F(1, 34) = 4.17, p = 0.048) but no
main effect of sex (F(1, 34) = 0.069, p = 0.793). There was no
interaction between time and sex (F(5, 170) = 1.15, p = 0.336),
time and housing condition (F(5, 170) = 1.26, p = 0.285), or sex
and housing condition (F(1, 34) = 0.153, p = 0.697), nor was
there a significant three-way interaction between these variables
(F(5, 170) = 0.669, p = 0.646). Post hoc analysis did not reveal any
significant differences in freezing behavior across groups at any
time point (adjusted p > 0.05).

Home Cage Ethanol Drinking
As previous studies in rodents have demonstrated that adolescent
social isolation increases home cage ethanol self-administration
(McCool and Chappell, 2009; Butler et al., 2014a, 2016; Skelly
et al., 2015), we next assessed whether adolescent social
isolation affects binge ethanol drinking in male and female
C57BL/6J mice across time using a modified version of the
standard DID paradigm that allowed us to assess ethanol
preference on day 4 of each DID cycle (Figures 3A,D;
n = 10 per group). A mixed-effects analysis was used to evaluate
consumption of 20% ethanol across four cycles in GH and
SI females (Figure 3A, left), revealing a main effect of cycle
(F(6.372, 112.6) = 4.32, p < 0.0001) but no main effect of housing
condition (F(1, 18) = 1.24, p = 0.280) or interaction between
these variables (F(15, 265) = 1.43, p = 0.132). To ensure that a
group difference was not being obscured by a ceiling effect,
we next increased the concentration of ethanol to 30% for
two cycles, and a mixed-effects analysis revealed no effects
or interactions at this concentration either (main effect of
cycle: F(3.621, 60.52) = 1.77, p = 0.153; main effect of housing
condition: F(1, 17) = 0.219, p = 0.645; time by housing condition
interaction: F(7, 117) = 1.72, p = 0.111). We also found no effect
of social isolation on ethanol preference at either concentration
in females (Figure 3A, right). A mixed-effects analysis of 20%
ethanol preference revealed no effects (main effect of cycle:
F(3, 49) = 0.097, p = 0.961; main effect of housing condition:
F(1, 18) = 1.71, p = 0.207; cycle by housing condition interaction:
F(3, 49) = 2.19, p = 0.101). Similarly, a two-way RM ANOVA
assessing 30% ethanol preference revealed no effects (main effect
of time: F(1, 17) = 1.07, p = 0.316; main effect of housing condition:
F(1, 17) = 3.83, p = 0.252; time by housing condition interaction:
F(1, 17) = 1.83, p = 0.194).

Similar to females, social isolation did not affect ethanol
consumption or preference in males (Figure 3D, left). A
mixed-effects analysis of 20% ethanol consumption (Figure 3D;
n = 10 per group) revealed a significant main effect of cycle
(F(7.450, 132.6) = 4.10, p < 0.001), but no main effect of housing
condition (F(1, 18) = 0.004, p = 0.947) or interaction between

these factors (F(15, 267) = 0.527, p = 0.924). A mixed-effects
analysis of 30% ethanol intake also revealed a main effect of
cycle (F(7, 121) = 7.36, p < 0.001), but no main effect of housing
condition (F(1, 18) = 1.29, p = 0.270) or significant cycle by
housing condition interaction (F(7, 121) = 1.63, p = 0.132). A
mixed-effects analysis of 20% ethanol preference (Figure 3D,
right) compared to water revealed no effects (main effect of cycle:
F(2.357, 38.49) = 0.325, p = 0.758; main effect of housing condition:
F(1, 18) = 0.213, p = 0.649; cycle by housing condition interaction:
(F(3, 49) = 2.06, p = 0.117). Similarly, a mixed effects analysis
assessing 30% ethanol preference did not reveal significant group
differences (main effect of cycle: F(1, 35) = 1.88, p = 0.179; main
effect of housing condition: F(1, 35) = 0.151, p = 0.699; cycle by
housing condition interaction: F(1, 35) = 0.536, p = 0.468).

Aversion-Resistant Ethanol Drinking
To assess whether adolescent social isolation alter aversion-
resistant ethanol consumption, we measured home cage
DID intake using 20% ethanol adulterated with quinine
(Figures 3B,E). Mice were given 4 h access to 20% ethanol
containing either 100 µM quinine (days 1 and 2, average
used for analysis) or 250 µM quinine (day 3). Among female
mice (ns = 9), a two-way RM ANOVA for quinine-adulterated
ethanol intake did not reveal any significant differences
(Figure 3B; main effect of quinine concentration: F(1, 16) = 4.21,
p = 0.056; main effect of housing condition: F(1, 16) = 0.175,
p = 0.681; concentration by housing condition interaction:
F(1, 16) = 0.001, p = 0.977). Similarly, a two-way RM ANOVA
assessing quinine-adulterated ethanol preference revealed no
main effects of housing condition (F(1, 16) = 3.62, p = 0.074)
or quinine concentration (F(1, 16) = 1.67, p = 0.214), nor any
significant interaction between these variables (F(1, 16) = 0.049,
p = 0.826). In male mice (GH n = 10, SI n = 9), there was
a significant main effect of quinine concentration on ethanol
intake (Figure 3E; F(1, 17) = 2.93, p = 0.105), with the higher
dose of quinine suppressing ethanol consumption. However,
there was no significant main effect of housing condition
(F(1, 17) = 2.93, p = 0.105), nor a significant interaction between
these factors (F(1, 17) = 0.128, p = 0.724). A two-way RMANOVA
comparing ethanol preference across quinine concentrations
did not reveal any significant differences between GH and SI
male mice (main effect of quinine concentration: F(1, 17) = 1.29,
p = 0.271; main effect of housing condition: F(1, 17) = 0.108,
p = 0.746; concentration by housing condition interaction:
F(1, 17) = 0.001, p = 0.981).

Sucrose Preference Test
To determine whether social isolation during adolescence
impacts general reward sensitivity, we measured 1% (w/v)
sucrose preference vs. water across three days (Figures 3C,F).
A two-way RM ANOVA comparing adolescent GH (n = 10)
and SI (n = 9) female mice revealed a significant main effect
of time (Figure 3C; F(1.687, 28.68) = 4.32, p = 0.028) but no
main effect of housing condition (F(1, 17) = 0.342, p = 0.566) or
interaction between these variables (F(2, 34) = 0.255, p = 0.775).
In male mice, no differences in sucrose preference emerged
(Figure 3F; main effect of time: F(1.418, 25.53) = 2.57, p = 0.110;
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FIGURE 3 | Effects of adolescent social isolation on home-cage ethanol drinking and reward and aversion sensitivity in adult female (A–C) and male (D–F) mice.
(A) There are no effects of adolescent SI on binge ethanol consumption (left) or 24-h ethanol preference (right) across 6 weeks of 20% and 30% ethanol in a modified
EtOH DID paradigm in females. (B) Adolescent GH and SI females display similar consumption of quinine-adulterated ethanol (left) and preference for it over water
(right) across multiple quinine concentrations. (C) Adolescent SI does not alter preference for a 1% sucrose solution over water in female mice. (D–F) Similarly,
adolescent SI in males does not alter ethanol intake or preference (D), quinine-adulterated ethanol intake or preference (E), or 1% sucrose preference (F).

main effect of housing condition: F(1, 18) = 0.025, p = 0.874; time
by housing condition interaction: F(2, 36) = 0.331, p = 0.720).
Altogether, results from our drinking experiments suggest that

binge ethanol consumption, aversion-resistant ethanol intake,
and general reward sensitivity were unaltered by adolescent
social isolation.
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Home Cage Social Interaction
We found a robust effect of adolescent, but not adult, social
isolation on increased social behavior in adulthood using a social
interaction paradigm in a novel environment. We further probed
the stability and generalizability of this phenotype using a home
cage social interaction test in which the experimental mouse
remained in its home cage and a novel intruder conspecific was
placed in the cage for 5 min (Figure 4; GH females n = 9, SI
females n = 9, GH males n = 10, SI males n = 9). Adolescent
SI males and females again showed greater social interaction
in this paradigm. A two-way ANOVA on the total number of
social interaction bouts (Figure 4A) showed a main effect of
housing condition (F(1, 33) = 19.08, p = 0.0001) and no effect
of sex (F(1, 33) = 3.99, p = 0.054) or sex by housing interaction
(F(1, 33) = 1.06, p = 0.310). Post hoc t-tests confirmed this effect
occurred in both females (t(33) = 2.33, adjusted p = 0.026) and
males (t(33) = 3.87, adjusted p = 0.001). This increased interaction
was true for both head-to-head and head-to-tail interactions.
Head-to-head (Figure 4B): main effect of housing (F(1, 33) = 9.78,
p = 0.004), no effect of sex (F(1, 33) = 4.13, p = 0.050), and no
interaction (F(1, 33) = 0.002, p = 0.961); post hoc t-tests: ps> 0, 05.
Head-to-tail (Figure 4C): main effect of housing (F(1, 33) = 16.26,
p = 0.0003), no effect of sex (F(1, 33) = 1.72, p = 0.198), and no
interaction (F(1, 33) = 2.43, p = 0.128); post hoc t-tests showed
the effect was driven by males: females (t(33) = 1.73, adjusted
p = 0.094), males (t(33) = 4.01, adjusted p = 0.0007). In contrast to
social interactions, there was no effect of adolescent SI on digging
or climbing behaviors (Figures 4D,E). Two-way ANOVAs on
the number of digging bouts and the number of climbing bouts
showed no effects of housing condition, sex, or an interaction
(ps > 0.05).

Given this distribution of behaviors during the home cage
assay, adolescent SI mice spent a greater proportion of time
engaged in social interaction than their GH counterparts
(Figure 4F). A two-way ANOVA on the percent time spent
exploring a novel social partner revealed a significant main
effect of housing (F(1, 33) = 7.59, p = 0.010) but no main
effect of sex (F(1, 33) = 0.055, p = 0.815) or interaction between
these variables (F(1, 33) = 2.44, p = 0.127). Post hoc analysis
showed that the effect of social isolation was driven by males
(t(33) = 3.09, adjusted p = 0.008) but did not occur in
females. However, the duration of the first interaction bout
was longer in adolescent SI mice of both sexes (Figure 4G).
A two-way ANOVA assessing the duration of the first bout of
social interaction revealed a significant main effect of housing
condition (F(1, 33) = 11.23, p = 0.002), but no main effect of
sex (F(1, 33) = 0.109, p = 0.742) or significant sex by housing
condition interaction (F(1, 33) = 0.143, p = 0.707). Post hoc analysis
confirmed that both SI females and males spent more time
interacting with a novel social partner during this first bout than
their GH counterparts (females: t(33) = 2.61, adjusted p = 0.027;
males: t(33) = 2.13, adjusted p = 0.040). Interestingly, however,
SI mice had a longer latency to first approach the stranger
mouse, suggesting some initial inhibition of this hypersocial
behavior (data not shown). A two-way ANOVA revealed a
main effect of housing condition (F(1, 33) = 19.00, p < 0.001),
but no main effect of sex (F(1, 33) = 2.06, p = 0.160) or sex

by housing interaction (F(1, 33) = 1.35, p = 0.254). Post hoc
analysis revealed that SI males and females took significantly
more time to approach the novel social partner than their
GH counterparts (GH females vs. SI females: t(33) = 2.23,
adjusted p = 0.039; GH males vs. SI males: t(33) = 3.95, adjusted
p = 0.001). Despite this initial delay in interaction, the overall
results support our initial findings that adolescent social isolation
produces an aberrant hyper-social phenotype in adulthood in
C57BL/6J mice.

DISCUSSION

These studies were designed to assess whether the harmful and
translationally-relevant behavioral consequences of adolescent
SI well-characterized in rats can be reliably recapitulated in
C57BL/6J mice, themost common laboratorymouse background
strain. We further sought to determine whether adolescence is
a critical period for behavioral plasticity or whether a similar
long-term social isolation in adulthood impacts these pathology-
related behaviors. Surprisingly, we did not see any consistent
phenotypes following adult SI, as mice displayed an anxiogenic
phenotype in the light/dark box assay (Figure 2E) but not on any
other measures of anxiety-like behavior. These findings indicate
that singly housing mice in adulthood, as is done routinely in
alcohol and drug self-administration studies, among others, does
not alter basal behavioral states in C57BL/6J mice; thus, adult
isolation is not a major confounding variable for most behavioral
assays including those measured herein. Similarly, we found
few effects of adolescent social isolation on performance in a
battery of behaviors, which was surprising given the literature
showing the deleterious effects of stress during the adolescent
period on adult behaviors. However, the most robust effect of
adolescent social isolation we observed was that it promoted
social behavior in adulthood in both sexes (Figures 1D, 4), an
effect remarkably similar in nature to the stress imposed upon
the mice.

Contrary to our predictions, we did not find that adolescent
social isolation increases anxiety-like behavior in male or
female C57BL/6J mice (Figure 1). In fact, following adolescent
isolation, adult female mice spent more time in the open
arms of the elevated plus-maze on average, a behavior that
is classically interpreted as a sign of anxiolysis (Figure 1B).
This anxiolytic effect of adolescent isolation in mice has been
reported elsewhere (Võikar et al., 2005; Lopez and Laber,
2015). Previous studies have also found some evidence that
adolescent social isolation induces an anxiogenic phenotype
in the light/dark box and hyperlocomotion in the open field
test in mice (Võikar et al., 2005; Gan et al., 2014; Amiri
et al., 2015; Medendorp et al., 2018), but these results have
not always been reported (Koike et al., 2009). In contrast,
we found no effect on adult social isolation on anxiety-like
behavior in the EPM (Figure 2B), suggesting some adolescent
period specificity for this effect. Intriguingly, we found that adult
social isolation increased anxiety-like behavior in the light/dark
box, suggesting that if anything, adult isolation produces the
opposite effect of adolescent isolation. However, in both cohorts,
other measures of anxiety-like behavior did not recapitulate
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FIGURE 4 | Effects of adolescent social isolation on home cage social interaction in adulthood. (A) Adolescent SI mice display an increased number of social
interaction bouts in both males and females. (B,C) This overall phenotype is present when only head-to-head interactions (B) or head-to-tail interactions (C) are
considered. (D,E) In contrast, digging (D) and climbing (E) behaviors are not altered by adolescent SI. (F) Adolescent SI mice spend a greater proportion of the 5 min
assay interacting with the stranger mouse than their GH counterparts, an effect driven by males. (G) The duration of the first social interaction bout is longer in
adolescent SI mice of both sexes. Data are expressed as means + SEM; *p < 0.05, **p < 0.01, ***p < 0.001 between groups.

these effects, suggesting there are no reliable effects of social
isolation at either time point on adult anxiety-related behavior
in C57BL/6J mice. We should note order effects may explain
the observed differences anxiety phenotypes observed in our
adult and adolescent isolation cohorts, as in each cohort we
observed anxiety-relevant effects of SI on the first but not
subsequent anxiety assays. However, because the phenotype
observed in the first anxiety assay in adult- and adolescent-
isolated groups were opposite this does not suggest a broader
generalized effect of isolation that can be measured upon
the first assay only. Furthermore, evidence in the literature
suggests that anxiety is not particularly sensitive to order effects
(McIlwain et al., 2001). Studies in rats have demonstrated

that adolescent isolation produces a stable and repeatable
anxiety-like phenotype across the lifespan (Skelly et al., 2015;
Butler et al., 2016). The transient nature of the observed
effects of protracted social isolation on subsequent anxiety in
these studies suggests that isolation does not produce a robust
anxiety phenotype in C57BL/6J mice. Perhaps our most striking
finding is that isolation rearing during adolescence increased
social exploration and interaction in adulthood. Specifically,
we found that preference for a novel social partner increased
in both males and females following protracted adolescent
isolation (Figure 1D). We extended this finding in a home
cage social interaction test with a novel intruding conspecifics
(Figure 4), demonstrating that this hypersocial behavior occurs
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in both familiar and novel environments. Aberrantly high social
exploration may be maladaptive in settings in which social
caution or defensive behavior is more appropriate, such as
during exposure to an unfamiliar intruder. This phenotype is
similar to that observed in some developmental disorders such
as Williams’ Syndrome, in which individuals inappropriately
approach and engage with strangers. However, as this behavior
occurred following a long delay before approaching the stranger
mouse, the social phenotype of the adolescent SI mice could
be a compensatory mechanism that promotes an adaptive
social phenotype beneficial in certain contexts that require
social affiliation for survival. This pro-social interpretation has
previously been reported to occur in female mice following
exposure to a developmental stressor (Koike et al., 2009; Bondar
et al., 2018). Interestingly, many groups have reported the
exact opposite effect of adolescent isolation on social behavior
in mice, finding that this developmental stressor decreases
social interest in adulthood (Balemans et al., 2010; Medendorp
et al., 2018). Nonetheless, reduced social learning (Kercmar
et al., 2011) and aberrant social behavior when placed back
into group housing in adulthood (Endo et al., 2018) have also
been reported following post-weaning isolation in C57BL/6J
male and female mice, further supporting a specific role for
peri-adolescent social isolation in abnormal adult social behavior.
This is unsurprising given that this is a crucial developmental
period for the development of prosocial behaviors (Spear, 2004;
Panksepp and Lahvis, 2007; Panksepp et al., 2007).

Interestingly, we did not identify a robust effect of isolation
in adulthood on measures of social interaction (Figure 2D),
further suggesting that adolescence is a critical period for the
development of sensitivity to social reward. We also tested
interest in a non-social novel object following adolescent
social isolation and found no significant effect of rearing
condition on novel object preference (Figure 1F). Again, no
differences in novel object preference emerged following social
isolation in adulthood, although GH males spent more total
time exploring the social partner and novel object combined
than SI males or GH females (Figure 2F). One factor to
consider when interpreting the current findings is that adolescent
GH animals were isolated in early adulthood for home cage
drinking studies, at a similar age and for a similar amount
of time before subsequent behavioral testing as the adult SI
cohort. However, as our analyses did not reveal any stable
differences between adult GH and SI groups, it is unlikely
that isolation in adulthood is a confounding factor affecting
the observed behavior of adult isolated animals that were
group-housed throughout adolescence. As such, we interpret
these findings as indicating that adolescence is the critical
period during which social isolation alters social exploration
in adulthood.

Prolonged social isolation during adolescence or adulthood
has also been reported to impact aspects of fear memory
formation in rats and mice (Pibiri et al., 2008; Pinna et al.,
2008; Lukkes et al., 2009a; Okada et al., 2015; Pinna, 2019).
Here we tested the effect of sex and housing condition on
fear learning across six tones/foot shock pairings. We did
not identify any effect of housing condition on fear memory

formation following adolescent isolation (Figure 1G) but did
observe delayed acquisition following adult isolation, however,
final acquisition was similar across all groups (Figure 2G).
Together, these results suggest that singly housing C57BL/6J
mice during adolescence or adulthood does not reliably impact
fear memory formation.

Adolescent isolation has been demonstrated to increase
alcohol self-administration in male rats and both male and
female mice (Lopez et al., 2011; Butler et al., 2014b, 2016;
Lopez and Laber, 2015; Skelly et al., 2015). Here, we evaluated
adolescent social isolation on binge alcohol drinking using
a modified DID paradigm and found no effects on 20%,
30%, and quinine-adulterated 20% ethanol consumption or
preference, nor on a rewarding 1% sucrose solution, in either
sex (Figure 3). Our results are inconsistent with the findings
of Lopez and colleagues (Lopez and Laber, 2015), who found
that adolescent social isolation in C57 mice produced a small
but significant increase in alcohol consumption at a single
time point. However, that study did not exam chronic home
cage ethanol self-administration. Regardless, our data indicate
that perhaps the effects of chronic social stress in adolescence
on ethanol drinking are less robust than the effects reported
in rats. Interestingly, adolescent social isolation has been
reported to produce a protracted increase in ethanol intake
and preference in male C57BL/6J mice given intermittent
access to ethanol in their home cage, but only at a relatively
low ethanol concentration (5%); these differences disappeared
when animals were offered a higher concentration of ethanol
(20%; Advani et al., 2007). Together, these findings generally
suggest that adolescent isolation does not reliably produce a
translationally relevant escalation of ethanol self-administration
in C57BL/6J mice.

One important point to consider when comparing our
findings to other published studies on adolescent isolation and
subsequent behavioral disturbances are the timing and duration
of the social isolation to which animals were exposed. As
others have noted (Lukkes et al., 2009b; Walker et al., 2019)
the age at which isolation stress is initiated can impact the
effects of this stress on behavior. In these studies, we separated
animals at PD 28, which is consistent with a well-established
adolescent isolation paradigm commonly used in male rats
(Butler et al., 2014a, 2016; Skelly et al., 2015). However, others
have isolated animals earlier in adolescence; for example, Walker
and colleagues separated C57BL/6J males and females from
PD 22–42 and did not find that isolation during this period
increased EPM open arm time (Walker et al., 2020). Given the
rapid shifts in hormonal and neuroendocrine profiles across
adolescence and puberty in rodents, slight differences in the
onset of isolation could potentially have significant long-term
behavioral implications (Walker et al., 2019). These authors
also re-socialized isolated animals at the end of this 3-week
separation period, whereas our isolates remained singly housed
throughout these studies. The duration of isolation before
commencing behavioral testing also varies across studies and
might explain some of the variability in findings. For example,
Võikar et al. (2005) isolated male C57BL/6J mice at PD 28,
but the duration of their isolation period was a bit longer
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than ours (7 weeks as opposed to 6). This group found that
male isolates displayed hyperactivity in the EPM, but increased
anxiety-like behavior in the light/dark box as well as impaired
novel object recognition. The extra week of isolation may
partly explain the differences observed by this group and
the findings reported here. Similarly, other groups have used
shorter isolation periods (beginning around PD28 and ending
around PD60) and report findings that diverge slightly from
what we report here (Lopez et al., 2011; Lopez and Laber,
2015; Huang et al., 2017). Specifically, Lopez and colleagues
found that adolescent isolation did increase both anxiety-like
behavior and alcohol self-administration in male and female
C57Bl/6J mice; perhaps initiating drinking earlier in adulthood
unmasks a phenotype not seen in our studies. In general, it
seems that a standardized adolescent social isolation protocol
designed with strain- and sex-specific differences in the timing
of puberty and corresponding hormonal fluctuations in mind
would meaningfully increase our collective ability to identify the
critical periods of adolescence during which exposure to isolation
stress is most deleterious.

An important component of understanding the specific
periods during which adolescent animals are most sensitive to
social isolation stress, future work should consider fluctuations
in gonadal and stress hormone signaling during this time.
Fluctuations in gonadal hormone during the postnatal period
encompassing adolescence have been demonstrated to regulate
social behaviors in rodents and humans, including prosocial,
aggressive, and sexual behaviors (Bell, 2018). Similarly, the
hormonal stress response is markedly different in adolescence
as compared to early childhood or adulthood (Sapolsky and
Meaney, 1986; Romeo, 2010); for example, stress-induced
corticosterone release is protracted in adolescence, and this
stress hormone response appears to sensitize upon repeated
presentations of a stressor (Romeo et al., 2016). Crucially, there
is some evidence that neuroendocrine mechanisms are involved
in the release of corticosterone and other stress hormones
during adolescence (Romeo et al., 2016). Although much more
work is needed in this area, the divergent hormonal milieu
experienced by males and females during puberty may partly
explain altered stress sensitivity and any divergence in the
long-term consequences of chronic social stress in males and
females. We did not measure stress hormones or track the estrus
cycle in these studies, but these factors may partly explain some
of the sex differences observed herein. Future work assessing the
interaction of these endocrine signals and their impact on the
behavioral and physiological consequences of chronic adolescent
stress exposure would be immensely valuable in general.

In general, we found that C57BL/6J mice are not reliably
sensitive to isolation stress. Beyond the findings outlined herein,
others have presented some evidence that single housing may not
be experienced as adversity among C57BL/6J mice (Bartolomucci
et al., 2003; Arndt et al., 2009), and in fact may decrease
social stress in males of this species (Singewald et al., 2009).
Others have not found evidence to support a protective effect of
adolescent social isolation in female C57BL/6J mice (Martin and
Brown, 2010). Interestingly, the majority of studies reporting a
behavioral effect of adolescent isolation on anxiety-like behavior,
fear memory formation or drug self-administration in have
initiated isolation at the same time that plays behavior is typically
increasing, suggesting that disruption of play behavior may be
a major contributor to this phenotype (Walker et al., 2019).
As mice engage in less social play in adolescence than rats,
this may partly explain the variability in the behavioral effects
of adolescent isolation rearing reported here and elsewhere.
Although, these findings present an issue for researchers
interested in identifying the link between developmental stress
and psychopathology using mouse models on a C57BL/6J strain,
the most common background for genetic manipulation, it also
suggests that experimentally-mandated individual housing in
adolescence or adulthood may not produce confounding effects
on basal behavioral states that experimenters prefer to avoid.
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